MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resscntz Structured version   Visualization version   GIF version

Theorem resscntz 18456
Description: Centralizer in a substructure. (Contributed by Mario Carneiro, 3-Oct-2015.)
Hypotheses
Ref Expression
resscntz.p 𝐻 = (𝐺s 𝐴)
resscntz.z 𝑍 = (Cntz‘𝐺)
resscntz.y 𝑌 = (Cntz‘𝐻)
Assertion
Ref Expression
resscntz ((𝐴𝑉𝑆𝐴) → (𝑌𝑆) = ((𝑍𝑆) ∩ 𝐴))

Proof of Theorem resscntz
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2821 . . . . . . 7 (Base‘𝐻) = (Base‘𝐻)
2 resscntz.y . . . . . . 7 𝑌 = (Cntz‘𝐻)
31, 2cntzrcl 18451 . . . . . 6 (𝑥 ∈ (𝑌𝑆) → (𝐻 ∈ V ∧ 𝑆 ⊆ (Base‘𝐻)))
43simprd 498 . . . . 5 (𝑥 ∈ (𝑌𝑆) → 𝑆 ⊆ (Base‘𝐻))
5 resscntz.p . . . . . 6 𝐻 = (𝐺s 𝐴)
6 eqid 2821 . . . . . 6 (Base‘𝐺) = (Base‘𝐺)
75, 6ressbasss 16550 . . . . 5 (Base‘𝐻) ⊆ (Base‘𝐺)
84, 7sstrdi 3978 . . . 4 (𝑥 ∈ (𝑌𝑆) → 𝑆 ⊆ (Base‘𝐺))
98a1i 11 . . 3 ((𝐴𝑉𝑆𝐴) → (𝑥 ∈ (𝑌𝑆) → 𝑆 ⊆ (Base‘𝐺)))
10 elinel1 4171 . . . . 5 (𝑥 ∈ ((𝑍𝑆) ∩ 𝐴) → 𝑥 ∈ (𝑍𝑆))
11 resscntz.z . . . . . . 7 𝑍 = (Cntz‘𝐺)
126, 11cntzrcl 18451 . . . . . 6 (𝑥 ∈ (𝑍𝑆) → (𝐺 ∈ V ∧ 𝑆 ⊆ (Base‘𝐺)))
1312simprd 498 . . . . 5 (𝑥 ∈ (𝑍𝑆) → 𝑆 ⊆ (Base‘𝐺))
1410, 13syl 17 . . . 4 (𝑥 ∈ ((𝑍𝑆) ∩ 𝐴) → 𝑆 ⊆ (Base‘𝐺))
1514a1i 11 . . 3 ((𝐴𝑉𝑆𝐴) → (𝑥 ∈ ((𝑍𝑆) ∩ 𝐴) → 𝑆 ⊆ (Base‘𝐺)))
16 anass 471 . . . . . 6 (((𝑥𝐴𝑥 ∈ (Base‘𝐺)) ∧ ∀𝑦𝑆 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)) ↔ (𝑥𝐴 ∧ (𝑥 ∈ (Base‘𝐺) ∧ ∀𝑦𝑆 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))))
17 elin 4168 . . . . . . . . 9 (𝑥 ∈ (𝐴 ∩ (Base‘𝐺)) ↔ (𝑥𝐴𝑥 ∈ (Base‘𝐺)))
185, 6ressbas 16548 . . . . . . . . . 10 (𝐴𝑉 → (𝐴 ∩ (Base‘𝐺)) = (Base‘𝐻))
1918eleq2d 2898 . . . . . . . . 9 (𝐴𝑉 → (𝑥 ∈ (𝐴 ∩ (Base‘𝐺)) ↔ 𝑥 ∈ (Base‘𝐻)))
2017, 19syl5bbr 287 . . . . . . . 8 (𝐴𝑉 → ((𝑥𝐴𝑥 ∈ (Base‘𝐺)) ↔ 𝑥 ∈ (Base‘𝐻)))
21 eqid 2821 . . . . . . . . . . . 12 (+g𝐺) = (+g𝐺)
225, 21ressplusg 16606 . . . . . . . . . . 11 (𝐴𝑉 → (+g𝐺) = (+g𝐻))
2322oveqd 7167 . . . . . . . . . 10 (𝐴𝑉 → (𝑥(+g𝐺)𝑦) = (𝑥(+g𝐻)𝑦))
2422oveqd 7167 . . . . . . . . . 10 (𝐴𝑉 → (𝑦(+g𝐺)𝑥) = (𝑦(+g𝐻)𝑥))
2523, 24eqeq12d 2837 . . . . . . . . 9 (𝐴𝑉 → ((𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥) ↔ (𝑥(+g𝐻)𝑦) = (𝑦(+g𝐻)𝑥)))
2625ralbidv 3197 . . . . . . . 8 (𝐴𝑉 → (∀𝑦𝑆 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥) ↔ ∀𝑦𝑆 (𝑥(+g𝐻)𝑦) = (𝑦(+g𝐻)𝑥)))
2720, 26anbi12d 632 . . . . . . 7 (𝐴𝑉 → (((𝑥𝐴𝑥 ∈ (Base‘𝐺)) ∧ ∀𝑦𝑆 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)) ↔ (𝑥 ∈ (Base‘𝐻) ∧ ∀𝑦𝑆 (𝑥(+g𝐻)𝑦) = (𝑦(+g𝐻)𝑥))))
2827ad2antrr 724 . . . . . 6 (((𝐴𝑉𝑆𝐴) ∧ 𝑆 ⊆ (Base‘𝐺)) → (((𝑥𝐴𝑥 ∈ (Base‘𝐺)) ∧ ∀𝑦𝑆 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)) ↔ (𝑥 ∈ (Base‘𝐻) ∧ ∀𝑦𝑆 (𝑥(+g𝐻)𝑦) = (𝑦(+g𝐻)𝑥))))
2916, 28syl5rbbr 288 . . . . 5 (((𝐴𝑉𝑆𝐴) ∧ 𝑆 ⊆ (Base‘𝐺)) → ((𝑥 ∈ (Base‘𝐻) ∧ ∀𝑦𝑆 (𝑥(+g𝐻)𝑦) = (𝑦(+g𝐻)𝑥)) ↔ (𝑥𝐴 ∧ (𝑥 ∈ (Base‘𝐺) ∧ ∀𝑦𝑆 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)))))
30 ssin 4206 . . . . . . . . 9 ((𝑆𝐴𝑆 ⊆ (Base‘𝐺)) ↔ 𝑆 ⊆ (𝐴 ∩ (Base‘𝐺)))
3118sseq2d 3998 . . . . . . . . 9 (𝐴𝑉 → (𝑆 ⊆ (𝐴 ∩ (Base‘𝐺)) ↔ 𝑆 ⊆ (Base‘𝐻)))
3230, 31syl5bb 285 . . . . . . . 8 (𝐴𝑉 → ((𝑆𝐴𝑆 ⊆ (Base‘𝐺)) ↔ 𝑆 ⊆ (Base‘𝐻)))
3332biimpd 231 . . . . . . 7 (𝐴𝑉 → ((𝑆𝐴𝑆 ⊆ (Base‘𝐺)) → 𝑆 ⊆ (Base‘𝐻)))
3433impl 458 . . . . . 6 (((𝐴𝑉𝑆𝐴) ∧ 𝑆 ⊆ (Base‘𝐺)) → 𝑆 ⊆ (Base‘𝐻))
35 eqid 2821 . . . . . . 7 (+g𝐻) = (+g𝐻)
361, 35, 2elcntz 18446 . . . . . 6 (𝑆 ⊆ (Base‘𝐻) → (𝑥 ∈ (𝑌𝑆) ↔ (𝑥 ∈ (Base‘𝐻) ∧ ∀𝑦𝑆 (𝑥(+g𝐻)𝑦) = (𝑦(+g𝐻)𝑥))))
3734, 36syl 17 . . . . 5 (((𝐴𝑉𝑆𝐴) ∧ 𝑆 ⊆ (Base‘𝐺)) → (𝑥 ∈ (𝑌𝑆) ↔ (𝑥 ∈ (Base‘𝐻) ∧ ∀𝑦𝑆 (𝑥(+g𝐻)𝑦) = (𝑦(+g𝐻)𝑥))))
38 elin 4168 . . . . . . 7 (𝑥 ∈ ((𝑍𝑆) ∩ 𝐴) ↔ (𝑥 ∈ (𝑍𝑆) ∧ 𝑥𝐴))
3938biancomi 465 . . . . . 6 (𝑥 ∈ ((𝑍𝑆) ∩ 𝐴) ↔ (𝑥𝐴𝑥 ∈ (𝑍𝑆)))
406, 21, 11elcntz 18446 . . . . . . . 8 (𝑆 ⊆ (Base‘𝐺) → (𝑥 ∈ (𝑍𝑆) ↔ (𝑥 ∈ (Base‘𝐺) ∧ ∀𝑦𝑆 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))))
4140adantl 484 . . . . . . 7 (((𝐴𝑉𝑆𝐴) ∧ 𝑆 ⊆ (Base‘𝐺)) → (𝑥 ∈ (𝑍𝑆) ↔ (𝑥 ∈ (Base‘𝐺) ∧ ∀𝑦𝑆 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))))
4241anbi2d 630 . . . . . 6 (((𝐴𝑉𝑆𝐴) ∧ 𝑆 ⊆ (Base‘𝐺)) → ((𝑥𝐴𝑥 ∈ (𝑍𝑆)) ↔ (𝑥𝐴 ∧ (𝑥 ∈ (Base‘𝐺) ∧ ∀𝑦𝑆 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)))))
4339, 42syl5bb 285 . . . . 5 (((𝐴𝑉𝑆𝐴) ∧ 𝑆 ⊆ (Base‘𝐺)) → (𝑥 ∈ ((𝑍𝑆) ∩ 𝐴) ↔ (𝑥𝐴 ∧ (𝑥 ∈ (Base‘𝐺) ∧ ∀𝑦𝑆 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)))))
4429, 37, 433bitr4d 313 . . . 4 (((𝐴𝑉𝑆𝐴) ∧ 𝑆 ⊆ (Base‘𝐺)) → (𝑥 ∈ (𝑌𝑆) ↔ 𝑥 ∈ ((𝑍𝑆) ∩ 𝐴)))
4544ex 415 . . 3 ((𝐴𝑉𝑆𝐴) → (𝑆 ⊆ (Base‘𝐺) → (𝑥 ∈ (𝑌𝑆) ↔ 𝑥 ∈ ((𝑍𝑆) ∩ 𝐴))))
469, 15, 45pm5.21ndd 383 . 2 ((𝐴𝑉𝑆𝐴) → (𝑥 ∈ (𝑌𝑆) ↔ 𝑥 ∈ ((𝑍𝑆) ∩ 𝐴)))
4746eqrdv 2819 1 ((𝐴𝑉𝑆𝐴) → (𝑌𝑆) = ((𝑍𝑆) ∩ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wral 3138  Vcvv 3494  cin 3934  wss 3935  cfv 6349  (class class class)co 7150  Basecbs 16477  s cress 16478  +gcplusg 16559  Cntzccntz 18439
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-cntz 18441
This theorem is referenced by:  gsumzsubmcl  19032  subgdmdprd  19150  cntzsdrg  19575
  Copyright terms: Public domain W3C validator