MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resscntz Structured version   Visualization version   GIF version

Theorem resscntz 19272
Description: Centralizer in a substructure. (Contributed by Mario Carneiro, 3-Oct-2015.)
Hypotheses
Ref Expression
resscntz.p 𝐻 = (𝐺s 𝐴)
resscntz.z 𝑍 = (Cntz‘𝐺)
resscntz.y 𝑌 = (Cntz‘𝐻)
Assertion
Ref Expression
resscntz ((𝐴𝑉𝑆𝐴) → (𝑌𝑆) = ((𝑍𝑆) ∩ 𝐴))

Proof of Theorem resscntz
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . . . . . . 7 (Base‘𝐻) = (Base‘𝐻)
2 resscntz.y . . . . . . 7 𝑌 = (Cntz‘𝐻)
31, 2cntzrcl 19266 . . . . . 6 (𝑥 ∈ (𝑌𝑆) → (𝐻 ∈ V ∧ 𝑆 ⊆ (Base‘𝐻)))
43simprd 495 . . . . 5 (𝑥 ∈ (𝑌𝑆) → 𝑆 ⊆ (Base‘𝐻))
5 resscntz.p . . . . . 6 𝐻 = (𝐺s 𝐴)
6 eqid 2730 . . . . . 6 (Base‘𝐺) = (Base‘𝐺)
75, 6ressbasss 17216 . . . . 5 (Base‘𝐻) ⊆ (Base‘𝐺)
84, 7sstrdi 3962 . . . 4 (𝑥 ∈ (𝑌𝑆) → 𝑆 ⊆ (Base‘𝐺))
98a1i 11 . . 3 ((𝐴𝑉𝑆𝐴) → (𝑥 ∈ (𝑌𝑆) → 𝑆 ⊆ (Base‘𝐺)))
10 elinel1 4167 . . . . 5 (𝑥 ∈ ((𝑍𝑆) ∩ 𝐴) → 𝑥 ∈ (𝑍𝑆))
11 resscntz.z . . . . . . 7 𝑍 = (Cntz‘𝐺)
126, 11cntzrcl 19266 . . . . . 6 (𝑥 ∈ (𝑍𝑆) → (𝐺 ∈ V ∧ 𝑆 ⊆ (Base‘𝐺)))
1312simprd 495 . . . . 5 (𝑥 ∈ (𝑍𝑆) → 𝑆 ⊆ (Base‘𝐺))
1410, 13syl 17 . . . 4 (𝑥 ∈ ((𝑍𝑆) ∩ 𝐴) → 𝑆 ⊆ (Base‘𝐺))
1514a1i 11 . . 3 ((𝐴𝑉𝑆𝐴) → (𝑥 ∈ ((𝑍𝑆) ∩ 𝐴) → 𝑆 ⊆ (Base‘𝐺)))
16 elin 3933 . . . . . . . . 9 (𝑥 ∈ (𝐴 ∩ (Base‘𝐺)) ↔ (𝑥𝐴𝑥 ∈ (Base‘𝐺)))
175, 6ressbas 17213 . . . . . . . . . 10 (𝐴𝑉 → (𝐴 ∩ (Base‘𝐺)) = (Base‘𝐻))
1817eleq2d 2815 . . . . . . . . 9 (𝐴𝑉 → (𝑥 ∈ (𝐴 ∩ (Base‘𝐺)) ↔ 𝑥 ∈ (Base‘𝐻)))
1916, 18bitr3id 285 . . . . . . . 8 (𝐴𝑉 → ((𝑥𝐴𝑥 ∈ (Base‘𝐺)) ↔ 𝑥 ∈ (Base‘𝐻)))
20 eqid 2730 . . . . . . . . . . . 12 (+g𝐺) = (+g𝐺)
215, 20ressplusg 17261 . . . . . . . . . . 11 (𝐴𝑉 → (+g𝐺) = (+g𝐻))
2221oveqd 7407 . . . . . . . . . 10 (𝐴𝑉 → (𝑥(+g𝐺)𝑦) = (𝑥(+g𝐻)𝑦))
2321oveqd 7407 . . . . . . . . . 10 (𝐴𝑉 → (𝑦(+g𝐺)𝑥) = (𝑦(+g𝐻)𝑥))
2422, 23eqeq12d 2746 . . . . . . . . 9 (𝐴𝑉 → ((𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥) ↔ (𝑥(+g𝐻)𝑦) = (𝑦(+g𝐻)𝑥)))
2524ralbidv 3157 . . . . . . . 8 (𝐴𝑉 → (∀𝑦𝑆 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥) ↔ ∀𝑦𝑆 (𝑥(+g𝐻)𝑦) = (𝑦(+g𝐻)𝑥)))
2619, 25anbi12d 632 . . . . . . 7 (𝐴𝑉 → (((𝑥𝐴𝑥 ∈ (Base‘𝐺)) ∧ ∀𝑦𝑆 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)) ↔ (𝑥 ∈ (Base‘𝐻) ∧ ∀𝑦𝑆 (𝑥(+g𝐻)𝑦) = (𝑦(+g𝐻)𝑥))))
2726ad2antrr 726 . . . . . 6 (((𝐴𝑉𝑆𝐴) ∧ 𝑆 ⊆ (Base‘𝐺)) → (((𝑥𝐴𝑥 ∈ (Base‘𝐺)) ∧ ∀𝑦𝑆 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)) ↔ (𝑥 ∈ (Base‘𝐻) ∧ ∀𝑦𝑆 (𝑥(+g𝐻)𝑦) = (𝑦(+g𝐻)𝑥))))
28 anass 468 . . . . . 6 (((𝑥𝐴𝑥 ∈ (Base‘𝐺)) ∧ ∀𝑦𝑆 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)) ↔ (𝑥𝐴 ∧ (𝑥 ∈ (Base‘𝐺) ∧ ∀𝑦𝑆 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))))
2927, 28bitr3di 286 . . . . 5 (((𝐴𝑉𝑆𝐴) ∧ 𝑆 ⊆ (Base‘𝐺)) → ((𝑥 ∈ (Base‘𝐻) ∧ ∀𝑦𝑆 (𝑥(+g𝐻)𝑦) = (𝑦(+g𝐻)𝑥)) ↔ (𝑥𝐴 ∧ (𝑥 ∈ (Base‘𝐺) ∧ ∀𝑦𝑆 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)))))
30 ssin 4205 . . . . . . . . 9 ((𝑆𝐴𝑆 ⊆ (Base‘𝐺)) ↔ 𝑆 ⊆ (𝐴 ∩ (Base‘𝐺)))
3117sseq2d 3982 . . . . . . . . 9 (𝐴𝑉 → (𝑆 ⊆ (𝐴 ∩ (Base‘𝐺)) ↔ 𝑆 ⊆ (Base‘𝐻)))
3230, 31bitrid 283 . . . . . . . 8 (𝐴𝑉 → ((𝑆𝐴𝑆 ⊆ (Base‘𝐺)) ↔ 𝑆 ⊆ (Base‘𝐻)))
3332biimpd 229 . . . . . . 7 (𝐴𝑉 → ((𝑆𝐴𝑆 ⊆ (Base‘𝐺)) → 𝑆 ⊆ (Base‘𝐻)))
3433impl 455 . . . . . 6 (((𝐴𝑉𝑆𝐴) ∧ 𝑆 ⊆ (Base‘𝐺)) → 𝑆 ⊆ (Base‘𝐻))
35 eqid 2730 . . . . . . 7 (+g𝐻) = (+g𝐻)
361, 35, 2elcntz 19261 . . . . . 6 (𝑆 ⊆ (Base‘𝐻) → (𝑥 ∈ (𝑌𝑆) ↔ (𝑥 ∈ (Base‘𝐻) ∧ ∀𝑦𝑆 (𝑥(+g𝐻)𝑦) = (𝑦(+g𝐻)𝑥))))
3734, 36syl 17 . . . . 5 (((𝐴𝑉𝑆𝐴) ∧ 𝑆 ⊆ (Base‘𝐺)) → (𝑥 ∈ (𝑌𝑆) ↔ (𝑥 ∈ (Base‘𝐻) ∧ ∀𝑦𝑆 (𝑥(+g𝐻)𝑦) = (𝑦(+g𝐻)𝑥))))
38 elin 3933 . . . . . . 7 (𝑥 ∈ ((𝑍𝑆) ∩ 𝐴) ↔ (𝑥 ∈ (𝑍𝑆) ∧ 𝑥𝐴))
3938biancomi 462 . . . . . 6 (𝑥 ∈ ((𝑍𝑆) ∩ 𝐴) ↔ (𝑥𝐴𝑥 ∈ (𝑍𝑆)))
406, 20, 11elcntz 19261 . . . . . . . 8 (𝑆 ⊆ (Base‘𝐺) → (𝑥 ∈ (𝑍𝑆) ↔ (𝑥 ∈ (Base‘𝐺) ∧ ∀𝑦𝑆 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))))
4140adantl 481 . . . . . . 7 (((𝐴𝑉𝑆𝐴) ∧ 𝑆 ⊆ (Base‘𝐺)) → (𝑥 ∈ (𝑍𝑆) ↔ (𝑥 ∈ (Base‘𝐺) ∧ ∀𝑦𝑆 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))))
4241anbi2d 630 . . . . . 6 (((𝐴𝑉𝑆𝐴) ∧ 𝑆 ⊆ (Base‘𝐺)) → ((𝑥𝐴𝑥 ∈ (𝑍𝑆)) ↔ (𝑥𝐴 ∧ (𝑥 ∈ (Base‘𝐺) ∧ ∀𝑦𝑆 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)))))
4339, 42bitrid 283 . . . . 5 (((𝐴𝑉𝑆𝐴) ∧ 𝑆 ⊆ (Base‘𝐺)) → (𝑥 ∈ ((𝑍𝑆) ∩ 𝐴) ↔ (𝑥𝐴 ∧ (𝑥 ∈ (Base‘𝐺) ∧ ∀𝑦𝑆 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)))))
4429, 37, 433bitr4d 311 . . . 4 (((𝐴𝑉𝑆𝐴) ∧ 𝑆 ⊆ (Base‘𝐺)) → (𝑥 ∈ (𝑌𝑆) ↔ 𝑥 ∈ ((𝑍𝑆) ∩ 𝐴)))
4544ex 412 . . 3 ((𝐴𝑉𝑆𝐴) → (𝑆 ⊆ (Base‘𝐺) → (𝑥 ∈ (𝑌𝑆) ↔ 𝑥 ∈ ((𝑍𝑆) ∩ 𝐴))))
469, 15, 45pm5.21ndd 379 . 2 ((𝐴𝑉𝑆𝐴) → (𝑥 ∈ (𝑌𝑆) ↔ 𝑥 ∈ ((𝑍𝑆) ∩ 𝐴)))
4746eqrdv 2728 1 ((𝐴𝑉𝑆𝐴) → (𝑌𝑆) = ((𝑍𝑆) ∩ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  Vcvv 3450  cin 3916  wss 3917  cfv 6514  (class class class)co 7390  Basecbs 17186  s cress 17207  +gcplusg 17227  Cntzccntz 19254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-cntz 19256
This theorem is referenced by:  gsumzsubmcl  19855  subgdmdprd  19973  cntzsdrg  20718
  Copyright terms: Public domain W3C validator