MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resscntz Structured version   Visualization version   GIF version

Theorem resscntz 19316
Description: Centralizer in a substructure. (Contributed by Mario Carneiro, 3-Oct-2015.)
Hypotheses
Ref Expression
resscntz.p 𝐻 = (𝐺s 𝐴)
resscntz.z 𝑍 = (Cntz‘𝐺)
resscntz.y 𝑌 = (Cntz‘𝐻)
Assertion
Ref Expression
resscntz ((𝐴𝑉𝑆𝐴) → (𝑌𝑆) = ((𝑍𝑆) ∩ 𝐴))

Proof of Theorem resscntz
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2735 . . . . . . 7 (Base‘𝐻) = (Base‘𝐻)
2 resscntz.y . . . . . . 7 𝑌 = (Cntz‘𝐻)
31, 2cntzrcl 19310 . . . . . 6 (𝑥 ∈ (𝑌𝑆) → (𝐻 ∈ V ∧ 𝑆 ⊆ (Base‘𝐻)))
43simprd 495 . . . . 5 (𝑥 ∈ (𝑌𝑆) → 𝑆 ⊆ (Base‘𝐻))
5 resscntz.p . . . . . 6 𝐻 = (𝐺s 𝐴)
6 eqid 2735 . . . . . 6 (Base‘𝐺) = (Base‘𝐺)
75, 6ressbasss 17260 . . . . 5 (Base‘𝐻) ⊆ (Base‘𝐺)
84, 7sstrdi 3971 . . . 4 (𝑥 ∈ (𝑌𝑆) → 𝑆 ⊆ (Base‘𝐺))
98a1i 11 . . 3 ((𝐴𝑉𝑆𝐴) → (𝑥 ∈ (𝑌𝑆) → 𝑆 ⊆ (Base‘𝐺)))
10 elinel1 4176 . . . . 5 (𝑥 ∈ ((𝑍𝑆) ∩ 𝐴) → 𝑥 ∈ (𝑍𝑆))
11 resscntz.z . . . . . . 7 𝑍 = (Cntz‘𝐺)
126, 11cntzrcl 19310 . . . . . 6 (𝑥 ∈ (𝑍𝑆) → (𝐺 ∈ V ∧ 𝑆 ⊆ (Base‘𝐺)))
1312simprd 495 . . . . 5 (𝑥 ∈ (𝑍𝑆) → 𝑆 ⊆ (Base‘𝐺))
1410, 13syl 17 . . . 4 (𝑥 ∈ ((𝑍𝑆) ∩ 𝐴) → 𝑆 ⊆ (Base‘𝐺))
1514a1i 11 . . 3 ((𝐴𝑉𝑆𝐴) → (𝑥 ∈ ((𝑍𝑆) ∩ 𝐴) → 𝑆 ⊆ (Base‘𝐺)))
16 elin 3942 . . . . . . . . 9 (𝑥 ∈ (𝐴 ∩ (Base‘𝐺)) ↔ (𝑥𝐴𝑥 ∈ (Base‘𝐺)))
175, 6ressbas 17257 . . . . . . . . . 10 (𝐴𝑉 → (𝐴 ∩ (Base‘𝐺)) = (Base‘𝐻))
1817eleq2d 2820 . . . . . . . . 9 (𝐴𝑉 → (𝑥 ∈ (𝐴 ∩ (Base‘𝐺)) ↔ 𝑥 ∈ (Base‘𝐻)))
1916, 18bitr3id 285 . . . . . . . 8 (𝐴𝑉 → ((𝑥𝐴𝑥 ∈ (Base‘𝐺)) ↔ 𝑥 ∈ (Base‘𝐻)))
20 eqid 2735 . . . . . . . . . . . 12 (+g𝐺) = (+g𝐺)
215, 20ressplusg 17305 . . . . . . . . . . 11 (𝐴𝑉 → (+g𝐺) = (+g𝐻))
2221oveqd 7422 . . . . . . . . . 10 (𝐴𝑉 → (𝑥(+g𝐺)𝑦) = (𝑥(+g𝐻)𝑦))
2321oveqd 7422 . . . . . . . . . 10 (𝐴𝑉 → (𝑦(+g𝐺)𝑥) = (𝑦(+g𝐻)𝑥))
2422, 23eqeq12d 2751 . . . . . . . . 9 (𝐴𝑉 → ((𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥) ↔ (𝑥(+g𝐻)𝑦) = (𝑦(+g𝐻)𝑥)))
2524ralbidv 3163 . . . . . . . 8 (𝐴𝑉 → (∀𝑦𝑆 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥) ↔ ∀𝑦𝑆 (𝑥(+g𝐻)𝑦) = (𝑦(+g𝐻)𝑥)))
2619, 25anbi12d 632 . . . . . . 7 (𝐴𝑉 → (((𝑥𝐴𝑥 ∈ (Base‘𝐺)) ∧ ∀𝑦𝑆 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)) ↔ (𝑥 ∈ (Base‘𝐻) ∧ ∀𝑦𝑆 (𝑥(+g𝐻)𝑦) = (𝑦(+g𝐻)𝑥))))
2726ad2antrr 726 . . . . . 6 (((𝐴𝑉𝑆𝐴) ∧ 𝑆 ⊆ (Base‘𝐺)) → (((𝑥𝐴𝑥 ∈ (Base‘𝐺)) ∧ ∀𝑦𝑆 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)) ↔ (𝑥 ∈ (Base‘𝐻) ∧ ∀𝑦𝑆 (𝑥(+g𝐻)𝑦) = (𝑦(+g𝐻)𝑥))))
28 anass 468 . . . . . 6 (((𝑥𝐴𝑥 ∈ (Base‘𝐺)) ∧ ∀𝑦𝑆 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)) ↔ (𝑥𝐴 ∧ (𝑥 ∈ (Base‘𝐺) ∧ ∀𝑦𝑆 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))))
2927, 28bitr3di 286 . . . . 5 (((𝐴𝑉𝑆𝐴) ∧ 𝑆 ⊆ (Base‘𝐺)) → ((𝑥 ∈ (Base‘𝐻) ∧ ∀𝑦𝑆 (𝑥(+g𝐻)𝑦) = (𝑦(+g𝐻)𝑥)) ↔ (𝑥𝐴 ∧ (𝑥 ∈ (Base‘𝐺) ∧ ∀𝑦𝑆 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)))))
30 ssin 4214 . . . . . . . . 9 ((𝑆𝐴𝑆 ⊆ (Base‘𝐺)) ↔ 𝑆 ⊆ (𝐴 ∩ (Base‘𝐺)))
3117sseq2d 3991 . . . . . . . . 9 (𝐴𝑉 → (𝑆 ⊆ (𝐴 ∩ (Base‘𝐺)) ↔ 𝑆 ⊆ (Base‘𝐻)))
3230, 31bitrid 283 . . . . . . . 8 (𝐴𝑉 → ((𝑆𝐴𝑆 ⊆ (Base‘𝐺)) ↔ 𝑆 ⊆ (Base‘𝐻)))
3332biimpd 229 . . . . . . 7 (𝐴𝑉 → ((𝑆𝐴𝑆 ⊆ (Base‘𝐺)) → 𝑆 ⊆ (Base‘𝐻)))
3433impl 455 . . . . . 6 (((𝐴𝑉𝑆𝐴) ∧ 𝑆 ⊆ (Base‘𝐺)) → 𝑆 ⊆ (Base‘𝐻))
35 eqid 2735 . . . . . . 7 (+g𝐻) = (+g𝐻)
361, 35, 2elcntz 19305 . . . . . 6 (𝑆 ⊆ (Base‘𝐻) → (𝑥 ∈ (𝑌𝑆) ↔ (𝑥 ∈ (Base‘𝐻) ∧ ∀𝑦𝑆 (𝑥(+g𝐻)𝑦) = (𝑦(+g𝐻)𝑥))))
3734, 36syl 17 . . . . 5 (((𝐴𝑉𝑆𝐴) ∧ 𝑆 ⊆ (Base‘𝐺)) → (𝑥 ∈ (𝑌𝑆) ↔ (𝑥 ∈ (Base‘𝐻) ∧ ∀𝑦𝑆 (𝑥(+g𝐻)𝑦) = (𝑦(+g𝐻)𝑥))))
38 elin 3942 . . . . . . 7 (𝑥 ∈ ((𝑍𝑆) ∩ 𝐴) ↔ (𝑥 ∈ (𝑍𝑆) ∧ 𝑥𝐴))
3938biancomi 462 . . . . . 6 (𝑥 ∈ ((𝑍𝑆) ∩ 𝐴) ↔ (𝑥𝐴𝑥 ∈ (𝑍𝑆)))
406, 20, 11elcntz 19305 . . . . . . . 8 (𝑆 ⊆ (Base‘𝐺) → (𝑥 ∈ (𝑍𝑆) ↔ (𝑥 ∈ (Base‘𝐺) ∧ ∀𝑦𝑆 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))))
4140adantl 481 . . . . . . 7 (((𝐴𝑉𝑆𝐴) ∧ 𝑆 ⊆ (Base‘𝐺)) → (𝑥 ∈ (𝑍𝑆) ↔ (𝑥 ∈ (Base‘𝐺) ∧ ∀𝑦𝑆 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))))
4241anbi2d 630 . . . . . 6 (((𝐴𝑉𝑆𝐴) ∧ 𝑆 ⊆ (Base‘𝐺)) → ((𝑥𝐴𝑥 ∈ (𝑍𝑆)) ↔ (𝑥𝐴 ∧ (𝑥 ∈ (Base‘𝐺) ∧ ∀𝑦𝑆 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)))))
4339, 42bitrid 283 . . . . 5 (((𝐴𝑉𝑆𝐴) ∧ 𝑆 ⊆ (Base‘𝐺)) → (𝑥 ∈ ((𝑍𝑆) ∩ 𝐴) ↔ (𝑥𝐴 ∧ (𝑥 ∈ (Base‘𝐺) ∧ ∀𝑦𝑆 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)))))
4429, 37, 433bitr4d 311 . . . 4 (((𝐴𝑉𝑆𝐴) ∧ 𝑆 ⊆ (Base‘𝐺)) → (𝑥 ∈ (𝑌𝑆) ↔ 𝑥 ∈ ((𝑍𝑆) ∩ 𝐴)))
4544ex 412 . . 3 ((𝐴𝑉𝑆𝐴) → (𝑆 ⊆ (Base‘𝐺) → (𝑥 ∈ (𝑌𝑆) ↔ 𝑥 ∈ ((𝑍𝑆) ∩ 𝐴))))
469, 15, 45pm5.21ndd 379 . 2 ((𝐴𝑉𝑆𝐴) → (𝑥 ∈ (𝑌𝑆) ↔ 𝑥 ∈ ((𝑍𝑆) ∩ 𝐴)))
4746eqrdv 2733 1 ((𝐴𝑉𝑆𝐴) → (𝑌𝑆) = ((𝑍𝑆) ∩ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3051  Vcvv 3459  cin 3925  wss 3926  cfv 6531  (class class class)co 7405  Basecbs 17228  s cress 17251  +gcplusg 17271  Cntzccntz 19298
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-cntz 19300
This theorem is referenced by:  gsumzsubmcl  19899  subgdmdprd  20017  cntzsdrg  20762
  Copyright terms: Public domain W3C validator