Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. . . . . . 7
⊢
(Base‘𝐻) =
(Base‘𝐻) |
2 | | resscntz.y |
. . . . . . 7
⊢ 𝑌 = (Cntz‘𝐻) |
3 | 1, 2 | cntzrcl 18848 |
. . . . . 6
⊢ (𝑥 ∈ (𝑌‘𝑆) → (𝐻 ∈ V ∧ 𝑆 ⊆ (Base‘𝐻))) |
4 | 3 | simprd 495 |
. . . . 5
⊢ (𝑥 ∈ (𝑌‘𝑆) → 𝑆 ⊆ (Base‘𝐻)) |
5 | | resscntz.p |
. . . . . 6
⊢ 𝐻 = (𝐺 ↾s 𝐴) |
6 | | eqid 2738 |
. . . . . 6
⊢
(Base‘𝐺) =
(Base‘𝐺) |
7 | 5, 6 | ressbasss 16876 |
. . . . 5
⊢
(Base‘𝐻)
⊆ (Base‘𝐺) |
8 | 4, 7 | sstrdi 3929 |
. . . 4
⊢ (𝑥 ∈ (𝑌‘𝑆) → 𝑆 ⊆ (Base‘𝐺)) |
9 | 8 | a1i 11 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐴) → (𝑥 ∈ (𝑌‘𝑆) → 𝑆 ⊆ (Base‘𝐺))) |
10 | | elinel1 4125 |
. . . . 5
⊢ (𝑥 ∈ ((𝑍‘𝑆) ∩ 𝐴) → 𝑥 ∈ (𝑍‘𝑆)) |
11 | | resscntz.z |
. . . . . . 7
⊢ 𝑍 = (Cntz‘𝐺) |
12 | 6, 11 | cntzrcl 18848 |
. . . . . 6
⊢ (𝑥 ∈ (𝑍‘𝑆) → (𝐺 ∈ V ∧ 𝑆 ⊆ (Base‘𝐺))) |
13 | 12 | simprd 495 |
. . . . 5
⊢ (𝑥 ∈ (𝑍‘𝑆) → 𝑆 ⊆ (Base‘𝐺)) |
14 | 10, 13 | syl 17 |
. . . 4
⊢ (𝑥 ∈ ((𝑍‘𝑆) ∩ 𝐴) → 𝑆 ⊆ (Base‘𝐺)) |
15 | 14 | a1i 11 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐴) → (𝑥 ∈ ((𝑍‘𝑆) ∩ 𝐴) → 𝑆 ⊆ (Base‘𝐺))) |
16 | | elin 3899 |
. . . . . . . . 9
⊢ (𝑥 ∈ (𝐴 ∩ (Base‘𝐺)) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (Base‘𝐺))) |
17 | 5, 6 | ressbas 16873 |
. . . . . . . . . 10
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ (Base‘𝐺)) = (Base‘𝐻)) |
18 | 17 | eleq2d 2824 |
. . . . . . . . 9
⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ (𝐴 ∩ (Base‘𝐺)) ↔ 𝑥 ∈ (Base‘𝐻))) |
19 | 16, 18 | bitr3id 284 |
. . . . . . . 8
⊢ (𝐴 ∈ 𝑉 → ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (Base‘𝐺)) ↔ 𝑥 ∈ (Base‘𝐻))) |
20 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(+g‘𝐺) = (+g‘𝐺) |
21 | 5, 20 | ressplusg 16926 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ 𝑉 → (+g‘𝐺) = (+g‘𝐻)) |
22 | 21 | oveqd 7272 |
. . . . . . . . . 10
⊢ (𝐴 ∈ 𝑉 → (𝑥(+g‘𝐺)𝑦) = (𝑥(+g‘𝐻)𝑦)) |
23 | 21 | oveqd 7272 |
. . . . . . . . . 10
⊢ (𝐴 ∈ 𝑉 → (𝑦(+g‘𝐺)𝑥) = (𝑦(+g‘𝐻)𝑥)) |
24 | 22, 23 | eqeq12d 2754 |
. . . . . . . . 9
⊢ (𝐴 ∈ 𝑉 → ((𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥) ↔ (𝑥(+g‘𝐻)𝑦) = (𝑦(+g‘𝐻)𝑥))) |
25 | 24 | ralbidv 3120 |
. . . . . . . 8
⊢ (𝐴 ∈ 𝑉 → (∀𝑦 ∈ 𝑆 (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥) ↔ ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝐻)𝑦) = (𝑦(+g‘𝐻)𝑥))) |
26 | 19, 25 | anbi12d 630 |
. . . . . . 7
⊢ (𝐴 ∈ 𝑉 → (((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥)) ↔ (𝑥 ∈ (Base‘𝐻) ∧ ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝐻)𝑦) = (𝑦(+g‘𝐻)𝑥)))) |
27 | 26 | ad2antrr 722 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐴) ∧ 𝑆 ⊆ (Base‘𝐺)) → (((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥)) ↔ (𝑥 ∈ (Base‘𝐻) ∧ ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝐻)𝑦) = (𝑦(+g‘𝐻)𝑥)))) |
28 | | anass 468 |
. . . . . 6
⊢ (((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (Base‘𝐺)) ∧ ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥)) ↔ (𝑥 ∈ 𝐴 ∧ (𝑥 ∈ (Base‘𝐺) ∧ ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥)))) |
29 | 27, 28 | bitr3di 285 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐴) ∧ 𝑆 ⊆ (Base‘𝐺)) → ((𝑥 ∈ (Base‘𝐻) ∧ ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝐻)𝑦) = (𝑦(+g‘𝐻)𝑥)) ↔ (𝑥 ∈ 𝐴 ∧ (𝑥 ∈ (Base‘𝐺) ∧ ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥))))) |
30 | | ssin 4161 |
. . . . . . . . 9
⊢ ((𝑆 ⊆ 𝐴 ∧ 𝑆 ⊆ (Base‘𝐺)) ↔ 𝑆 ⊆ (𝐴 ∩ (Base‘𝐺))) |
31 | 17 | sseq2d 3949 |
. . . . . . . . 9
⊢ (𝐴 ∈ 𝑉 → (𝑆 ⊆ (𝐴 ∩ (Base‘𝐺)) ↔ 𝑆 ⊆ (Base‘𝐻))) |
32 | 30, 31 | syl5bb 282 |
. . . . . . . 8
⊢ (𝐴 ∈ 𝑉 → ((𝑆 ⊆ 𝐴 ∧ 𝑆 ⊆ (Base‘𝐺)) ↔ 𝑆 ⊆ (Base‘𝐻))) |
33 | 32 | biimpd 228 |
. . . . . . 7
⊢ (𝐴 ∈ 𝑉 → ((𝑆 ⊆ 𝐴 ∧ 𝑆 ⊆ (Base‘𝐺)) → 𝑆 ⊆ (Base‘𝐻))) |
34 | 33 | impl 455 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐴) ∧ 𝑆 ⊆ (Base‘𝐺)) → 𝑆 ⊆ (Base‘𝐻)) |
35 | | eqid 2738 |
. . . . . . 7
⊢
(+g‘𝐻) = (+g‘𝐻) |
36 | 1, 35, 2 | elcntz 18843 |
. . . . . 6
⊢ (𝑆 ⊆ (Base‘𝐻) → (𝑥 ∈ (𝑌‘𝑆) ↔ (𝑥 ∈ (Base‘𝐻) ∧ ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝐻)𝑦) = (𝑦(+g‘𝐻)𝑥)))) |
37 | 34, 36 | syl 17 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐴) ∧ 𝑆 ⊆ (Base‘𝐺)) → (𝑥 ∈ (𝑌‘𝑆) ↔ (𝑥 ∈ (Base‘𝐻) ∧ ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝐻)𝑦) = (𝑦(+g‘𝐻)𝑥)))) |
38 | | elin 3899 |
. . . . . . 7
⊢ (𝑥 ∈ ((𝑍‘𝑆) ∩ 𝐴) ↔ (𝑥 ∈ (𝑍‘𝑆) ∧ 𝑥 ∈ 𝐴)) |
39 | 38 | biancomi 462 |
. . . . . 6
⊢ (𝑥 ∈ ((𝑍‘𝑆) ∩ 𝐴) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (𝑍‘𝑆))) |
40 | 6, 20, 11 | elcntz 18843 |
. . . . . . . 8
⊢ (𝑆 ⊆ (Base‘𝐺) → (𝑥 ∈ (𝑍‘𝑆) ↔ (𝑥 ∈ (Base‘𝐺) ∧ ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥)))) |
41 | 40 | adantl 481 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐴) ∧ 𝑆 ⊆ (Base‘𝐺)) → (𝑥 ∈ (𝑍‘𝑆) ↔ (𝑥 ∈ (Base‘𝐺) ∧ ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥)))) |
42 | 41 | anbi2d 628 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐴) ∧ 𝑆 ⊆ (Base‘𝐺)) → ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (𝑍‘𝑆)) ↔ (𝑥 ∈ 𝐴 ∧ (𝑥 ∈ (Base‘𝐺) ∧ ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥))))) |
43 | 39, 42 | syl5bb 282 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐴) ∧ 𝑆 ⊆ (Base‘𝐺)) → (𝑥 ∈ ((𝑍‘𝑆) ∩ 𝐴) ↔ (𝑥 ∈ 𝐴 ∧ (𝑥 ∈ (Base‘𝐺) ∧ ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥))))) |
44 | 29, 37, 43 | 3bitr4d 310 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐴) ∧ 𝑆 ⊆ (Base‘𝐺)) → (𝑥 ∈ (𝑌‘𝑆) ↔ 𝑥 ∈ ((𝑍‘𝑆) ∩ 𝐴))) |
45 | 44 | ex 412 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐴) → (𝑆 ⊆ (Base‘𝐺) → (𝑥 ∈ (𝑌‘𝑆) ↔ 𝑥 ∈ ((𝑍‘𝑆) ∩ 𝐴)))) |
46 | 9, 15, 45 | pm5.21ndd 380 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐴) → (𝑥 ∈ (𝑌‘𝑆) ↔ 𝑥 ∈ ((𝑍‘𝑆) ∩ 𝐴))) |
47 | 46 | eqrdv 2736 |
1
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐴) → (𝑌‘𝑆) = ((𝑍‘𝑆) ∩ 𝐴)) |