MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssfzoulel Structured version   Visualization version   GIF version

Theorem ssfzoulel 13796
Description: If a half-open integer range is a subset of a half-open range of nonnegative integers, but its lower bound is greater than or equal to the upper bound of the containing range, or its upper bound is less than or equal to 0, then its upper bound is less than or equal to its lower bound (and therefore it is actually empty). (Contributed by Alexander van der Vekens, 24-May-2018.)
Assertion
Ref Expression
ssfzoulel ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝑁𝐴𝐵 ≤ 0) → ((𝐴..^𝐵) ⊆ (0..^𝑁) → 𝐵𝐴)))

Proof of Theorem ssfzoulel
StepHypRef Expression
1 simpl2 1191 . . . . . . 7 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ 𝐵𝐴) → 𝐴 ∈ ℤ)
2 simpl3 1192 . . . . . . 7 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ 𝐵𝐴) → 𝐵 ∈ ℤ)
3 zre 12615 . . . . . . . . . 10 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
4 zre 12615 . . . . . . . . . 10 (𝐵 ∈ ℤ → 𝐵 ∈ ℝ)
5 ltnle 11338 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ ¬ 𝐵𝐴))
63, 4, 5syl2an 596 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵 ↔ ¬ 𝐵𝐴))
763adant1 1129 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵 ↔ ¬ 𝐵𝐴))
87biimpar 477 . . . . . . 7 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ 𝐵𝐴) → 𝐴 < 𝐵)
9 ssfzo12 13795 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → ((𝐴..^𝐵) ⊆ (0..^𝑁) → (0 ≤ 𝐴𝐵𝑁)))
101, 2, 8, 9syl3anc 1370 . . . . . 6 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ 𝐵𝐴) → ((𝐴..^𝐵) ⊆ (0..^𝑁) → (0 ≤ 𝐴𝐵𝑁)))
114adantl 481 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐵 ∈ ℝ)
12 0red 11262 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 0 ∈ ℝ)
133adantr 480 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐴 ∈ ℝ)
14 letr 11353 . . . . . . . . . . . . . . . 16 ((𝐵 ∈ ℝ ∧ 0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐵 ≤ 0 ∧ 0 ≤ 𝐴) → 𝐵𝐴))
1511, 12, 13, 14syl3anc 1370 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐵 ≤ 0 ∧ 0 ≤ 𝐴) → 𝐵𝐴))
1615expcomd 416 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (0 ≤ 𝐴 → (𝐵 ≤ 0 → 𝐵𝐴)))
1716imp 406 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 0 ≤ 𝐴) → (𝐵 ≤ 0 → 𝐵𝐴))
1817con3d 152 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 0 ≤ 𝐴) → (¬ 𝐵𝐴 → ¬ 𝐵 ≤ 0))
1918ex 412 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (0 ≤ 𝐴 → (¬ 𝐵𝐴 → ¬ 𝐵 ≤ 0)))
20193adant1 1129 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (0 ≤ 𝐴 → (¬ 𝐵𝐴 → ¬ 𝐵 ≤ 0)))
2120com23 86 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (¬ 𝐵𝐴 → (0 ≤ 𝐴 → ¬ 𝐵 ≤ 0)))
2221imp 406 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ 𝐵𝐴) → (0 ≤ 𝐴 → ¬ 𝐵 ≤ 0))
23 nn0re 12533 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
244, 23, 33anim123i 1150 . . . . . . . . . . . . 13 ((𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0𝐴 ∈ ℤ) → (𝐵 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ))
25243coml 1126 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐵 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ))
26 letr 11353 . . . . . . . . . . . 12 ((𝐵 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐵𝑁𝑁𝐴) → 𝐵𝐴))
2725, 26syl 17 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐵𝑁𝑁𝐴) → 𝐵𝐴))
2827expdimp 452 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐵𝑁) → (𝑁𝐴𝐵𝐴))
2928con3d 152 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐵𝑁) → (¬ 𝐵𝐴 → ¬ 𝑁𝐴))
3029impancom 451 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ 𝐵𝐴) → (𝐵𝑁 → ¬ 𝑁𝐴))
3122, 30anim12d 609 . . . . . . 7 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ 𝐵𝐴) → ((0 ≤ 𝐴𝐵𝑁) → (¬ 𝐵 ≤ 0 ∧ ¬ 𝑁𝐴)))
32 ioran 985 . . . . . . . 8 (¬ (𝑁𝐴𝐵 ≤ 0) ↔ (¬ 𝑁𝐴 ∧ ¬ 𝐵 ≤ 0))
3332biancomi 462 . . . . . . 7 (¬ (𝑁𝐴𝐵 ≤ 0) ↔ (¬ 𝐵 ≤ 0 ∧ ¬ 𝑁𝐴))
3431, 33imbitrrdi 252 . . . . . 6 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ 𝐵𝐴) → ((0 ≤ 𝐴𝐵𝑁) → ¬ (𝑁𝐴𝐵 ≤ 0)))
3510, 34syld 47 . . . . 5 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ 𝐵𝐴) → ((𝐴..^𝐵) ⊆ (0..^𝑁) → ¬ (𝑁𝐴𝐵 ≤ 0)))
3635con2d 134 . . . 4 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ 𝐵𝐴) → ((𝑁𝐴𝐵 ≤ 0) → ¬ (𝐴..^𝐵) ⊆ (0..^𝑁)))
3736impancom 451 . . 3 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑁𝐴𝐵 ≤ 0)) → (¬ 𝐵𝐴 → ¬ (𝐴..^𝐵) ⊆ (0..^𝑁)))
3837con4d 115 . 2 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑁𝐴𝐵 ≤ 0)) → ((𝐴..^𝐵) ⊆ (0..^𝑁) → 𝐵𝐴))
3938ex 412 1 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝑁𝐴𝐵 ≤ 0) → ((𝐴..^𝐵) ⊆ (0..^𝑁) → 𝐵𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086  wcel 2106  wss 3963   class class class wbr 5148  (class class class)co 7431  cr 11152  0cc0 11153   < clt 11293  cle 11294  0cn0 12524  cz 12611  ..^cfzo 13691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545  df-fzo 13692
This theorem is referenced by:  swrdnd2  14690
  Copyright terms: Public domain W3C validator