MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssfzoulel Structured version   Visualization version   GIF version

Theorem ssfzoulel 13663
Description: If a half-open integer range is a subset of a half-open range of nonnegative integers, but its lower bound is greater than or equal to the upper bound of the containing range, or its upper bound is less than or equal to 0, then its upper bound is less than or equal to its lower bound (and therefore it is actually empty). (Contributed by Alexander van der Vekens, 24-May-2018.)
Assertion
Ref Expression
ssfzoulel ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝑁𝐴𝐵 ≤ 0) → ((𝐴..^𝐵) ⊆ (0..^𝑁) → 𝐵𝐴)))

Proof of Theorem ssfzoulel
StepHypRef Expression
1 simpl2 1192 . . . . . . 7 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ 𝐵𝐴) → 𝐴 ∈ ℤ)
2 simpl3 1193 . . . . . . 7 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ 𝐵𝐴) → 𝐵 ∈ ℤ)
3 zre 12500 . . . . . . . . . 10 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
4 zre 12500 . . . . . . . . . 10 (𝐵 ∈ ℤ → 𝐵 ∈ ℝ)
5 ltnle 11231 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ ¬ 𝐵𝐴))
63, 4, 5syl2an 596 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵 ↔ ¬ 𝐵𝐴))
763adant1 1130 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵 ↔ ¬ 𝐵𝐴))
87biimpar 478 . . . . . . 7 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ 𝐵𝐴) → 𝐴 < 𝐵)
9 ssfzo12 13662 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → ((𝐴..^𝐵) ⊆ (0..^𝑁) → (0 ≤ 𝐴𝐵𝑁)))
101, 2, 8, 9syl3anc 1371 . . . . . 6 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ 𝐵𝐴) → ((𝐴..^𝐵) ⊆ (0..^𝑁) → (0 ≤ 𝐴𝐵𝑁)))
114adantl 482 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐵 ∈ ℝ)
12 0red 11155 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 0 ∈ ℝ)
133adantr 481 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐴 ∈ ℝ)
14 letr 11246 . . . . . . . . . . . . . . . 16 ((𝐵 ∈ ℝ ∧ 0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐵 ≤ 0 ∧ 0 ≤ 𝐴) → 𝐵𝐴))
1511, 12, 13, 14syl3anc 1371 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐵 ≤ 0 ∧ 0 ≤ 𝐴) → 𝐵𝐴))
1615expcomd 417 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (0 ≤ 𝐴 → (𝐵 ≤ 0 → 𝐵𝐴)))
1716imp 407 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 0 ≤ 𝐴) → (𝐵 ≤ 0 → 𝐵𝐴))
1817con3d 152 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 0 ≤ 𝐴) → (¬ 𝐵𝐴 → ¬ 𝐵 ≤ 0))
1918ex 413 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (0 ≤ 𝐴 → (¬ 𝐵𝐴 → ¬ 𝐵 ≤ 0)))
20193adant1 1130 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (0 ≤ 𝐴 → (¬ 𝐵𝐴 → ¬ 𝐵 ≤ 0)))
2120com23 86 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (¬ 𝐵𝐴 → (0 ≤ 𝐴 → ¬ 𝐵 ≤ 0)))
2221imp 407 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ 𝐵𝐴) → (0 ≤ 𝐴 → ¬ 𝐵 ≤ 0))
23 nn0re 12419 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
244, 23, 33anim123i 1151 . . . . . . . . . . . . 13 ((𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0𝐴 ∈ ℤ) → (𝐵 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ))
25243coml 1127 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐵 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ))
26 letr 11246 . . . . . . . . . . . 12 ((𝐵 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐵𝑁𝑁𝐴) → 𝐵𝐴))
2725, 26syl 17 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐵𝑁𝑁𝐴) → 𝐵𝐴))
2827expdimp 453 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐵𝑁) → (𝑁𝐴𝐵𝐴))
2928con3d 152 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐵𝑁) → (¬ 𝐵𝐴 → ¬ 𝑁𝐴))
3029impancom 452 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ 𝐵𝐴) → (𝐵𝑁 → ¬ 𝑁𝐴))
3122, 30anim12d 609 . . . . . . 7 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ 𝐵𝐴) → ((0 ≤ 𝐴𝐵𝑁) → (¬ 𝐵 ≤ 0 ∧ ¬ 𝑁𝐴)))
32 ioran 982 . . . . . . . 8 (¬ (𝑁𝐴𝐵 ≤ 0) ↔ (¬ 𝑁𝐴 ∧ ¬ 𝐵 ≤ 0))
3332biancomi 463 . . . . . . 7 (¬ (𝑁𝐴𝐵 ≤ 0) ↔ (¬ 𝐵 ≤ 0 ∧ ¬ 𝑁𝐴))
3431, 33syl6ibr 251 . . . . . 6 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ 𝐵𝐴) → ((0 ≤ 𝐴𝐵𝑁) → ¬ (𝑁𝐴𝐵 ≤ 0)))
3510, 34syld 47 . . . . 5 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ 𝐵𝐴) → ((𝐴..^𝐵) ⊆ (0..^𝑁) → ¬ (𝑁𝐴𝐵 ≤ 0)))
3635con2d 134 . . . 4 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ 𝐵𝐴) → ((𝑁𝐴𝐵 ≤ 0) → ¬ (𝐴..^𝐵) ⊆ (0..^𝑁)))
3736impancom 452 . . 3 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑁𝐴𝐵 ≤ 0)) → (¬ 𝐵𝐴 → ¬ (𝐴..^𝐵) ⊆ (0..^𝑁)))
3837con4d 115 . 2 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑁𝐴𝐵 ≤ 0)) → ((𝐴..^𝐵) ⊆ (0..^𝑁) → 𝐵𝐴))
3938ex 413 1 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝑁𝐴𝐵 ≤ 0) → ((𝐴..^𝐵) ⊆ (0..^𝑁) → 𝐵𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845  w3a 1087  wcel 2106  wss 3909   class class class wbr 5104  (class class class)co 7354  cr 11047  0cc0 11048   < clt 11186  cle 11187  0cn0 12410  cz 12496  ..^cfzo 13564
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5255  ax-nul 5262  ax-pow 5319  ax-pr 5383  ax-un 7669  ax-cnex 11104  ax-resscn 11105  ax-1cn 11106  ax-icn 11107  ax-addcl 11108  ax-addrcl 11109  ax-mulcl 11110  ax-mulrcl 11111  ax-mulcom 11112  ax-addass 11113  ax-mulass 11114  ax-distr 11115  ax-i2m1 11116  ax-1ne0 11117  ax-1rid 11118  ax-rnegex 11119  ax-rrecex 11120  ax-cnre 11121  ax-pre-lttri 11122  ax-pre-lttrn 11123  ax-pre-ltadd 11124  ax-pre-mulgt0 11125
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3064  df-rex 3073  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3739  df-csb 3855  df-dif 3912  df-un 3914  df-in 3916  df-ss 3926  df-pss 3928  df-nul 4282  df-if 4486  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4865  df-iun 4955  df-br 5105  df-opab 5167  df-mpt 5188  df-tr 5222  df-id 5530  df-eprel 5536  df-po 5544  df-so 5545  df-fr 5587  df-we 5589  df-xp 5638  df-rel 5639  df-cnv 5640  df-co 5641  df-dm 5642  df-rn 5643  df-res 5644  df-ima 5645  df-pred 6252  df-ord 6319  df-on 6320  df-lim 6321  df-suc 6322  df-iota 6446  df-fun 6496  df-fn 6497  df-f 6498  df-f1 6499  df-fo 6500  df-f1o 6501  df-fv 6502  df-riota 7310  df-ov 7357  df-oprab 7358  df-mpo 7359  df-om 7800  df-1st 7918  df-2nd 7919  df-frecs 8209  df-wrecs 8240  df-recs 8314  df-rdg 8353  df-er 8645  df-en 8881  df-dom 8882  df-sdom 8883  df-pnf 11188  df-mnf 11189  df-xr 11190  df-ltxr 11191  df-le 11192  df-sub 11384  df-neg 11385  df-nn 12151  df-n0 12411  df-z 12497  df-uz 12761  df-fz 13422  df-fzo 13565
This theorem is referenced by:  swrdnd2  14540
  Copyright terms: Public domain W3C validator