MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssfzoulel Structured version   Visualization version   GIF version

Theorem ssfzoulel 13697
Description: If a half-open integer range is a subset of a half-open range of nonnegative integers, but its lower bound is greater than or equal to the upper bound of the containing range, or its upper bound is less than or equal to 0, then its upper bound is less than or equal to its lower bound (and therefore it is actually empty). (Contributed by Alexander van der Vekens, 24-May-2018.)
Assertion
Ref Expression
ssfzoulel ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝑁𝐴𝐵 ≤ 0) → ((𝐴..^𝐵) ⊆ (0..^𝑁) → 𝐵𝐴)))

Proof of Theorem ssfzoulel
StepHypRef Expression
1 simpl2 1193 . . . . . . 7 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ 𝐵𝐴) → 𝐴 ∈ ℤ)
2 simpl3 1194 . . . . . . 7 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ 𝐵𝐴) → 𝐵 ∈ ℤ)
3 zre 12509 . . . . . . . . . 10 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
4 zre 12509 . . . . . . . . . 10 (𝐵 ∈ ℤ → 𝐵 ∈ ℝ)
5 ltnle 11229 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ ¬ 𝐵𝐴))
63, 4, 5syl2an 596 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵 ↔ ¬ 𝐵𝐴))
763adant1 1130 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 < 𝐵 ↔ ¬ 𝐵𝐴))
87biimpar 477 . . . . . . 7 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ 𝐵𝐴) → 𝐴 < 𝐵)
9 ssfzo12 13696 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵) → ((𝐴..^𝐵) ⊆ (0..^𝑁) → (0 ≤ 𝐴𝐵𝑁)))
101, 2, 8, 9syl3anc 1373 . . . . . 6 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ 𝐵𝐴) → ((𝐴..^𝐵) ⊆ (0..^𝑁) → (0 ≤ 𝐴𝐵𝑁)))
114adantl 481 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐵 ∈ ℝ)
12 0red 11153 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 0 ∈ ℝ)
133adantr 480 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐴 ∈ ℝ)
14 letr 11244 . . . . . . . . . . . . . . . 16 ((𝐵 ∈ ℝ ∧ 0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐵 ≤ 0 ∧ 0 ≤ 𝐴) → 𝐵𝐴))
1511, 12, 13, 14syl3anc 1373 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐵 ≤ 0 ∧ 0 ≤ 𝐴) → 𝐵𝐴))
1615expcomd 416 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (0 ≤ 𝐴 → (𝐵 ≤ 0 → 𝐵𝐴)))
1716imp 406 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 0 ≤ 𝐴) → (𝐵 ≤ 0 → 𝐵𝐴))
1817con3d 152 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 0 ≤ 𝐴) → (¬ 𝐵𝐴 → ¬ 𝐵 ≤ 0))
1918ex 412 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (0 ≤ 𝐴 → (¬ 𝐵𝐴 → ¬ 𝐵 ≤ 0)))
20193adant1 1130 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (0 ≤ 𝐴 → (¬ 𝐵𝐴 → ¬ 𝐵 ≤ 0)))
2120com23 86 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (¬ 𝐵𝐴 → (0 ≤ 𝐴 → ¬ 𝐵 ≤ 0)))
2221imp 406 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ 𝐵𝐴) → (0 ≤ 𝐴 → ¬ 𝐵 ≤ 0))
23 nn0re 12427 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
244, 23, 33anim123i 1151 . . . . . . . . . . . . 13 ((𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0𝐴 ∈ ℤ) → (𝐵 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ))
25243coml 1127 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐵 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ))
26 letr 11244 . . . . . . . . . . . 12 ((𝐵 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐵𝑁𝑁𝐴) → 𝐵𝐴))
2725, 26syl 17 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐵𝑁𝑁𝐴) → 𝐵𝐴))
2827expdimp 452 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐵𝑁) → (𝑁𝐴𝐵𝐴))
2928con3d 152 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐵𝑁) → (¬ 𝐵𝐴 → ¬ 𝑁𝐴))
3029impancom 451 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ 𝐵𝐴) → (𝐵𝑁 → ¬ 𝑁𝐴))
3122, 30anim12d 609 . . . . . . 7 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ 𝐵𝐴) → ((0 ≤ 𝐴𝐵𝑁) → (¬ 𝐵 ≤ 0 ∧ ¬ 𝑁𝐴)))
32 ioran 985 . . . . . . . 8 (¬ (𝑁𝐴𝐵 ≤ 0) ↔ (¬ 𝑁𝐴 ∧ ¬ 𝐵 ≤ 0))
3332biancomi 462 . . . . . . 7 (¬ (𝑁𝐴𝐵 ≤ 0) ↔ (¬ 𝐵 ≤ 0 ∧ ¬ 𝑁𝐴))
3431, 33imbitrrdi 252 . . . . . 6 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ 𝐵𝐴) → ((0 ≤ 𝐴𝐵𝑁) → ¬ (𝑁𝐴𝐵 ≤ 0)))
3510, 34syld 47 . . . . 5 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ 𝐵𝐴) → ((𝐴..^𝐵) ⊆ (0..^𝑁) → ¬ (𝑁𝐴𝐵 ≤ 0)))
3635con2d 134 . . . 4 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ 𝐵𝐴) → ((𝑁𝐴𝐵 ≤ 0) → ¬ (𝐴..^𝐵) ⊆ (0..^𝑁)))
3736impancom 451 . . 3 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑁𝐴𝐵 ≤ 0)) → (¬ 𝐵𝐴 → ¬ (𝐴..^𝐵) ⊆ (0..^𝑁)))
3837con4d 115 . 2 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑁𝐴𝐵 ≤ 0)) → ((𝐴..^𝐵) ⊆ (0..^𝑁) → 𝐵𝐴))
3938ex 412 1 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝑁𝐴𝐵 ≤ 0) → ((𝐴..^𝐵) ⊆ (0..^𝑁) → 𝐵𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086  wcel 2109  wss 3911   class class class wbr 5102  (class class class)co 7369  cr 11043  0cc0 11044   < clt 11184  cle 11185  0cn0 12418  cz 12505  ..^cfzo 13591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445  df-fzo 13592
This theorem is referenced by:  swrdnd2  14596
  Copyright terms: Public domain W3C validator