MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blres Structured version   Visualization version   GIF version

Theorem blres 23038
Description: A ball in a restricted metric space. (Contributed by Mario Carneiro, 5-Jan-2014.)
Hypothesis
Ref Expression
blres.2 𝐶 = (𝐷 ↾ (𝑌 × 𝑌))
Assertion
Ref Expression
blres ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝑋𝑌) ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐶)𝑅) = ((𝑃(ball‘𝐷)𝑅) ∩ 𝑌))

Proof of Theorem blres
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elinel2 4123 . . . . . . . . 9 (𝑃 ∈ (𝑋𝑌) → 𝑃𝑌)
2 blres.2 . . . . . . . . . . 11 𝐶 = (𝐷 ↾ (𝑌 × 𝑌))
32oveqi 7148 . . . . . . . . . 10 (𝑃𝐶𝑥) = (𝑃(𝐷 ↾ (𝑌 × 𝑌))𝑥)
4 ovres 7294 . . . . . . . . . 10 ((𝑃𝑌𝑥𝑌) → (𝑃(𝐷 ↾ (𝑌 × 𝑌))𝑥) = (𝑃𝐷𝑥))
53, 4syl5eq 2845 . . . . . . . . 9 ((𝑃𝑌𝑥𝑌) → (𝑃𝐶𝑥) = (𝑃𝐷𝑥))
61, 5sylan 583 . . . . . . . 8 ((𝑃 ∈ (𝑋𝑌) ∧ 𝑥𝑌) → (𝑃𝐶𝑥) = (𝑃𝐷𝑥))
76breq1d 5040 . . . . . . 7 ((𝑃 ∈ (𝑋𝑌) ∧ 𝑥𝑌) → ((𝑃𝐶𝑥) < 𝑅 ↔ (𝑃𝐷𝑥) < 𝑅))
87anbi2d 631 . . . . . 6 ((𝑃 ∈ (𝑋𝑌) ∧ 𝑥𝑌) → ((𝑥𝑋 ∧ (𝑃𝐶𝑥) < 𝑅) ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅)))
98pm5.32da 582 . . . . 5 (𝑃 ∈ (𝑋𝑌) → ((𝑥𝑌 ∧ (𝑥𝑋 ∧ (𝑃𝐶𝑥) < 𝑅)) ↔ (𝑥𝑌 ∧ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅))))
1093ad2ant2 1131 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝑋𝑌) ∧ 𝑅 ∈ ℝ*) → ((𝑥𝑌 ∧ (𝑥𝑋 ∧ (𝑃𝐶𝑥) < 𝑅)) ↔ (𝑥𝑌 ∧ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅))))
11 elin 3897 . . . . . . 7 (𝑥 ∈ (𝑋𝑌) ↔ (𝑥𝑋𝑥𝑌))
1211biancomi 466 . . . . . 6 (𝑥 ∈ (𝑋𝑌) ↔ (𝑥𝑌𝑥𝑋))
1312anbi1i 626 . . . . 5 ((𝑥 ∈ (𝑋𝑌) ∧ (𝑃𝐶𝑥) < 𝑅) ↔ ((𝑥𝑌𝑥𝑋) ∧ (𝑃𝐶𝑥) < 𝑅))
14 anass 472 . . . . 5 (((𝑥𝑌𝑥𝑋) ∧ (𝑃𝐶𝑥) < 𝑅) ↔ (𝑥𝑌 ∧ (𝑥𝑋 ∧ (𝑃𝐶𝑥) < 𝑅)))
1513, 14bitri 278 . . . 4 ((𝑥 ∈ (𝑋𝑌) ∧ (𝑃𝐶𝑥) < 𝑅) ↔ (𝑥𝑌 ∧ (𝑥𝑋 ∧ (𝑃𝐶𝑥) < 𝑅)))
16 ancom 464 . . . 4 (((𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅) ∧ 𝑥𝑌) ↔ (𝑥𝑌 ∧ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅)))
1710, 15, 163bitr4g 317 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝑋𝑌) ∧ 𝑅 ∈ ℝ*) → ((𝑥 ∈ (𝑋𝑌) ∧ (𝑃𝐶𝑥) < 𝑅) ↔ ((𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅) ∧ 𝑥𝑌)))
18 xmetres 22971 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘(𝑋𝑌)))
192, 18eqeltrid 2894 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → 𝐶 ∈ (∞Met‘(𝑋𝑌)))
20 elbl 22995 . . . 4 ((𝐶 ∈ (∞Met‘(𝑋𝑌)) ∧ 𝑃 ∈ (𝑋𝑌) ∧ 𝑅 ∈ ℝ*) → (𝑥 ∈ (𝑃(ball‘𝐶)𝑅) ↔ (𝑥 ∈ (𝑋𝑌) ∧ (𝑃𝐶𝑥) < 𝑅)))
2119, 20syl3an1 1160 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝑋𝑌) ∧ 𝑅 ∈ ℝ*) → (𝑥 ∈ (𝑃(ball‘𝐶)𝑅) ↔ (𝑥 ∈ (𝑋𝑌) ∧ (𝑃𝐶𝑥) < 𝑅)))
22 elin 3897 . . . 4 (𝑥 ∈ ((𝑃(ball‘𝐷)𝑅) ∩ 𝑌) ↔ (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ∧ 𝑥𝑌))
23 elinel1 4122 . . . . . 6 (𝑃 ∈ (𝑋𝑌) → 𝑃𝑋)
24 elbl 22995 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅)))
2523, 24syl3an2 1161 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝑋𝑌) ∧ 𝑅 ∈ ℝ*) → (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅)))
2625anbi1d 632 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝑋𝑌) ∧ 𝑅 ∈ ℝ*) → ((𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ∧ 𝑥𝑌) ↔ ((𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅) ∧ 𝑥𝑌)))
2722, 26syl5bb 286 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝑋𝑌) ∧ 𝑅 ∈ ℝ*) → (𝑥 ∈ ((𝑃(ball‘𝐷)𝑅) ∩ 𝑌) ↔ ((𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅) ∧ 𝑥𝑌)))
2817, 21, 273bitr4d 314 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝑋𝑌) ∧ 𝑅 ∈ ℝ*) → (𝑥 ∈ (𝑃(ball‘𝐶)𝑅) ↔ 𝑥 ∈ ((𝑃(ball‘𝐷)𝑅) ∩ 𝑌)))
2928eqrdv 2796 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝑋𝑌) ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐶)𝑅) = ((𝑃(ball‘𝐷)𝑅) ∩ 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  cin 3880   class class class wbr 5030   × cxp 5517  cres 5521  cfv 6324  (class class class)co 7135  *cxr 10663   < clt 10664  ∞Metcxmet 20076  ballcbl 20078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-1st 7671  df-2nd 7672  df-map 8391  df-xr 10668  df-psmet 20083  df-xmet 20084  df-bl 20086
This theorem is referenced by:  metrest  23131  xrsmopn  23417  lebnumii  23571  blssp  35194  sstotbnd2  35212  blbnd  35225  ssbnd  35226  iooabslt  42136
  Copyright terms: Public domain W3C validator