Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0clwlk | Structured version Visualization version GIF version |
Description: A pair of an empty set (of edges) and a second set (of vertices) is a closed walk if and only if the second set contains exactly one vertex (in an undirected graph). (Contributed by Alexander van der Vekens, 15-Mar-2018.) (Revised by AV, 17-Feb-2021.) (Revised by AV, 30-Oct-2021.) |
Ref | Expression |
---|---|
0clwlk.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
0clwlk | ⊢ (𝐺 ∈ 𝑋 → (∅(ClWalks‘𝐺)𝑃 ↔ 𝑃:(0...0)⟶𝑉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0clwlk.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | 1 | 0wlk 28768 | . . 3 ⊢ (𝐺 ∈ 𝑋 → (∅(Walks‘𝐺)𝑃 ↔ 𝑃:(0...0)⟶𝑉)) |
3 | 2 | anbi2d 629 | . 2 ⊢ (𝐺 ∈ 𝑋 → (((𝑃‘0) = (𝑃‘(♯‘∅)) ∧ ∅(Walks‘𝐺)𝑃) ↔ ((𝑃‘0) = (𝑃‘(♯‘∅)) ∧ 𝑃:(0...0)⟶𝑉))) |
4 | isclwlk 28429 | . . 3 ⊢ (∅(ClWalks‘𝐺)𝑃 ↔ (∅(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘∅)))) | |
5 | 4 | biancomi 463 | . 2 ⊢ (∅(ClWalks‘𝐺)𝑃 ↔ ((𝑃‘0) = (𝑃‘(♯‘∅)) ∧ ∅(Walks‘𝐺)𝑃)) |
6 | hash0 14182 | . . . . 5 ⊢ (♯‘∅) = 0 | |
7 | 6 | eqcomi 2745 | . . . 4 ⊢ 0 = (♯‘∅) |
8 | 7 | fveq2i 6828 | . . 3 ⊢ (𝑃‘0) = (𝑃‘(♯‘∅)) |
9 | 8 | biantrur 531 | . 2 ⊢ (𝑃:(0...0)⟶𝑉 ↔ ((𝑃‘0) = (𝑃‘(♯‘∅)) ∧ 𝑃:(0...0)⟶𝑉)) |
10 | 3, 5, 9 | 3bitr4g 313 | 1 ⊢ (𝐺 ∈ 𝑋 → (∅(ClWalks‘𝐺)𝑃 ↔ 𝑃:(0...0)⟶𝑉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ∅c0 4269 class class class wbr 5092 ⟶wf 6475 ‘cfv 6479 (class class class)co 7337 0cc0 10972 ...cfz 13340 ♯chash 14145 Vtxcvtx 27655 Walkscwlks 28252 ClWalkscclwlks 28426 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-cnex 11028 ax-resscn 11029 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-addrcl 11033 ax-mulcl 11034 ax-mulrcl 11035 ax-mulcom 11036 ax-addass 11037 ax-mulass 11038 ax-distr 11039 ax-i2m1 11040 ax-1ne0 11041 ax-1rid 11042 ax-rnegex 11043 ax-rrecex 11044 ax-cnre 11045 ax-pre-lttri 11046 ax-pre-lttrn 11047 ax-pre-ltadd 11048 ax-pre-mulgt0 11049 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ifp 1061 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-int 4895 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-om 7781 df-1st 7899 df-2nd 7900 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-1o 8367 df-er 8569 df-map 8688 df-pm 8689 df-en 8805 df-dom 8806 df-sdom 8807 df-fin 8808 df-card 9796 df-pnf 11112 df-mnf 11113 df-xr 11114 df-ltxr 11115 df-le 11116 df-sub 11308 df-neg 11309 df-nn 12075 df-n0 12335 df-z 12421 df-uz 12684 df-fz 13341 df-fzo 13484 df-hash 14146 df-word 14318 df-wlks 28255 df-clwlks 28427 |
This theorem is referenced by: 0clwlkv 28783 wlkl0 29019 |
Copyright terms: Public domain | W3C validator |