| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0clwlk | Structured version Visualization version GIF version | ||
| Description: A pair of an empty set (of edges) and a second set (of vertices) is a closed walk if and only if the second set contains exactly one vertex (in an undirected graph). (Contributed by Alexander van der Vekens, 15-Mar-2018.) (Revised by AV, 17-Feb-2021.) (Revised by AV, 30-Oct-2021.) |
| Ref | Expression |
|---|---|
| 0clwlk.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| 0clwlk | ⊢ (𝐺 ∈ 𝑋 → (∅(ClWalks‘𝐺)𝑃 ↔ 𝑃:(0...0)⟶𝑉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0clwlk.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | 1 | 0wlk 30100 | . . 3 ⊢ (𝐺 ∈ 𝑋 → (∅(Walks‘𝐺)𝑃 ↔ 𝑃:(0...0)⟶𝑉)) |
| 3 | 2 | anbi2d 630 | . 2 ⊢ (𝐺 ∈ 𝑋 → (((𝑃‘0) = (𝑃‘(♯‘∅)) ∧ ∅(Walks‘𝐺)𝑃) ↔ ((𝑃‘0) = (𝑃‘(♯‘∅)) ∧ 𝑃:(0...0)⟶𝑉))) |
| 4 | isclwlk 29755 | . . 3 ⊢ (∅(ClWalks‘𝐺)𝑃 ↔ (∅(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘∅)))) | |
| 5 | 4 | biancomi 462 | . 2 ⊢ (∅(ClWalks‘𝐺)𝑃 ↔ ((𝑃‘0) = (𝑃‘(♯‘∅)) ∧ ∅(Walks‘𝐺)𝑃)) |
| 6 | hash0 14278 | . . . . 5 ⊢ (♯‘∅) = 0 | |
| 7 | 6 | eqcomi 2742 | . . . 4 ⊢ 0 = (♯‘∅) |
| 8 | 7 | fveq2i 6833 | . . 3 ⊢ (𝑃‘0) = (𝑃‘(♯‘∅)) |
| 9 | 8 | biantrur 530 | . 2 ⊢ (𝑃:(0...0)⟶𝑉 ↔ ((𝑃‘0) = (𝑃‘(♯‘∅)) ∧ 𝑃:(0...0)⟶𝑉)) |
| 10 | 3, 5, 9 | 3bitr4g 314 | 1 ⊢ (𝐺 ∈ 𝑋 → (∅(ClWalks‘𝐺)𝑃 ↔ 𝑃:(0...0)⟶𝑉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∅c0 4282 class class class wbr 5095 ⟶wf 6484 ‘cfv 6488 (class class class)co 7354 0cc0 11015 ...cfz 13411 ♯chash 14241 Vtxcvtx 28978 Walkscwlks 29579 ClWalkscclwlks 29752 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-1st 7929 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-1o 8393 df-er 8630 df-map 8760 df-pm 8761 df-en 8878 df-dom 8879 df-sdom 8880 df-fin 8881 df-card 9841 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-nn 12135 df-n0 12391 df-z 12478 df-uz 12741 df-fz 13412 df-fzo 13559 df-hash 14242 df-word 14425 df-wlks 29582 df-clwlks 29753 |
| This theorem is referenced by: 0clwlkv 30115 wlkl0 30351 |
| Copyright terms: Public domain | W3C validator |