![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0clwlk | Structured version Visualization version GIF version |
Description: A pair of an empty set (of edges) and a second set (of vertices) is a closed walk if and only if the second set contains exactly one vertex (in an undirected graph). (Contributed by Alexander van der Vekens, 15-Mar-2018.) (Revised by AV, 17-Feb-2021.) (Revised by AV, 30-Oct-2021.) |
Ref | Expression |
---|---|
0clwlk.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
0clwlk | ⊢ (𝐺 ∈ 𝑋 → (∅(ClWalks‘𝐺)𝑃 ↔ 𝑃:(0...0)⟶𝑉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0clwlk.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | 1 | 0wlk 27639 | . . 3 ⊢ (𝐺 ∈ 𝑋 → (∅(Walks‘𝐺)𝑃 ↔ 𝑃:(0...0)⟶𝑉)) |
3 | 2 | anbi2d 619 | . 2 ⊢ (𝐺 ∈ 𝑋 → (((𝑃‘0) = (𝑃‘(♯‘∅)) ∧ ∅(Walks‘𝐺)𝑃) ↔ ((𝑃‘0) = (𝑃‘(♯‘∅)) ∧ 𝑃:(0...0)⟶𝑉))) |
4 | isclwlk 27256 | . . 3 ⊢ (∅(ClWalks‘𝐺)𝑃 ↔ (∅(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘∅)))) | |
5 | 4 | biancomi 455 | . 2 ⊢ (∅(ClWalks‘𝐺)𝑃 ↔ ((𝑃‘0) = (𝑃‘(♯‘∅)) ∧ ∅(Walks‘𝐺)𝑃)) |
6 | hash0 13537 | . . . . 5 ⊢ (♯‘∅) = 0 | |
7 | 6 | eqcomi 2781 | . . . 4 ⊢ 0 = (♯‘∅) |
8 | 7 | fveq2i 6496 | . . 3 ⊢ (𝑃‘0) = (𝑃‘(♯‘∅)) |
9 | 8 | biantrur 523 | . 2 ⊢ (𝑃:(0...0)⟶𝑉 ↔ ((𝑃‘0) = (𝑃‘(♯‘∅)) ∧ 𝑃:(0...0)⟶𝑉)) |
10 | 3, 5, 9 | 3bitr4g 306 | 1 ⊢ (𝐺 ∈ 𝑋 → (∅(ClWalks‘𝐺)𝑃 ↔ 𝑃:(0...0)⟶𝑉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 387 = wceq 1507 ∈ wcel 2050 ∅c0 4172 class class class wbr 4923 ⟶wf 6178 ‘cfv 6182 (class class class)co 6970 0cc0 10329 ...cfz 12702 ♯chash 13499 Vtxcvtx 26478 Walkscwlks 27075 ClWalkscclwlks 27253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2744 ax-rep 5043 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 ax-cnex 10385 ax-resscn 10386 ax-1cn 10387 ax-icn 10388 ax-addcl 10389 ax-addrcl 10390 ax-mulcl 10391 ax-mulrcl 10392 ax-mulcom 10393 ax-addass 10394 ax-mulass 10395 ax-distr 10396 ax-i2m1 10397 ax-1ne0 10398 ax-1rid 10399 ax-rnegex 10400 ax-rrecex 10401 ax-cnre 10402 ax-pre-lttri 10403 ax-pre-lttrn 10404 ax-pre-ltadd 10405 ax-pre-mulgt0 10406 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-ifp 1044 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2753 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-nel 3068 df-ral 3087 df-rex 3088 df-reu 3089 df-rab 3091 df-v 3411 df-sbc 3676 df-csb 3781 df-dif 3826 df-un 3828 df-in 3830 df-ss 3837 df-pss 3839 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4707 df-int 4744 df-iun 4788 df-br 4924 df-opab 4986 df-mpt 5003 df-tr 5025 df-id 5306 df-eprel 5311 df-po 5320 df-so 5321 df-fr 5360 df-we 5362 df-xp 5407 df-rel 5408 df-cnv 5409 df-co 5410 df-dm 5411 df-rn 5412 df-res 5413 df-ima 5414 df-pred 5980 df-ord 6026 df-on 6027 df-lim 6028 df-suc 6029 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-riota 6931 df-ov 6973 df-oprab 6974 df-mpo 6975 df-om 7391 df-1st 7495 df-2nd 7496 df-wrecs 7744 df-recs 7806 df-rdg 7844 df-1o 7899 df-er 8083 df-map 8202 df-pm 8203 df-en 8301 df-dom 8302 df-sdom 8303 df-fin 8304 df-card 9156 df-pnf 10470 df-mnf 10471 df-xr 10472 df-ltxr 10473 df-le 10474 df-sub 10666 df-neg 10667 df-nn 11434 df-n0 11702 df-z 11788 df-uz 12053 df-fz 12703 df-fzo 12844 df-hash 13500 df-word 13667 df-wlks 27078 df-clwlks 27254 |
This theorem is referenced by: 0clwlkv 27654 wlkl0 27914 |
Copyright terms: Public domain | W3C validator |