![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > blrnps | Structured version Visualization version GIF version |
Description: Membership in the range of the ball function. Note that ran (ballβπ·) is the collection of all balls for metric π·. (Contributed by NM, 31-Aug-2006.) (Revised by Mario Carneiro, 12-Nov-2013.) (Revised by Thierry Arnoux, 11-Mar-2018.) |
Ref | Expression |
---|---|
blrnps | β’ (π· β (PsMetβπ) β (π΄ β ran (ballβπ·) β βπ₯ β π βπ β β* π΄ = (π₯(ballβπ·)π))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | blfps 24330 | . 2 β’ (π· β (PsMetβπ) β (ballβπ·):(π Γ β*)βΆπ« π) | |
2 | ffn 6725 | . 2 β’ ((ballβπ·):(π Γ β*)βΆπ« π β (ballβπ·) Fn (π Γ β*)) | |
3 | ovelrn 7601 | . 2 β’ ((ballβπ·) Fn (π Γ β*) β (π΄ β ran (ballβπ·) β βπ₯ β π βπ β β* π΄ = (π₯(ballβπ·)π))) | |
4 | 1, 2, 3 | 3syl 18 | 1 β’ (π· β (PsMetβπ) β (π΄ β ran (ballβπ·) β βπ₯ β π βπ β β* π΄ = (π₯(ballβπ·)π))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 = wceq 1533 β wcel 2098 βwrex 3066 π« cpw 4604 Γ cxp 5678 ran crn 5681 Fn wfn 6546 βΆwf 6547 βcfv 6551 (class class class)co 7424 β*cxr 11283 PsMetcpsmet 21268 ballcbl 21271 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-sep 5301 ax-nul 5308 ax-pow 5367 ax-pr 5431 ax-un 7744 ax-cnex 11200 ax-resscn 11201 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-iun 5000 df-br 5151 df-opab 5213 df-mpt 5234 df-id 5578 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-res 5692 df-ima 5693 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-fv 6559 df-ov 7427 df-oprab 7428 df-mpo 7429 df-1st 7997 df-2nd 7998 df-map 8851 df-xr 11288 df-psmet 21276 df-bl 21279 |
This theorem is referenced by: blssps 24348 |
Copyright terms: Public domain | W3C validator |