MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blrnps Structured version   Visualization version   GIF version

Theorem blrnps 23561
Description: Membership in the range of the ball function. Note that ran (ball‘𝐷) is the collection of all balls for metric 𝐷. (Contributed by NM, 31-Aug-2006.) (Revised by Mario Carneiro, 12-Nov-2013.) (Revised by Thierry Arnoux, 11-Mar-2018.)
Assertion
Ref Expression
blrnps (𝐷 ∈ (PsMet‘𝑋) → (𝐴 ∈ ran (ball‘𝐷) ↔ ∃𝑥𝑋𝑟 ∈ ℝ* 𝐴 = (𝑥(ball‘𝐷)𝑟)))
Distinct variable groups:   𝑥,𝑟,𝐴   𝐷,𝑟,𝑥   𝑋,𝑟,𝑥

Proof of Theorem blrnps
StepHypRef Expression
1 blfps 23559 . 2 (𝐷 ∈ (PsMet‘𝑋) → (ball‘𝐷):(𝑋 × ℝ*)⟶𝒫 𝑋)
2 ffn 6600 . 2 ((ball‘𝐷):(𝑋 × ℝ*)⟶𝒫 𝑋 → (ball‘𝐷) Fn (𝑋 × ℝ*))
3 ovelrn 7448 . 2 ((ball‘𝐷) Fn (𝑋 × ℝ*) → (𝐴 ∈ ran (ball‘𝐷) ↔ ∃𝑥𝑋𝑟 ∈ ℝ* 𝐴 = (𝑥(ball‘𝐷)𝑟)))
41, 2, 33syl 18 1 (𝐷 ∈ (PsMet‘𝑋) → (𝐴 ∈ ran (ball‘𝐷) ↔ ∃𝑥𝑋𝑟 ∈ ℝ* 𝐴 = (𝑥(ball‘𝐷)𝑟)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2106  wrex 3065  𝒫 cpw 4533   × cxp 5587  ran crn 5590   Fn wfn 6428  wf 6429  cfv 6433  (class class class)co 7275  *cxr 11008  PsMetcpsmet 20581  ballcbl 20584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-map 8617  df-xr 11013  df-psmet 20589  df-bl 20592
This theorem is referenced by:  blssps  23577
  Copyright terms: Public domain W3C validator