![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > blrnps | Structured version Visualization version GIF version |
Description: Membership in the range of the ball function. Note that ran (ballβπ·) is the collection of all balls for metric π·. (Contributed by NM, 31-Aug-2006.) (Revised by Mario Carneiro, 12-Nov-2013.) (Revised by Thierry Arnoux, 11-Mar-2018.) |
Ref | Expression |
---|---|
blrnps | β’ (π· β (PsMetβπ) β (π΄ β ran (ballβπ·) β βπ₯ β π βπ β β* π΄ = (π₯(ballβπ·)π))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | blfps 24263 | . 2 β’ (π· β (PsMetβπ) β (ballβπ·):(π Γ β*)βΆπ« π) | |
2 | ffn 6710 | . 2 β’ ((ballβπ·):(π Γ β*)βΆπ« π β (ballβπ·) Fn (π Γ β*)) | |
3 | ovelrn 7579 | . 2 β’ ((ballβπ·) Fn (π Γ β*) β (π΄ β ran (ballβπ·) β βπ₯ β π βπ β β* π΄ = (π₯(ballβπ·)π))) | |
4 | 1, 2, 3 | 3syl 18 | 1 β’ (π· β (PsMetβπ) β (π΄ β ran (ballβπ·) β βπ₯ β π βπ β β* π΄ = (π₯(ballβπ·)π))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 = wceq 1533 β wcel 2098 βwrex 3064 π« cpw 4597 Γ cxp 5667 ran crn 5670 Fn wfn 6531 βΆwf 6532 βcfv 6536 (class class class)co 7404 β*cxr 11248 PsMetcpsmet 21220 ballcbl 21223 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-cnex 11165 ax-resscn 11166 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-fv 6544 df-ov 7407 df-oprab 7408 df-mpo 7409 df-1st 7971 df-2nd 7972 df-map 8821 df-xr 11253 df-psmet 21228 df-bl 21231 |
This theorem is referenced by: blssps 24281 |
Copyright terms: Public domain | W3C validator |