MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blf Structured version   Visualization version   GIF version

Theorem blf 22583
Description: Mapping of a ball. (Contributed by NM, 7-May-2007.) (Revised by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
blf (𝐷 ∈ (∞Met‘𝑋) → (ball‘𝐷):(𝑋 × ℝ*)⟶𝒫 𝑋)

Proof of Theorem blf
Dummy variables 𝑥 𝑟 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 3913 . . . . . 6 {𝑦𝑋 ∣ (𝑥𝐷𝑦) < 𝑟} ⊆ 𝑋
2 elfvdm 6466 . . . . . . 7 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ dom ∞Met)
3 elpw2g 5050 . . . . . . 7 (𝑋 ∈ dom ∞Met → ({𝑦𝑋 ∣ (𝑥𝐷𝑦) < 𝑟} ∈ 𝒫 𝑋 ↔ {𝑦𝑋 ∣ (𝑥𝐷𝑦) < 𝑟} ⊆ 𝑋))
42, 3syl 17 . . . . . 6 (𝐷 ∈ (∞Met‘𝑋) → ({𝑦𝑋 ∣ (𝑥𝐷𝑦) < 𝑟} ∈ 𝒫 𝑋 ↔ {𝑦𝑋 ∣ (𝑥𝐷𝑦) < 𝑟} ⊆ 𝑋))
51, 4mpbiri 250 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → {𝑦𝑋 ∣ (𝑥𝐷𝑦) < 𝑟} ∈ 𝒫 𝑋)
65a1d 25 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → ((𝑥𝑋𝑟 ∈ ℝ*) → {𝑦𝑋 ∣ (𝑥𝐷𝑦) < 𝑟} ∈ 𝒫 𝑋))
76ralrimivv 3180 . . 3 (𝐷 ∈ (∞Met‘𝑋) → ∀𝑥𝑋𝑟 ∈ ℝ* {𝑦𝑋 ∣ (𝑥𝐷𝑦) < 𝑟} ∈ 𝒫 𝑋)
8 eqid 2826 . . . 4 (𝑥𝑋, 𝑟 ∈ ℝ* ↦ {𝑦𝑋 ∣ (𝑥𝐷𝑦) < 𝑟}) = (𝑥𝑋, 𝑟 ∈ ℝ* ↦ {𝑦𝑋 ∣ (𝑥𝐷𝑦) < 𝑟})
98fmpt2 7501 . . 3 (∀𝑥𝑋𝑟 ∈ ℝ* {𝑦𝑋 ∣ (𝑥𝐷𝑦) < 𝑟} ∈ 𝒫 𝑋 ↔ (𝑥𝑋, 𝑟 ∈ ℝ* ↦ {𝑦𝑋 ∣ (𝑥𝐷𝑦) < 𝑟}):(𝑋 × ℝ*)⟶𝒫 𝑋)
107, 9sylib 210 . 2 (𝐷 ∈ (∞Met‘𝑋) → (𝑥𝑋, 𝑟 ∈ ℝ* ↦ {𝑦𝑋 ∣ (𝑥𝐷𝑦) < 𝑟}):(𝑋 × ℝ*)⟶𝒫 𝑋)
11 blfval 22560 . . 3 (𝐷 ∈ (∞Met‘𝑋) → (ball‘𝐷) = (𝑥𝑋, 𝑟 ∈ ℝ* ↦ {𝑦𝑋 ∣ (𝑥𝐷𝑦) < 𝑟}))
1211feq1d 6264 . 2 (𝐷 ∈ (∞Met‘𝑋) → ((ball‘𝐷):(𝑋 × ℝ*)⟶𝒫 𝑋 ↔ (𝑥𝑋, 𝑟 ∈ ℝ* ↦ {𝑦𝑋 ∣ (𝑥𝐷𝑦) < 𝑟}):(𝑋 × ℝ*)⟶𝒫 𝑋))
1310, 12mpbird 249 1 (𝐷 ∈ (∞Met‘𝑋) → (ball‘𝐷):(𝑋 × ℝ*)⟶𝒫 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  wcel 2166  wral 3118  {crab 3122  wss 3799  𝒫 cpw 4379   class class class wbr 4874   × cxp 5341  dom cdm 5343  wf 6120  cfv 6124  (class class class)co 6906  cmpt2 6908  *cxr 10391   < clt 10392  ∞Metcxmet 20092  ballcbl 20094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2804  ax-sep 5006  ax-nul 5014  ax-pow 5066  ax-pr 5128  ax-un 7210  ax-cnex 10309  ax-resscn 10310
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2606  df-eu 2641  df-clab 2813  df-cleq 2819  df-clel 2822  df-nfc 2959  df-ne 3001  df-ral 3123  df-rex 3124  df-rab 3127  df-v 3417  df-sbc 3664  df-csb 3759  df-dif 3802  df-un 3804  df-in 3806  df-ss 3813  df-nul 4146  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4660  df-iun 4743  df-br 4875  df-opab 4937  df-mpt 4954  df-id 5251  df-xp 5349  df-rel 5350  df-cnv 5351  df-co 5352  df-dm 5353  df-rn 5354  df-res 5355  df-ima 5356  df-iota 6087  df-fun 6126  df-fn 6127  df-f 6128  df-fv 6132  df-ov 6909  df-oprab 6910  df-mpt2 6911  df-1st 7429  df-2nd 7430  df-map 8125  df-xr 10396  df-psmet 20099  df-xmet 20100  df-bl 20102
This theorem is referenced by:  blrn  22585  blelrn  22593  blssm  22594  unirnbl  22596  blin2  22605  imasf1oxms  22665  iscau2  23446  ismtyhmeolem  34146
  Copyright terms: Public domain W3C validator