| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > blfps | Structured version Visualization version GIF version | ||
| Description: Mapping of a ball. (Contributed by NM, 7-May-2007.) (Revised by Mario Carneiro, 23-Aug-2015.) (Revised by Thierry Arnoux, 11-Mar-2018.) |
| Ref | Expression |
|---|---|
| blfps | ⊢ (𝐷 ∈ (PsMet‘𝑋) → (ball‘𝐷):(𝑋 × ℝ*)⟶𝒫 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab2 4060 | . . . . . 6 ⊢ {𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟} ⊆ 𝑋 | |
| 2 | elfvdm 6918 | . . . . . . 7 ⊢ (𝐷 ∈ (PsMet‘𝑋) → 𝑋 ∈ dom PsMet) | |
| 3 | elpw2g 5308 | . . . . . . 7 ⊢ (𝑋 ∈ dom PsMet → ({𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟} ∈ 𝒫 𝑋 ↔ {𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟} ⊆ 𝑋)) | |
| 4 | 2, 3 | syl 17 | . . . . . 6 ⊢ (𝐷 ∈ (PsMet‘𝑋) → ({𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟} ∈ 𝒫 𝑋 ↔ {𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟} ⊆ 𝑋)) |
| 5 | 1, 4 | mpbiri 258 | . . . . 5 ⊢ (𝐷 ∈ (PsMet‘𝑋) → {𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟} ∈ 𝒫 𝑋) |
| 6 | 5 | a1d 25 | . . . 4 ⊢ (𝐷 ∈ (PsMet‘𝑋) → ((𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ*) → {𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟} ∈ 𝒫 𝑋)) |
| 7 | 6 | ralrimivv 3186 | . . 3 ⊢ (𝐷 ∈ (PsMet‘𝑋) → ∀𝑥 ∈ 𝑋 ∀𝑟 ∈ ℝ* {𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟} ∈ 𝒫 𝑋) |
| 8 | eqid 2736 | . . . 4 ⊢ (𝑥 ∈ 𝑋, 𝑟 ∈ ℝ* ↦ {𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟}) = (𝑥 ∈ 𝑋, 𝑟 ∈ ℝ* ↦ {𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟}) | |
| 9 | 8 | fmpo 8072 | . . 3 ⊢ (∀𝑥 ∈ 𝑋 ∀𝑟 ∈ ℝ* {𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟} ∈ 𝒫 𝑋 ↔ (𝑥 ∈ 𝑋, 𝑟 ∈ ℝ* ↦ {𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟}):(𝑋 × ℝ*)⟶𝒫 𝑋) |
| 10 | 7, 9 | sylib 218 | . 2 ⊢ (𝐷 ∈ (PsMet‘𝑋) → (𝑥 ∈ 𝑋, 𝑟 ∈ ℝ* ↦ {𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟}):(𝑋 × ℝ*)⟶𝒫 𝑋) |
| 11 | blfvalps 24327 | . . 3 ⊢ (𝐷 ∈ (PsMet‘𝑋) → (ball‘𝐷) = (𝑥 ∈ 𝑋, 𝑟 ∈ ℝ* ↦ {𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟})) | |
| 12 | 11 | feq1d 6695 | . 2 ⊢ (𝐷 ∈ (PsMet‘𝑋) → ((ball‘𝐷):(𝑋 × ℝ*)⟶𝒫 𝑋 ↔ (𝑥 ∈ 𝑋, 𝑟 ∈ ℝ* ↦ {𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟}):(𝑋 × ℝ*)⟶𝒫 𝑋)) |
| 13 | 10, 12 | mpbird 257 | 1 ⊢ (𝐷 ∈ (PsMet‘𝑋) → (ball‘𝐷):(𝑋 × ℝ*)⟶𝒫 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ∀wral 3052 {crab 3420 ⊆ wss 3931 𝒫 cpw 4580 class class class wbr 5124 × cxp 5657 dom cdm 5659 ⟶wf 6532 ‘cfv 6536 (class class class)co 7410 ∈ cmpo 7412 ℝ*cxr 11273 < clt 11274 PsMetcpsmet 21304 ballcbl 21307 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-1st 7993 df-2nd 7994 df-map 8847 df-xr 11278 df-psmet 21312 df-bl 21315 |
| This theorem is referenced by: blrnps 24352 blelrnps 24360 unirnblps 24363 |
| Copyright terms: Public domain | W3C validator |