MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blrn Structured version   Visualization version   GIF version

Theorem blrn 24297
Description: Membership in the range of the ball function. Note that ran (ball‘𝐷) is the collection of all balls for metric 𝐷. (Contributed by NM, 31-Aug-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
Assertion
Ref Expression
blrn (𝐷 ∈ (∞Met‘𝑋) → (𝐴 ∈ ran (ball‘𝐷) ↔ ∃𝑥𝑋𝑟 ∈ ℝ* 𝐴 = (𝑥(ball‘𝐷)𝑟)))
Distinct variable groups:   𝑥,𝑟,𝐴   𝐷,𝑟,𝑥   𝑋,𝑟,𝑥

Proof of Theorem blrn
StepHypRef Expression
1 blf 24295 . 2 (𝐷 ∈ (∞Met‘𝑋) → (ball‘𝐷):(𝑋 × ℝ*)⟶𝒫 𝑋)
2 ffn 6688 . 2 ((ball‘𝐷):(𝑋 × ℝ*)⟶𝒫 𝑋 → (ball‘𝐷) Fn (𝑋 × ℝ*))
3 ovelrn 7565 . 2 ((ball‘𝐷) Fn (𝑋 × ℝ*) → (𝐴 ∈ ran (ball‘𝐷) ↔ ∃𝑥𝑋𝑟 ∈ ℝ* 𝐴 = (𝑥(ball‘𝐷)𝑟)))
41, 2, 33syl 18 1 (𝐷 ∈ (∞Met‘𝑋) → (𝐴 ∈ ran (ball‘𝐷) ↔ ∃𝑥𝑋𝑟 ∈ ℝ* 𝐴 = (𝑥(ball‘𝐷)𝑟)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  wrex 3053  𝒫 cpw 4563   × cxp 5636  ran crn 5639   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387  *cxr 11207  ∞Metcxmet 21249  ballcbl 21251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-map 8801  df-xr 11212  df-psmet 21256  df-xmet 21257  df-bl 21259
This theorem is referenced by:  blss  24313  imasf1oxms  24377  prdsxmslem2  24417  blssioo  24683
  Copyright terms: Public domain W3C validator