![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > blrn | Structured version Visualization version GIF version |
Description: Membership in the range of the ball function. Note that ran (ballβπ·) is the collection of all balls for metric π·. (Contributed by NM, 31-Aug-2006.) (Revised by Mario Carneiro, 12-Nov-2013.) |
Ref | Expression |
---|---|
blrn | β’ (π· β (βMetβπ) β (π΄ β ran (ballβπ·) β βπ₯ β π βπ β β* π΄ = (π₯(ballβπ·)π))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | blf 24135 | . 2 β’ (π· β (βMetβπ) β (ballβπ·):(π Γ β*)βΆπ« π) | |
2 | ffn 6718 | . 2 β’ ((ballβπ·):(π Γ β*)βΆπ« π β (ballβπ·) Fn (π Γ β*)) | |
3 | ovelrn 7587 | . 2 β’ ((ballβπ·) Fn (π Γ β*) β (π΄ β ran (ballβπ·) β βπ₯ β π βπ β β* π΄ = (π₯(ballβπ·)π))) | |
4 | 1, 2, 3 | 3syl 18 | 1 β’ (π· β (βMetβπ) β (π΄ β ran (ballβπ·) β βπ₯ β π βπ β β* π΄ = (π₯(ballβπ·)π))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 = wceq 1539 β wcel 2104 βwrex 3068 π« cpw 4603 Γ cxp 5675 ran crn 5678 Fn wfn 6539 βΆwf 6540 βcfv 6544 (class class class)co 7413 β*cxr 11253 βMetcxmet 21131 ballcbl 21133 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 ax-cnex 11170 ax-resscn 11171 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-fv 6552 df-ov 7416 df-oprab 7417 df-mpo 7418 df-1st 7979 df-2nd 7980 df-map 8826 df-xr 11258 df-psmet 21138 df-xmet 21139 df-bl 21141 |
This theorem is referenced by: blss 24153 imasf1oxms 24220 prdsxmslem2 24260 blssioo 24533 |
Copyright terms: Public domain | W3C validator |