HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  brafval Structured version   Visualization version   GIF version

Theorem brafval 31929
Description: The bra of a vector, expressed as 𝐴 in Dirac notation. See df-bra 31836. (Contributed by NM, 15-May-2006.) (Revised by Mario Carneiro, 23-Aug-2014.) (New usage is discouraged.)
Assertion
Ref Expression
brafval (𝐴 ∈ ℋ → (bra‘𝐴) = (𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐴)))
Distinct variable group:   𝑥,𝐴

Proof of Theorem brafval
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 oveq2 7418 . . 3 (𝑦 = 𝐴 → (𝑥 ·ih 𝑦) = (𝑥 ·ih 𝐴))
21mpteq2dv 5220 . 2 (𝑦 = 𝐴 → (𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝑦)) = (𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐴)))
3 df-bra 31836 . 2 bra = (𝑦 ∈ ℋ ↦ (𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝑦)))
4 ax-hilex 30985 . . 3 ℋ ∈ V
54mptex 7220 . 2 (𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐴)) ∈ V
62, 3, 5fvmpt 6991 1 (𝐴 ∈ ℋ → (bra‘𝐴) = (𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cmpt 5206  cfv 6536  (class class class)co 7410  chba 30905   ·ih csp 30908  bracbr 30942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-hilex 30985
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-bra 31836
This theorem is referenced by:  braval  31930  brafn  31933  bra0  31936  brafnmul  31937
  Copyright terms: Public domain W3C validator