| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > brafn | Structured version Visualization version GIF version | ||
| Description: The bra function is a functional. (Contributed by NM, 23-May-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| brafn | ⊢ (𝐴 ∈ ℋ → (bra‘𝐴): ℋ⟶ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brafval 31887 | . 2 ⊢ (𝐴 ∈ ℋ → (bra‘𝐴) = (𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐴))) | |
| 2 | hicl 31024 | . . 3 ⊢ ((𝑥 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (𝑥 ·ih 𝐴) ∈ ℂ) | |
| 3 | 2 | ancoms 458 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℋ) → (𝑥 ·ih 𝐴) ∈ ℂ) |
| 4 | 1, 3 | fmpt3d 7050 | 1 ⊢ (𝐴 ∈ ℋ → (bra‘𝐴): ℋ⟶ℂ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ⟶wf 6478 ‘cfv 6482 (class class class)co 7349 ℂcc 11007 ℋchba 30863 ·ih csp 30866 bracbr 30900 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-hilex 30943 ax-hfi 31023 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-bra 31794 |
| This theorem is referenced by: bralnfn 31892 bracl 31893 brafnmul 31895 branmfn 32049 rnbra 32051 kbass2 32061 kbass3 32062 |
| Copyright terms: Public domain | W3C validator |