HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  braval Structured version   Visualization version   GIF version

Theorem braval 31976
Description: A bra-ket juxtaposition, expressed as 𝐴𝐵 in Dirac notation, equals the inner product of the vectors. Based on definition of bra in [Prugovecki] p. 186. (Contributed by NM, 15-May-2006.) (Revised by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.)
Assertion
Ref Expression
braval ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((bra‘𝐴)‘𝐵) = (𝐵 ·ih 𝐴))

Proof of Theorem braval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 brafval 31975 . . 3 (𝐴 ∈ ℋ → (bra‘𝐴) = (𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐴)))
21fveq1d 6922 . 2 (𝐴 ∈ ℋ → ((bra‘𝐴)‘𝐵) = ((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐴))‘𝐵))
3 oveq1 7455 . . 3 (𝑥 = 𝐵 → (𝑥 ·ih 𝐴) = (𝐵 ·ih 𝐴))
4 eqid 2740 . . 3 (𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐴)) = (𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐴))
5 ovex 7481 . . 3 (𝐵 ·ih 𝐴) ∈ V
63, 4, 5fvmpt 7029 . 2 (𝐵 ∈ ℋ → ((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐴))‘𝐵) = (𝐵 ·ih 𝐴))
72, 6sylan9eq 2800 1 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((bra‘𝐴)‘𝐵) = (𝐵 ·ih 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  cmpt 5249  cfv 6573  (class class class)co 7448  chba 30951   ·ih csp 30954  bracbr 30988
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-hilex 31031
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-bra 31882
This theorem is referenced by:  braadd  31977  bramul  31978  brafnmul  31983  branmfn  32137  rnbra  32139  bra11  32140  cnvbraval  32142  kbass1  32148  kbass2  32149  kbass6  32153
  Copyright terms: Public domain W3C validator