HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  braval Structured version   Visualization version   GIF version

Theorem braval 29412
Description: A bra-ket juxtaposition, expressed as 𝐴𝐵 in Dirac notation, equals the inner product of the vectors. Based on definition of bra in [Prugovecki] p. 186. (Contributed by NM, 15-May-2006.) (Revised by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.)
Assertion
Ref Expression
braval ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((bra‘𝐴)‘𝐵) = (𝐵 ·ih 𝐴))

Proof of Theorem braval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 brafval 29411 . . 3 (𝐴 ∈ ℋ → (bra‘𝐴) = (𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐴)))
21fveq1d 6540 . 2 (𝐴 ∈ ℋ → ((bra‘𝐴)‘𝐵) = ((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐴))‘𝐵))
3 oveq1 7023 . . 3 (𝑥 = 𝐵 → (𝑥 ·ih 𝐴) = (𝐵 ·ih 𝐴))
4 eqid 2795 . . 3 (𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐴)) = (𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐴))
5 ovex 7048 . . 3 (𝐵 ·ih 𝐴) ∈ V
63, 4, 5fvmpt 6635 . 2 (𝐵 ∈ ℋ → ((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐴))‘𝐵) = (𝐵 ·ih 𝐴))
72, 6sylan9eq 2851 1 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((bra‘𝐴)‘𝐵) = (𝐵 ·ih 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1522  wcel 2081  cmpt 5041  cfv 6225  (class class class)co 7016  chba 28387   ·ih csp 28390  bracbr 28424
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pr 5221  ax-hilex 28467
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-ral 3110  df-rex 3111  df-reu 3112  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-nul 4212  df-if 4382  df-sn 4473  df-pr 4475  df-op 4479  df-uni 4746  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-id 5348  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-ov 7019  df-bra 29318
This theorem is referenced by:  braadd  29413  bramul  29414  brafnmul  29419  branmfn  29573  rnbra  29575  bra11  29576  cnvbraval  29578  kbass1  29584  kbass2  29585  kbass6  29589
  Copyright terms: Public domain W3C validator