| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > braval | Structured version Visualization version GIF version | ||
| Description: A bra-ket juxtaposition, expressed as 〈𝐴 ∣ 𝐵〉 in Dirac notation, equals the inner product of the vectors. Based on definition of bra in [Prugovecki] p. 186. (Contributed by NM, 15-May-2006.) (Revised by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| braval | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((bra‘𝐴)‘𝐵) = (𝐵 ·ih 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brafval 31929 | . . 3 ⊢ (𝐴 ∈ ℋ → (bra‘𝐴) = (𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐴))) | |
| 2 | 1 | fveq1d 6883 | . 2 ⊢ (𝐴 ∈ ℋ → ((bra‘𝐴)‘𝐵) = ((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐴))‘𝐵)) |
| 3 | oveq1 7417 | . . 3 ⊢ (𝑥 = 𝐵 → (𝑥 ·ih 𝐴) = (𝐵 ·ih 𝐴)) | |
| 4 | eqid 2736 | . . 3 ⊢ (𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐴)) = (𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐴)) | |
| 5 | ovex 7443 | . . 3 ⊢ (𝐵 ·ih 𝐴) ∈ V | |
| 6 | 3, 4, 5 | fvmpt 6991 | . 2 ⊢ (𝐵 ∈ ℋ → ((𝑥 ∈ ℋ ↦ (𝑥 ·ih 𝐴))‘𝐵) = (𝐵 ·ih 𝐴)) |
| 7 | 2, 6 | sylan9eq 2791 | 1 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((bra‘𝐴)‘𝐵) = (𝐵 ·ih 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ↦ cmpt 5206 ‘cfv 6536 (class class class)co 7410 ℋchba 30905 ·ih csp 30908 bracbr 30942 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-hilex 30985 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-bra 31836 |
| This theorem is referenced by: braadd 31931 bramul 31932 brafnmul 31937 branmfn 32091 rnbra 32093 bra11 32094 cnvbraval 32096 kbass1 32102 kbass2 32103 kbass6 32107 |
| Copyright terms: Public domain | W3C validator |