Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > brafnmul | Structured version Visualization version GIF version |
Description: Anti-linearity property of bra functional for multiplication. (Contributed by NM, 31-May-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
brafnmul | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (bra‘(𝐴 ·ℎ 𝐵)) = ((∗‘𝐴) ·fn (bra‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hvmulcl 29276 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ℎ 𝐵) ∈ ℋ) | |
2 | brafval 30206 | . . 3 ⊢ ((𝐴 ·ℎ 𝐵) ∈ ℋ → (bra‘(𝐴 ·ℎ 𝐵)) = (𝑥 ∈ ℋ ↦ (𝑥 ·ih (𝐴 ·ℎ 𝐵)))) | |
3 | 1, 2 | syl 17 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (bra‘(𝐴 ·ℎ 𝐵)) = (𝑥 ∈ ℋ ↦ (𝑥 ·ih (𝐴 ·ℎ 𝐵)))) |
4 | cjcl 14744 | . . . 4 ⊢ (𝐴 ∈ ℂ → (∗‘𝐴) ∈ ℂ) | |
5 | brafn 30210 | . . . 4 ⊢ (𝐵 ∈ ℋ → (bra‘𝐵): ℋ⟶ℂ) | |
6 | hfmmval 30002 | . . . 4 ⊢ (((∗‘𝐴) ∈ ℂ ∧ (bra‘𝐵): ℋ⟶ℂ) → ((∗‘𝐴) ·fn (bra‘𝐵)) = (𝑥 ∈ ℋ ↦ ((∗‘𝐴) · ((bra‘𝐵)‘𝑥)))) | |
7 | 4, 5, 6 | syl2an 595 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → ((∗‘𝐴) ·fn (bra‘𝐵)) = (𝑥 ∈ ℋ ↦ ((∗‘𝐴) · ((bra‘𝐵)‘𝑥)))) |
8 | his5 29349 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑥 ·ih (𝐴 ·ℎ 𝐵)) = ((∗‘𝐴) · (𝑥 ·ih 𝐵))) | |
9 | 8 | 3expa 1116 | . . . . . 6 ⊢ (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ) ∧ 𝐵 ∈ ℋ) → (𝑥 ·ih (𝐴 ·ℎ 𝐵)) = ((∗‘𝐴) · (𝑥 ·ih 𝐵))) |
10 | 9 | an32s 648 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → (𝑥 ·ih (𝐴 ·ℎ 𝐵)) = ((∗‘𝐴) · (𝑥 ·ih 𝐵))) |
11 | braval 30207 | . . . . . . 7 ⊢ ((𝐵 ∈ ℋ ∧ 𝑥 ∈ ℋ) → ((bra‘𝐵)‘𝑥) = (𝑥 ·ih 𝐵)) | |
12 | 11 | adantll 710 | . . . . . 6 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((bra‘𝐵)‘𝑥) = (𝑥 ·ih 𝐵)) |
13 | 12 | oveq2d 7271 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((∗‘𝐴) · ((bra‘𝐵)‘𝑥)) = ((∗‘𝐴) · (𝑥 ·ih 𝐵))) |
14 | 10, 13 | eqtr4d 2781 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → (𝑥 ·ih (𝐴 ·ℎ 𝐵)) = ((∗‘𝐴) · ((bra‘𝐵)‘𝑥))) |
15 | 14 | mpteq2dva 5170 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝑥 ∈ ℋ ↦ (𝑥 ·ih (𝐴 ·ℎ 𝐵))) = (𝑥 ∈ ℋ ↦ ((∗‘𝐴) · ((bra‘𝐵)‘𝑥)))) |
16 | 7, 15 | eqtr4d 2781 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → ((∗‘𝐴) ·fn (bra‘𝐵)) = (𝑥 ∈ ℋ ↦ (𝑥 ·ih (𝐴 ·ℎ 𝐵)))) |
17 | 3, 16 | eqtr4d 2781 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (bra‘(𝐴 ·ℎ 𝐵)) = ((∗‘𝐴) ·fn (bra‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ↦ cmpt 5153 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ℂcc 10800 · cmul 10807 ∗ccj 14735 ℋchba 29182 ·ℎ csm 29184 ·ih csp 29185 ·fn chft 29205 bracbr 29219 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-hilex 29262 ax-hfvmul 29268 ax-hfi 29342 ax-his1 29345 ax-his3 29347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-2 11966 df-cj 14738 df-re 14739 df-im 14740 df-hfmul 29997 df-bra 30113 |
This theorem is referenced by: cnvbramul 30378 |
Copyright terms: Public domain | W3C validator |