![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > brafnmul | Structured version Visualization version GIF version |
Description: Anti-linearity property of bra functional for multiplication. (Contributed by NM, 31-May-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
brafnmul | β’ ((π΄ β β β§ π΅ β β) β (braβ(π΄ Β·β π΅)) = ((ββπ΄) Β·fn (braβπ΅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hvmulcl 30775 | . . 3 β’ ((π΄ β β β§ π΅ β β) β (π΄ Β·β π΅) β β) | |
2 | brafval 31705 | . . 3 β’ ((π΄ Β·β π΅) β β β (braβ(π΄ Β·β π΅)) = (π₯ β β β¦ (π₯ Β·ih (π΄ Β·β π΅)))) | |
3 | 1, 2 | syl 17 | . 2 β’ ((π΄ β β β§ π΅ β β) β (braβ(π΄ Β·β π΅)) = (π₯ β β β¦ (π₯ Β·ih (π΄ Β·β π΅)))) |
4 | cjcl 15058 | . . . 4 β’ (π΄ β β β (ββπ΄) β β) | |
5 | brafn 31709 | . . . 4 β’ (π΅ β β β (braβπ΅): ββΆβ) | |
6 | hfmmval 31501 | . . . 4 β’ (((ββπ΄) β β β§ (braβπ΅): ββΆβ) β ((ββπ΄) Β·fn (braβπ΅)) = (π₯ β β β¦ ((ββπ΄) Β· ((braβπ΅)βπ₯)))) | |
7 | 4, 5, 6 | syl2an 595 | . . 3 β’ ((π΄ β β β§ π΅ β β) β ((ββπ΄) Β·fn (braβπ΅)) = (π₯ β β β¦ ((ββπ΄) Β· ((braβπ΅)βπ₯)))) |
8 | his5 30848 | . . . . . . 7 β’ ((π΄ β β β§ π₯ β β β§ π΅ β β) β (π₯ Β·ih (π΄ Β·β π΅)) = ((ββπ΄) Β· (π₯ Β·ih π΅))) | |
9 | 8 | 3expa 1115 | . . . . . 6 β’ (((π΄ β β β§ π₯ β β) β§ π΅ β β) β (π₯ Β·ih (π΄ Β·β π΅)) = ((ββπ΄) Β· (π₯ Β·ih π΅))) |
10 | 9 | an32s 649 | . . . . 5 β’ (((π΄ β β β§ π΅ β β) β§ π₯ β β) β (π₯ Β·ih (π΄ Β·β π΅)) = ((ββπ΄) Β· (π₯ Β·ih π΅))) |
11 | braval 31706 | . . . . . . 7 β’ ((π΅ β β β§ π₯ β β) β ((braβπ΅)βπ₯) = (π₯ Β·ih π΅)) | |
12 | 11 | adantll 711 | . . . . . 6 β’ (((π΄ β β β§ π΅ β β) β§ π₯ β β) β ((braβπ΅)βπ₯) = (π₯ Β·ih π΅)) |
13 | 12 | oveq2d 7421 | . . . . 5 β’ (((π΄ β β β§ π΅ β β) β§ π₯ β β) β ((ββπ΄) Β· ((braβπ΅)βπ₯)) = ((ββπ΄) Β· (π₯ Β·ih π΅))) |
14 | 10, 13 | eqtr4d 2769 | . . . 4 β’ (((π΄ β β β§ π΅ β β) β§ π₯ β β) β (π₯ Β·ih (π΄ Β·β π΅)) = ((ββπ΄) Β· ((braβπ΅)βπ₯))) |
15 | 14 | mpteq2dva 5241 | . . 3 β’ ((π΄ β β β§ π΅ β β) β (π₯ β β β¦ (π₯ Β·ih (π΄ Β·β π΅))) = (π₯ β β β¦ ((ββπ΄) Β· ((braβπ΅)βπ₯)))) |
16 | 7, 15 | eqtr4d 2769 | . 2 β’ ((π΄ β β β§ π΅ β β) β ((ββπ΄) Β·fn (braβπ΅)) = (π₯ β β β¦ (π₯ Β·ih (π΄ Β·β π΅)))) |
17 | 3, 16 | eqtr4d 2769 | 1 β’ ((π΄ β β β§ π΅ β β) β (braβ(π΄ Β·β π΅)) = ((ββπ΄) Β·fn (braβπ΅))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1533 β wcel 2098 β¦ cmpt 5224 βΆwf 6533 βcfv 6537 (class class class)co 7405 βcc 11110 Β· cmul 11117 βccj 15049 βchba 30681 Β·β csm 30683 Β·ih csp 30684 Β·fn chft 30704 bracbr 30718 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-hilex 30761 ax-hfvmul 30767 ax-hfi 30841 ax-his1 30844 ax-his3 30846 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-po 5581 df-so 5582 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-er 8705 df-map 8824 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-2 12279 df-cj 15052 df-re 15053 df-im 15054 df-hfmul 31496 df-bra 31612 |
This theorem is referenced by: cnvbramul 31877 |
Copyright terms: Public domain | W3C validator |