![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > brafnmul | Structured version Visualization version GIF version |
Description: Anti-linearity property of bra functional for multiplication. (Contributed by NM, 31-May-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
brafnmul | β’ ((π΄ β β β§ π΅ β β) β (braβ(π΄ Β·β π΅)) = ((ββπ΄) Β·fn (braβπ΅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hvmulcl 30253 | . . 3 β’ ((π΄ β β β§ π΅ β β) β (π΄ Β·β π΅) β β) | |
2 | brafval 31183 | . . 3 β’ ((π΄ Β·β π΅) β β β (braβ(π΄ Β·β π΅)) = (π₯ β β β¦ (π₯ Β·ih (π΄ Β·β π΅)))) | |
3 | 1, 2 | syl 17 | . 2 β’ ((π΄ β β β§ π΅ β β) β (braβ(π΄ Β·β π΅)) = (π₯ β β β¦ (π₯ Β·ih (π΄ Β·β π΅)))) |
4 | cjcl 15048 | . . . 4 β’ (π΄ β β β (ββπ΄) β β) | |
5 | brafn 31187 | . . . 4 β’ (π΅ β β β (braβπ΅): ββΆβ) | |
6 | hfmmval 30979 | . . . 4 β’ (((ββπ΄) β β β§ (braβπ΅): ββΆβ) β ((ββπ΄) Β·fn (braβπ΅)) = (π₯ β β β¦ ((ββπ΄) Β· ((braβπ΅)βπ₯)))) | |
7 | 4, 5, 6 | syl2an 596 | . . 3 β’ ((π΄ β β β§ π΅ β β) β ((ββπ΄) Β·fn (braβπ΅)) = (π₯ β β β¦ ((ββπ΄) Β· ((braβπ΅)βπ₯)))) |
8 | his5 30326 | . . . . . . 7 β’ ((π΄ β β β§ π₯ β β β§ π΅ β β) β (π₯ Β·ih (π΄ Β·β π΅)) = ((ββπ΄) Β· (π₯ Β·ih π΅))) | |
9 | 8 | 3expa 1118 | . . . . . 6 β’ (((π΄ β β β§ π₯ β β) β§ π΅ β β) β (π₯ Β·ih (π΄ Β·β π΅)) = ((ββπ΄) Β· (π₯ Β·ih π΅))) |
10 | 9 | an32s 650 | . . . . 5 β’ (((π΄ β β β§ π΅ β β) β§ π₯ β β) β (π₯ Β·ih (π΄ Β·β π΅)) = ((ββπ΄) Β· (π₯ Β·ih π΅))) |
11 | braval 31184 | . . . . . . 7 β’ ((π΅ β β β§ π₯ β β) β ((braβπ΅)βπ₯) = (π₯ Β·ih π΅)) | |
12 | 11 | adantll 712 | . . . . . 6 β’ (((π΄ β β β§ π΅ β β) β§ π₯ β β) β ((braβπ΅)βπ₯) = (π₯ Β·ih π΅)) |
13 | 12 | oveq2d 7421 | . . . . 5 β’ (((π΄ β β β§ π΅ β β) β§ π₯ β β) β ((ββπ΄) Β· ((braβπ΅)βπ₯)) = ((ββπ΄) Β· (π₯ Β·ih π΅))) |
14 | 10, 13 | eqtr4d 2775 | . . . 4 β’ (((π΄ β β β§ π΅ β β) β§ π₯ β β) β (π₯ Β·ih (π΄ Β·β π΅)) = ((ββπ΄) Β· ((braβπ΅)βπ₯))) |
15 | 14 | mpteq2dva 5247 | . . 3 β’ ((π΄ β β β§ π΅ β β) β (π₯ β β β¦ (π₯ Β·ih (π΄ Β·β π΅))) = (π₯ β β β¦ ((ββπ΄) Β· ((braβπ΅)βπ₯)))) |
16 | 7, 15 | eqtr4d 2775 | . 2 β’ ((π΄ β β β§ π΅ β β) β ((ββπ΄) Β·fn (braβπ΅)) = (π₯ β β β¦ (π₯ Β·ih (π΄ Β·β π΅)))) |
17 | 3, 16 | eqtr4d 2775 | 1 β’ ((π΄ β β β§ π΅ β β) β (braβ(π΄ Β·β π΅)) = ((ββπ΄) Β·fn (braβπ΅))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 β¦ cmpt 5230 βΆwf 6536 βcfv 6540 (class class class)co 7405 βcc 11104 Β· cmul 11111 βccj 15039 βchba 30159 Β·β csm 30161 Β·ih csp 30162 Β·fn chft 30182 bracbr 30196 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-hilex 30239 ax-hfvmul 30245 ax-hfi 30319 ax-his1 30322 ax-his3 30324 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-po 5587 df-so 5588 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-er 8699 df-map 8818 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-2 12271 df-cj 15042 df-re 15043 df-im 15044 df-hfmul 30974 df-bra 31090 |
This theorem is referenced by: cnvbramul 31355 |
Copyright terms: Public domain | W3C validator |