| Step | Hyp | Ref
| Expression |
| 1 | | df-ral 3053 |
. . . 4
⊢
(∀𝑧 ∈
(𝐹‘𝑥)(𝐹‘𝑧) ≠ ∅ ↔ ∀𝑧(𝑧 ∈ (𝐹‘𝑥) → (𝐹‘𝑧) ≠ ∅)) |
| 2 | | permmodel.1 |
. . . . . 6
⊢ 𝐹:V–1-1-onto→V |
| 3 | | f1ofn 6824 |
. . . . . 6
⊢ (𝐹:V–1-1-onto→V
→ 𝐹 Fn
V) |
| 4 | 2, 3 | ax-mp 5 |
. . . . 5
⊢ 𝐹 Fn V |
| 5 | | ssv 3988 |
. . . . 5
⊢ (𝐹‘𝑥) ⊆ V |
| 6 | | neeq1 2995 |
. . . . . 6
⊢ (𝑡 = (𝐹‘𝑧) → (𝑡 ≠ ∅ ↔ (𝐹‘𝑧) ≠ ∅)) |
| 7 | 6 | ralima 7234 |
. . . . 5
⊢ ((𝐹 Fn V ∧ (𝐹‘𝑥) ⊆ V) → (∀𝑡 ∈ (𝐹 “ (𝐹‘𝑥))𝑡 ≠ ∅ ↔ ∀𝑧 ∈ (𝐹‘𝑥)(𝐹‘𝑧) ≠ ∅)) |
| 8 | 4, 5, 7 | mp2an 692 |
. . . 4
⊢
(∀𝑡 ∈
(𝐹 “ (𝐹‘𝑥))𝑡 ≠ ∅ ↔ ∀𝑧 ∈ (𝐹‘𝑥)(𝐹‘𝑧) ≠ ∅) |
| 9 | | permmodel.2 |
. . . . . . 7
⊢ 𝑅 = (◡𝐹 ∘ E ) |
| 10 | | vex 3468 |
. . . . . . 7
⊢ 𝑧 ∈ V |
| 11 | | vex 3468 |
. . . . . . 7
⊢ 𝑥 ∈ V |
| 12 | 2, 9, 10, 11 | brpermmodel 45003 |
. . . . . 6
⊢ (𝑧𝑅𝑥 ↔ 𝑧 ∈ (𝐹‘𝑥)) |
| 13 | | vex 3468 |
. . . . . . . . 9
⊢ 𝑤 ∈ V |
| 14 | 2, 9, 13, 10 | brpermmodel 45003 |
. . . . . . . 8
⊢ (𝑤𝑅𝑧 ↔ 𝑤 ∈ (𝐹‘𝑧)) |
| 15 | 14 | exbii 1848 |
. . . . . . 7
⊢
(∃𝑤 𝑤𝑅𝑧 ↔ ∃𝑤 𝑤 ∈ (𝐹‘𝑧)) |
| 16 | | n0 4333 |
. . . . . . 7
⊢ ((𝐹‘𝑧) ≠ ∅ ↔ ∃𝑤 𝑤 ∈ (𝐹‘𝑧)) |
| 17 | 15, 16 | bitr4i 278 |
. . . . . 6
⊢
(∃𝑤 𝑤𝑅𝑧 ↔ (𝐹‘𝑧) ≠ ∅) |
| 18 | 12, 17 | imbi12i 350 |
. . . . 5
⊢ ((𝑧𝑅𝑥 → ∃𝑤 𝑤𝑅𝑧) ↔ (𝑧 ∈ (𝐹‘𝑥) → (𝐹‘𝑧) ≠ ∅)) |
| 19 | 18 | albii 1819 |
. . . 4
⊢
(∀𝑧(𝑧𝑅𝑥 → ∃𝑤 𝑤𝑅𝑧) ↔ ∀𝑧(𝑧 ∈ (𝐹‘𝑥) → (𝐹‘𝑧) ≠ ∅)) |
| 20 | 1, 8, 19 | 3bitr4i 303 |
. . 3
⊢
(∀𝑡 ∈
(𝐹 “ (𝐹‘𝑥))𝑡 ≠ ∅ ↔ ∀𝑧(𝑧𝑅𝑥 → ∃𝑤 𝑤𝑅𝑧)) |
| 21 | | neeq2 2996 |
. . . . . . . . 9
⊢ (𝑞 = (𝐹‘𝑤) → (𝑡 ≠ 𝑞 ↔ 𝑡 ≠ (𝐹‘𝑤))) |
| 22 | | ineq2 4194 |
. . . . . . . . . 10
⊢ (𝑞 = (𝐹‘𝑤) → (𝑡 ∩ 𝑞) = (𝑡 ∩ (𝐹‘𝑤))) |
| 23 | 22 | eqeq1d 2738 |
. . . . . . . . 9
⊢ (𝑞 = (𝐹‘𝑤) → ((𝑡 ∩ 𝑞) = ∅ ↔ (𝑡 ∩ (𝐹‘𝑤)) = ∅)) |
| 24 | 21, 23 | imbi12d 344 |
. . . . . . . 8
⊢ (𝑞 = (𝐹‘𝑤) → ((𝑡 ≠ 𝑞 → (𝑡 ∩ 𝑞) = ∅) ↔ (𝑡 ≠ (𝐹‘𝑤) → (𝑡 ∩ (𝐹‘𝑤)) = ∅))) |
| 25 | 24 | ralima 7234 |
. . . . . . 7
⊢ ((𝐹 Fn V ∧ (𝐹‘𝑥) ⊆ V) → (∀𝑞 ∈ (𝐹 “ (𝐹‘𝑥))(𝑡 ≠ 𝑞 → (𝑡 ∩ 𝑞) = ∅) ↔ ∀𝑤 ∈ (𝐹‘𝑥)(𝑡 ≠ (𝐹‘𝑤) → (𝑡 ∩ (𝐹‘𝑤)) = ∅))) |
| 26 | 4, 5, 25 | mp2an 692 |
. . . . . 6
⊢
(∀𝑞 ∈
(𝐹 “ (𝐹‘𝑥))(𝑡 ≠ 𝑞 → (𝑡 ∩ 𝑞) = ∅) ↔ ∀𝑤 ∈ (𝐹‘𝑥)(𝑡 ≠ (𝐹‘𝑤) → (𝑡 ∩ (𝐹‘𝑤)) = ∅)) |
| 27 | 26 | ralbii 3083 |
. . . . 5
⊢
(∀𝑡 ∈
(𝐹 “ (𝐹‘𝑥))∀𝑞 ∈ (𝐹 “ (𝐹‘𝑥))(𝑡 ≠ 𝑞 → (𝑡 ∩ 𝑞) = ∅) ↔ ∀𝑡 ∈ (𝐹 “ (𝐹‘𝑥))∀𝑤 ∈ (𝐹‘𝑥)(𝑡 ≠ (𝐹‘𝑤) → (𝑡 ∩ (𝐹‘𝑤)) = ∅)) |
| 28 | | neeq1 2995 |
. . . . . . . . 9
⊢ (𝑡 = (𝐹‘𝑧) → (𝑡 ≠ (𝐹‘𝑤) ↔ (𝐹‘𝑧) ≠ (𝐹‘𝑤))) |
| 29 | | ineq1 4193 |
. . . . . . . . . 10
⊢ (𝑡 = (𝐹‘𝑧) → (𝑡 ∩ (𝐹‘𝑤)) = ((𝐹‘𝑧) ∩ (𝐹‘𝑤))) |
| 30 | 29 | eqeq1d 2738 |
. . . . . . . . 9
⊢ (𝑡 = (𝐹‘𝑧) → ((𝑡 ∩ (𝐹‘𝑤)) = ∅ ↔ ((𝐹‘𝑧) ∩ (𝐹‘𝑤)) = ∅)) |
| 31 | 28, 30 | imbi12d 344 |
. . . . . . . 8
⊢ (𝑡 = (𝐹‘𝑧) → ((𝑡 ≠ (𝐹‘𝑤) → (𝑡 ∩ (𝐹‘𝑤)) = ∅) ↔ ((𝐹‘𝑧) ≠ (𝐹‘𝑤) → ((𝐹‘𝑧) ∩ (𝐹‘𝑤)) = ∅))) |
| 32 | 31 | ralbidv 3164 |
. . . . . . 7
⊢ (𝑡 = (𝐹‘𝑧) → (∀𝑤 ∈ (𝐹‘𝑥)(𝑡 ≠ (𝐹‘𝑤) → (𝑡 ∩ (𝐹‘𝑤)) = ∅) ↔ ∀𝑤 ∈ (𝐹‘𝑥)((𝐹‘𝑧) ≠ (𝐹‘𝑤) → ((𝐹‘𝑧) ∩ (𝐹‘𝑤)) = ∅))) |
| 33 | 32 | ralima 7234 |
. . . . . 6
⊢ ((𝐹 Fn V ∧ (𝐹‘𝑥) ⊆ V) → (∀𝑡 ∈ (𝐹 “ (𝐹‘𝑥))∀𝑤 ∈ (𝐹‘𝑥)(𝑡 ≠ (𝐹‘𝑤) → (𝑡 ∩ (𝐹‘𝑤)) = ∅) ↔ ∀𝑧 ∈ (𝐹‘𝑥)∀𝑤 ∈ (𝐹‘𝑥)((𝐹‘𝑧) ≠ (𝐹‘𝑤) → ((𝐹‘𝑧) ∩ (𝐹‘𝑤)) = ∅))) |
| 34 | 4, 5, 33 | mp2an 692 |
. . . . 5
⊢
(∀𝑡 ∈
(𝐹 “ (𝐹‘𝑥))∀𝑤 ∈ (𝐹‘𝑥)(𝑡 ≠ (𝐹‘𝑤) → (𝑡 ∩ (𝐹‘𝑤)) = ∅) ↔ ∀𝑧 ∈ (𝐹‘𝑥)∀𝑤 ∈ (𝐹‘𝑥)((𝐹‘𝑧) ≠ (𝐹‘𝑤) → ((𝐹‘𝑧) ∩ (𝐹‘𝑤)) = ∅)) |
| 35 | | r2al 3181 |
. . . . 5
⊢
(∀𝑧 ∈
(𝐹‘𝑥)∀𝑤 ∈ (𝐹‘𝑥)((𝐹‘𝑧) ≠ (𝐹‘𝑤) → ((𝐹‘𝑧) ∩ (𝐹‘𝑤)) = ∅) ↔ ∀𝑧∀𝑤((𝑧 ∈ (𝐹‘𝑥) ∧ 𝑤 ∈ (𝐹‘𝑥)) → ((𝐹‘𝑧) ≠ (𝐹‘𝑤) → ((𝐹‘𝑧) ∩ (𝐹‘𝑤)) = ∅))) |
| 36 | 27, 34, 35 | 3bitri 297 |
. . . 4
⊢
(∀𝑡 ∈
(𝐹 “ (𝐹‘𝑥))∀𝑞 ∈ (𝐹 “ (𝐹‘𝑥))(𝑡 ≠ 𝑞 → (𝑡 ∩ 𝑞) = ∅) ↔ ∀𝑧∀𝑤((𝑧 ∈ (𝐹‘𝑥) ∧ 𝑤 ∈ (𝐹‘𝑥)) → ((𝐹‘𝑧) ≠ (𝐹‘𝑤) → ((𝐹‘𝑧) ∩ (𝐹‘𝑤)) = ∅))) |
| 37 | 2, 9, 13, 11 | brpermmodel 45003 |
. . . . . . 7
⊢ (𝑤𝑅𝑥 ↔ 𝑤 ∈ (𝐹‘𝑥)) |
| 38 | 12, 37 | anbi12i 628 |
. . . . . 6
⊢ ((𝑧𝑅𝑥 ∧ 𝑤𝑅𝑥) ↔ (𝑧 ∈ (𝐹‘𝑥) ∧ 𝑤 ∈ (𝐹‘𝑥))) |
| 39 | | df-ne 2934 |
. . . . . . . 8
⊢ ((𝐹‘𝑧) ≠ (𝐹‘𝑤) ↔ ¬ (𝐹‘𝑧) = (𝐹‘𝑤)) |
| 40 | | f1of1 6822 |
. . . . . . . . . . . 12
⊢ (𝐹:V–1-1-onto→V
→ 𝐹:V–1-1→V) |
| 41 | 2, 40 | ax-mp 5 |
. . . . . . . . . . 11
⊢ 𝐹:V–1-1→V |
| 42 | | f1fveq 7260 |
. . . . . . . . . . 11
⊢ ((𝐹:V–1-1→V ∧ (𝑧 ∈ V ∧ 𝑤 ∈ V)) → ((𝐹‘𝑧) = (𝐹‘𝑤) ↔ 𝑧 = 𝑤)) |
| 43 | 41, 42 | mpan 690 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ V ∧ 𝑤 ∈ V) → ((𝐹‘𝑧) = (𝐹‘𝑤) ↔ 𝑧 = 𝑤)) |
| 44 | 43 | el2v 3471 |
. . . . . . . . 9
⊢ ((𝐹‘𝑧) = (𝐹‘𝑤) ↔ 𝑧 = 𝑤) |
| 45 | 44 | notbii 320 |
. . . . . . . 8
⊢ (¬
(𝐹‘𝑧) = (𝐹‘𝑤) ↔ ¬ 𝑧 = 𝑤) |
| 46 | 39, 45 | bitr2i 276 |
. . . . . . 7
⊢ (¬
𝑧 = 𝑤 ↔ (𝐹‘𝑧) ≠ (𝐹‘𝑤)) |
| 47 | | vex 3468 |
. . . . . . . . . . 11
⊢ 𝑦 ∈ V |
| 48 | 2, 9, 47, 10 | brpermmodel 45003 |
. . . . . . . . . 10
⊢ (𝑦𝑅𝑧 ↔ 𝑦 ∈ (𝐹‘𝑧)) |
| 49 | 2, 9, 47, 13 | brpermmodel 45003 |
. . . . . . . . . . 11
⊢ (𝑦𝑅𝑤 ↔ 𝑦 ∈ (𝐹‘𝑤)) |
| 50 | 49 | notbii 320 |
. . . . . . . . . 10
⊢ (¬
𝑦𝑅𝑤 ↔ ¬ 𝑦 ∈ (𝐹‘𝑤)) |
| 51 | 48, 50 | imbi12i 350 |
. . . . . . . . 9
⊢ ((𝑦𝑅𝑧 → ¬ 𝑦𝑅𝑤) ↔ (𝑦 ∈ (𝐹‘𝑧) → ¬ 𝑦 ∈ (𝐹‘𝑤))) |
| 52 | 51 | albii 1819 |
. . . . . . . 8
⊢
(∀𝑦(𝑦𝑅𝑧 → ¬ 𝑦𝑅𝑤) ↔ ∀𝑦(𝑦 ∈ (𝐹‘𝑧) → ¬ 𝑦 ∈ (𝐹‘𝑤))) |
| 53 | | disj1 4432 |
. . . . . . . 8
⊢ (((𝐹‘𝑧) ∩ (𝐹‘𝑤)) = ∅ ↔ ∀𝑦(𝑦 ∈ (𝐹‘𝑧) → ¬ 𝑦 ∈ (𝐹‘𝑤))) |
| 54 | 52, 53 | bitr4i 278 |
. . . . . . 7
⊢
(∀𝑦(𝑦𝑅𝑧 → ¬ 𝑦𝑅𝑤) ↔ ((𝐹‘𝑧) ∩ (𝐹‘𝑤)) = ∅) |
| 55 | 46, 54 | imbi12i 350 |
. . . . . 6
⊢ ((¬
𝑧 = 𝑤 → ∀𝑦(𝑦𝑅𝑧 → ¬ 𝑦𝑅𝑤)) ↔ ((𝐹‘𝑧) ≠ (𝐹‘𝑤) → ((𝐹‘𝑧) ∩ (𝐹‘𝑤)) = ∅)) |
| 56 | 38, 55 | imbi12i 350 |
. . . . 5
⊢ (((𝑧𝑅𝑥 ∧ 𝑤𝑅𝑥) → (¬ 𝑧 = 𝑤 → ∀𝑦(𝑦𝑅𝑧 → ¬ 𝑦𝑅𝑤))) ↔ ((𝑧 ∈ (𝐹‘𝑥) ∧ 𝑤 ∈ (𝐹‘𝑥)) → ((𝐹‘𝑧) ≠ (𝐹‘𝑤) → ((𝐹‘𝑧) ∩ (𝐹‘𝑤)) = ∅))) |
| 57 | 56 | 2albii 1820 |
. . . 4
⊢
(∀𝑧∀𝑤((𝑧𝑅𝑥 ∧ 𝑤𝑅𝑥) → (¬ 𝑧 = 𝑤 → ∀𝑦(𝑦𝑅𝑧 → ¬ 𝑦𝑅𝑤))) ↔ ∀𝑧∀𝑤((𝑧 ∈ (𝐹‘𝑥) ∧ 𝑤 ∈ (𝐹‘𝑥)) → ((𝐹‘𝑧) ≠ (𝐹‘𝑤) → ((𝐹‘𝑧) ∩ (𝐹‘𝑤)) = ∅))) |
| 58 | 36, 57 | bitr4i 278 |
. . 3
⊢
(∀𝑡 ∈
(𝐹 “ (𝐹‘𝑥))∀𝑞 ∈ (𝐹 “ (𝐹‘𝑥))(𝑡 ≠ 𝑞 → (𝑡 ∩ 𝑞) = ∅) ↔ ∀𝑧∀𝑤((𝑧𝑅𝑥 ∧ 𝑤𝑅𝑥) → (¬ 𝑧 = 𝑤 → ∀𝑦(𝑦𝑅𝑧 → ¬ 𝑦𝑅𝑤)))) |
| 59 | | f1ofun 6825 |
. . . . 5
⊢ (𝐹:V–1-1-onto→V
→ Fun 𝐹) |
| 60 | | fvex 6894 |
. . . . . 6
⊢ (𝐹‘𝑥) ∈ V |
| 61 | 60 | funimaex 6630 |
. . . . 5
⊢ (Fun
𝐹 → (𝐹 “ (𝐹‘𝑥)) ∈ V) |
| 62 | 2, 59, 61 | mp2b 10 |
. . . 4
⊢ (𝐹 “ (𝐹‘𝑥)) ∈ V |
| 63 | | raleq 3306 |
. . . . . 6
⊢ (𝑟 = (𝐹 “ (𝐹‘𝑥)) → (∀𝑡 ∈ 𝑟 𝑡 ≠ ∅ ↔ ∀𝑡 ∈ (𝐹 “ (𝐹‘𝑥))𝑡 ≠ ∅)) |
| 64 | | raleq 3306 |
. . . . . . 7
⊢ (𝑟 = (𝐹 “ (𝐹‘𝑥)) → (∀𝑞 ∈ 𝑟 (𝑡 ≠ 𝑞 → (𝑡 ∩ 𝑞) = ∅) ↔ ∀𝑞 ∈ (𝐹 “ (𝐹‘𝑥))(𝑡 ≠ 𝑞 → (𝑡 ∩ 𝑞) = ∅))) |
| 65 | 64 | raleqbi1dv 3321 |
. . . . . 6
⊢ (𝑟 = (𝐹 “ (𝐹‘𝑥)) → (∀𝑡 ∈ 𝑟 ∀𝑞 ∈ 𝑟 (𝑡 ≠ 𝑞 → (𝑡 ∩ 𝑞) = ∅) ↔ ∀𝑡 ∈ (𝐹 “ (𝐹‘𝑥))∀𝑞 ∈ (𝐹 “ (𝐹‘𝑥))(𝑡 ≠ 𝑞 → (𝑡 ∩ 𝑞) = ∅))) |
| 66 | 63, 65 | anbi12d 632 |
. . . . 5
⊢ (𝑟 = (𝐹 “ (𝐹‘𝑥)) → ((∀𝑡 ∈ 𝑟 𝑡 ≠ ∅ ∧ ∀𝑡 ∈ 𝑟 ∀𝑞 ∈ 𝑟 (𝑡 ≠ 𝑞 → (𝑡 ∩ 𝑞) = ∅)) ↔ (∀𝑡 ∈ (𝐹 “ (𝐹‘𝑥))𝑡 ≠ ∅ ∧ ∀𝑡 ∈ (𝐹 “ (𝐹‘𝑥))∀𝑞 ∈ (𝐹 “ (𝐹‘𝑥))(𝑡 ≠ 𝑞 → (𝑡 ∩ 𝑞) = ∅)))) |
| 67 | | raleq 3306 |
. . . . . 6
⊢ (𝑟 = (𝐹 “ (𝐹‘𝑥)) → (∀𝑡 ∈ 𝑟 ∃!𝑣 𝑣 ∈ (𝑡 ∩ 𝑠) ↔ ∀𝑡 ∈ (𝐹 “ (𝐹‘𝑥))∃!𝑣 𝑣 ∈ (𝑡 ∩ 𝑠))) |
| 68 | 67 | exbidv 1921 |
. . . . 5
⊢ (𝑟 = (𝐹 “ (𝐹‘𝑥)) → (∃𝑠∀𝑡 ∈ 𝑟 ∃!𝑣 𝑣 ∈ (𝑡 ∩ 𝑠) ↔ ∃𝑠∀𝑡 ∈ (𝐹 “ (𝐹‘𝑥))∃!𝑣 𝑣 ∈ (𝑡 ∩ 𝑠))) |
| 69 | 66, 68 | imbi12d 344 |
. . . 4
⊢ (𝑟 = (𝐹 “ (𝐹‘𝑥)) → (((∀𝑡 ∈ 𝑟 𝑡 ≠ ∅ ∧ ∀𝑡 ∈ 𝑟 ∀𝑞 ∈ 𝑟 (𝑡 ≠ 𝑞 → (𝑡 ∩ 𝑞) = ∅)) → ∃𝑠∀𝑡 ∈ 𝑟 ∃!𝑣 𝑣 ∈ (𝑡 ∩ 𝑠)) ↔ ((∀𝑡 ∈ (𝐹 “ (𝐹‘𝑥))𝑡 ≠ ∅ ∧ ∀𝑡 ∈ (𝐹 “ (𝐹‘𝑥))∀𝑞 ∈ (𝐹 “ (𝐹‘𝑥))(𝑡 ≠ 𝑞 → (𝑡 ∩ 𝑞) = ∅)) → ∃𝑠∀𝑡 ∈ (𝐹 “ (𝐹‘𝑥))∃!𝑣 𝑣 ∈ (𝑡 ∩ 𝑠)))) |
| 70 | | ac8 10511 |
. . . 4
⊢
((∀𝑡 ∈
𝑟 𝑡 ≠ ∅ ∧ ∀𝑡 ∈ 𝑟 ∀𝑞 ∈ 𝑟 (𝑡 ≠ 𝑞 → (𝑡 ∩ 𝑞) = ∅)) → ∃𝑠∀𝑡 ∈ 𝑟 ∃!𝑣 𝑣 ∈ (𝑡 ∩ 𝑠)) |
| 71 | 62, 69, 70 | vtocl 3542 |
. . 3
⊢
((∀𝑡 ∈
(𝐹 “ (𝐹‘𝑥))𝑡 ≠ ∅ ∧ ∀𝑡 ∈ (𝐹 “ (𝐹‘𝑥))∀𝑞 ∈ (𝐹 “ (𝐹‘𝑥))(𝑡 ≠ 𝑞 → (𝑡 ∩ 𝑞) = ∅)) → ∃𝑠∀𝑡 ∈ (𝐹 “ (𝐹‘𝑥))∃!𝑣 𝑣 ∈ (𝑡 ∩ 𝑠)) |
| 72 | 20, 58, 71 | syl2anbr 599 |
. 2
⊢
((∀𝑧(𝑧𝑅𝑥 → ∃𝑤 𝑤𝑅𝑧) ∧ ∀𝑧∀𝑤((𝑧𝑅𝑥 ∧ 𝑤𝑅𝑥) → (¬ 𝑧 = 𝑤 → ∀𝑦(𝑦𝑅𝑧 → ¬ 𝑦𝑅𝑤)))) → ∃𝑠∀𝑡 ∈ (𝐹 “ (𝐹‘𝑥))∃!𝑣 𝑣 ∈ (𝑡 ∩ 𝑠)) |
| 73 | | ineq1 4193 |
. . . . . . . . 9
⊢ (𝑡 = (𝐹‘𝑧) → (𝑡 ∩ 𝑠) = ((𝐹‘𝑧) ∩ 𝑠)) |
| 74 | 73 | eleq2d 2821 |
. . . . . . . 8
⊢ (𝑡 = (𝐹‘𝑧) → (𝑣 ∈ (𝑡 ∩ 𝑠) ↔ 𝑣 ∈ ((𝐹‘𝑧) ∩ 𝑠))) |
| 75 | 74 | eubidv 2586 |
. . . . . . 7
⊢ (𝑡 = (𝐹‘𝑧) → (∃!𝑣 𝑣 ∈ (𝑡 ∩ 𝑠) ↔ ∃!𝑣 𝑣 ∈ ((𝐹‘𝑧) ∩ 𝑠))) |
| 76 | 75 | ralima 7234 |
. . . . . 6
⊢ ((𝐹 Fn V ∧ (𝐹‘𝑥) ⊆ V) → (∀𝑡 ∈ (𝐹 “ (𝐹‘𝑥))∃!𝑣 𝑣 ∈ (𝑡 ∩ 𝑠) ↔ ∀𝑧 ∈ (𝐹‘𝑥)∃!𝑣 𝑣 ∈ ((𝐹‘𝑧) ∩ 𝑠))) |
| 77 | 4, 5, 76 | mp2an 692 |
. . . . 5
⊢
(∀𝑡 ∈
(𝐹 “ (𝐹‘𝑥))∃!𝑣 𝑣 ∈ (𝑡 ∩ 𝑠) ↔ ∀𝑧 ∈ (𝐹‘𝑥)∃!𝑣 𝑣 ∈ ((𝐹‘𝑧) ∩ 𝑠)) |
| 78 | | df-ral 3053 |
. . . . 5
⊢
(∀𝑧 ∈
(𝐹‘𝑥)∃!𝑣 𝑣 ∈ ((𝐹‘𝑧) ∩ 𝑠) ↔ ∀𝑧(𝑧 ∈ (𝐹‘𝑥) → ∃!𝑣 𝑣 ∈ ((𝐹‘𝑧) ∩ 𝑠))) |
| 79 | 77, 78 | bitri 275 |
. . . 4
⊢
(∀𝑡 ∈
(𝐹 “ (𝐹‘𝑥))∃!𝑣 𝑣 ∈ (𝑡 ∩ 𝑠) ↔ ∀𝑧(𝑧 ∈ (𝐹‘𝑥) → ∃!𝑣 𝑣 ∈ ((𝐹‘𝑧) ∩ 𝑠))) |
| 80 | | fvex 6894 |
. . . . 5
⊢ (◡𝐹‘𝑠) ∈ V |
| 81 | 12 | a1i 11 |
. . . . . . 7
⊢ (𝑦 = (◡𝐹‘𝑠) → (𝑧𝑅𝑥 ↔ 𝑧 ∈ (𝐹‘𝑥))) |
| 82 | | vex 3468 |
. . . . . . . . . . . . . 14
⊢ 𝑣 ∈ V |
| 83 | 2, 9, 82, 10 | brpermmodel 45003 |
. . . . . . . . . . . . 13
⊢ (𝑣𝑅𝑧 ↔ 𝑣 ∈ (𝐹‘𝑧)) |
| 84 | 83 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝑦 = (◡𝐹‘𝑠) → (𝑣𝑅𝑧 ↔ 𝑣 ∈ (𝐹‘𝑧))) |
| 85 | | breq2 5128 |
. . . . . . . . . . . . 13
⊢ (𝑦 = (◡𝐹‘𝑠) → (𝑣𝑅𝑦 ↔ 𝑣𝑅(◡𝐹‘𝑠))) |
| 86 | | vex 3468 |
. . . . . . . . . . . . . 14
⊢ 𝑠 ∈ V |
| 87 | 2, 9, 82, 86 | brpermmodelcnv 45004 |
. . . . . . . . . . . . 13
⊢ (𝑣𝑅(◡𝐹‘𝑠) ↔ 𝑣 ∈ 𝑠) |
| 88 | 85, 87 | bitrdi 287 |
. . . . . . . . . . . 12
⊢ (𝑦 = (◡𝐹‘𝑠) → (𝑣𝑅𝑦 ↔ 𝑣 ∈ 𝑠)) |
| 89 | 84, 88 | anbi12d 632 |
. . . . . . . . . . 11
⊢ (𝑦 = (◡𝐹‘𝑠) → ((𝑣𝑅𝑧 ∧ 𝑣𝑅𝑦) ↔ (𝑣 ∈ (𝐹‘𝑧) ∧ 𝑣 ∈ 𝑠))) |
| 90 | 89 | bibi1d 343 |
. . . . . . . . . 10
⊢ (𝑦 = (◡𝐹‘𝑠) → (((𝑣𝑅𝑧 ∧ 𝑣𝑅𝑦) ↔ 𝑣 = 𝑤) ↔ ((𝑣 ∈ (𝐹‘𝑧) ∧ 𝑣 ∈ 𝑠) ↔ 𝑣 = 𝑤))) |
| 91 | 90 | albidv 1920 |
. . . . . . . . 9
⊢ (𝑦 = (◡𝐹‘𝑠) → (∀𝑣((𝑣𝑅𝑧 ∧ 𝑣𝑅𝑦) ↔ 𝑣 = 𝑤) ↔ ∀𝑣((𝑣 ∈ (𝐹‘𝑧) ∧ 𝑣 ∈ 𝑠) ↔ 𝑣 = 𝑤))) |
| 92 | 91 | exbidv 1921 |
. . . . . . . 8
⊢ (𝑦 = (◡𝐹‘𝑠) → (∃𝑤∀𝑣((𝑣𝑅𝑧 ∧ 𝑣𝑅𝑦) ↔ 𝑣 = 𝑤) ↔ ∃𝑤∀𝑣((𝑣 ∈ (𝐹‘𝑧) ∧ 𝑣 ∈ 𝑠) ↔ 𝑣 = 𝑤))) |
| 93 | | elin 3947 |
. . . . . . . . . 10
⊢ (𝑣 ∈ ((𝐹‘𝑧) ∩ 𝑠) ↔ (𝑣 ∈ (𝐹‘𝑧) ∧ 𝑣 ∈ 𝑠)) |
| 94 | 93 | eubii 2585 |
. . . . . . . . 9
⊢
(∃!𝑣 𝑣 ∈ ((𝐹‘𝑧) ∩ 𝑠) ↔ ∃!𝑣(𝑣 ∈ (𝐹‘𝑧) ∧ 𝑣 ∈ 𝑠)) |
| 95 | | eu6 2574 |
. . . . . . . . 9
⊢
(∃!𝑣(𝑣 ∈ (𝐹‘𝑧) ∧ 𝑣 ∈ 𝑠) ↔ ∃𝑤∀𝑣((𝑣 ∈ (𝐹‘𝑧) ∧ 𝑣 ∈ 𝑠) ↔ 𝑣 = 𝑤)) |
| 96 | 94, 95 | bitri 275 |
. . . . . . . 8
⊢
(∃!𝑣 𝑣 ∈ ((𝐹‘𝑧) ∩ 𝑠) ↔ ∃𝑤∀𝑣((𝑣 ∈ (𝐹‘𝑧) ∧ 𝑣 ∈ 𝑠) ↔ 𝑣 = 𝑤)) |
| 97 | 92, 96 | bitr4di 289 |
. . . . . . 7
⊢ (𝑦 = (◡𝐹‘𝑠) → (∃𝑤∀𝑣((𝑣𝑅𝑧 ∧ 𝑣𝑅𝑦) ↔ 𝑣 = 𝑤) ↔ ∃!𝑣 𝑣 ∈ ((𝐹‘𝑧) ∩ 𝑠))) |
| 98 | 81, 97 | imbi12d 344 |
. . . . . 6
⊢ (𝑦 = (◡𝐹‘𝑠) → ((𝑧𝑅𝑥 → ∃𝑤∀𝑣((𝑣𝑅𝑧 ∧ 𝑣𝑅𝑦) ↔ 𝑣 = 𝑤)) ↔ (𝑧 ∈ (𝐹‘𝑥) → ∃!𝑣 𝑣 ∈ ((𝐹‘𝑧) ∩ 𝑠)))) |
| 99 | 98 | albidv 1920 |
. . . . 5
⊢ (𝑦 = (◡𝐹‘𝑠) → (∀𝑧(𝑧𝑅𝑥 → ∃𝑤∀𝑣((𝑣𝑅𝑧 ∧ 𝑣𝑅𝑦) ↔ 𝑣 = 𝑤)) ↔ ∀𝑧(𝑧 ∈ (𝐹‘𝑥) → ∃!𝑣 𝑣 ∈ ((𝐹‘𝑧) ∩ 𝑠)))) |
| 100 | 80, 99 | spcev 3590 |
. . . 4
⊢
(∀𝑧(𝑧 ∈ (𝐹‘𝑥) → ∃!𝑣 𝑣 ∈ ((𝐹‘𝑧) ∩ 𝑠)) → ∃𝑦∀𝑧(𝑧𝑅𝑥 → ∃𝑤∀𝑣((𝑣𝑅𝑧 ∧ 𝑣𝑅𝑦) ↔ 𝑣 = 𝑤))) |
| 101 | 79, 100 | sylbi 217 |
. . 3
⊢
(∀𝑡 ∈
(𝐹 “ (𝐹‘𝑥))∃!𝑣 𝑣 ∈ (𝑡 ∩ 𝑠) → ∃𝑦∀𝑧(𝑧𝑅𝑥 → ∃𝑤∀𝑣((𝑣𝑅𝑧 ∧ 𝑣𝑅𝑦) ↔ 𝑣 = 𝑤))) |
| 102 | 101 | exlimiv 1930 |
. 2
⊢
(∃𝑠∀𝑡 ∈ (𝐹 “ (𝐹‘𝑥))∃!𝑣 𝑣 ∈ (𝑡 ∩ 𝑠) → ∃𝑦∀𝑧(𝑧𝑅𝑥 → ∃𝑤∀𝑣((𝑣𝑅𝑧 ∧ 𝑣𝑅𝑦) ↔ 𝑣 = 𝑤))) |
| 103 | 72, 102 | syl 17 |
1
⊢
((∀𝑧(𝑧𝑅𝑥 → ∃𝑤 𝑤𝑅𝑧) ∧ ∀𝑧∀𝑤((𝑧𝑅𝑥 ∧ 𝑤𝑅𝑥) → (¬ 𝑧 = 𝑤 → ∀𝑦(𝑦𝑅𝑧 → ¬ 𝑦𝑅𝑤)))) → ∃𝑦∀𝑧(𝑧𝑅𝑥 → ∃𝑤∀𝑣((𝑣𝑅𝑧 ∧ 𝑣𝑅𝑦) ↔ 𝑣 = 𝑤))) |