Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  permac8prim Structured version   Visualization version   GIF version

Theorem permac8prim 45112
Description: The Axiom of Choice ac8prim 45089 holds in permutation models. Part of Exercise II.9.3 of [Kunen2] p. 149. Note that ax-ac 10356 requires Regularity for its derivation from the usual Axiom of Choice and does not necessarily hold in permutation models. (Contributed by Eric Schmidt, 16-Nov-2025.)
Hypotheses
Ref Expression
permmodel.1 𝐹:V–1-1-onto→V
permmodel.2 𝑅 = (𝐹 ∘ E )
Assertion
Ref Expression
permac8prim ((∀𝑧(𝑧𝑅𝑥 → ∃𝑤 𝑤𝑅𝑧) ∧ ∀𝑧𝑤((𝑧𝑅𝑥𝑤𝑅𝑥) → (¬ 𝑧 = 𝑤 → ∀𝑦(𝑦𝑅𝑧 → ¬ 𝑦𝑅𝑤)))) → ∃𝑦𝑧(𝑧𝑅𝑥 → ∃𝑤𝑣((𝑣𝑅𝑧𝑣𝑅𝑦) ↔ 𝑣 = 𝑤)))
Distinct variable groups:   𝑥,𝑧,𝑦,𝑤,𝑣   𝑦,𝐹,𝑧,𝑤,𝑣
Allowed substitution hints:   𝑅(𝑥,𝑦,𝑧,𝑤,𝑣)   𝐹(𝑥)

Proof of Theorem permac8prim
Dummy variables 𝑞 𝑟 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ral 3048 . . . 4 (∀𝑧 ∈ (𝐹𝑥)(𝐹𝑧) ≠ ∅ ↔ ∀𝑧(𝑧 ∈ (𝐹𝑥) → (𝐹𝑧) ≠ ∅))
2 permmodel.1 . . . . . 6 𝐹:V–1-1-onto→V
3 f1ofn 6770 . . . . . 6 (𝐹:V–1-1-onto→V → 𝐹 Fn V)
42, 3ax-mp 5 . . . . 5 𝐹 Fn V
5 ssv 3954 . . . . 5 (𝐹𝑥) ⊆ V
6 neeq1 2990 . . . . . 6 (𝑡 = (𝐹𝑧) → (𝑡 ≠ ∅ ↔ (𝐹𝑧) ≠ ∅))
76ralima 7177 . . . . 5 ((𝐹 Fn V ∧ (𝐹𝑥) ⊆ V) → (∀𝑡 ∈ (𝐹 “ (𝐹𝑥))𝑡 ≠ ∅ ↔ ∀𝑧 ∈ (𝐹𝑥)(𝐹𝑧) ≠ ∅))
84, 5, 7mp2an 692 . . . 4 (∀𝑡 ∈ (𝐹 “ (𝐹𝑥))𝑡 ≠ ∅ ↔ ∀𝑧 ∈ (𝐹𝑥)(𝐹𝑧) ≠ ∅)
9 permmodel.2 . . . . . . 7 𝑅 = (𝐹 ∘ E )
10 vex 3440 . . . . . . 7 𝑧 ∈ V
11 vex 3440 . . . . . . 7 𝑥 ∈ V
122, 9, 10, 11brpermmodel 45101 . . . . . 6 (𝑧𝑅𝑥𝑧 ∈ (𝐹𝑥))
13 vex 3440 . . . . . . . . 9 𝑤 ∈ V
142, 9, 13, 10brpermmodel 45101 . . . . . . . 8 (𝑤𝑅𝑧𝑤 ∈ (𝐹𝑧))
1514exbii 1849 . . . . . . 7 (∃𝑤 𝑤𝑅𝑧 ↔ ∃𝑤 𝑤 ∈ (𝐹𝑧))
16 n0 4302 . . . . . . 7 ((𝐹𝑧) ≠ ∅ ↔ ∃𝑤 𝑤 ∈ (𝐹𝑧))
1715, 16bitr4i 278 . . . . . 6 (∃𝑤 𝑤𝑅𝑧 ↔ (𝐹𝑧) ≠ ∅)
1812, 17imbi12i 350 . . . . 5 ((𝑧𝑅𝑥 → ∃𝑤 𝑤𝑅𝑧) ↔ (𝑧 ∈ (𝐹𝑥) → (𝐹𝑧) ≠ ∅))
1918albii 1820 . . . 4 (∀𝑧(𝑧𝑅𝑥 → ∃𝑤 𝑤𝑅𝑧) ↔ ∀𝑧(𝑧 ∈ (𝐹𝑥) → (𝐹𝑧) ≠ ∅))
201, 8, 193bitr4i 303 . . 3 (∀𝑡 ∈ (𝐹 “ (𝐹𝑥))𝑡 ≠ ∅ ↔ ∀𝑧(𝑧𝑅𝑥 → ∃𝑤 𝑤𝑅𝑧))
21 neeq2 2991 . . . . . . . . 9 (𝑞 = (𝐹𝑤) → (𝑡𝑞𝑡 ≠ (𝐹𝑤)))
22 ineq2 4163 . . . . . . . . . 10 (𝑞 = (𝐹𝑤) → (𝑡𝑞) = (𝑡 ∩ (𝐹𝑤)))
2322eqeq1d 2733 . . . . . . . . 9 (𝑞 = (𝐹𝑤) → ((𝑡𝑞) = ∅ ↔ (𝑡 ∩ (𝐹𝑤)) = ∅))
2421, 23imbi12d 344 . . . . . . . 8 (𝑞 = (𝐹𝑤) → ((𝑡𝑞 → (𝑡𝑞) = ∅) ↔ (𝑡 ≠ (𝐹𝑤) → (𝑡 ∩ (𝐹𝑤)) = ∅)))
2524ralima 7177 . . . . . . 7 ((𝐹 Fn V ∧ (𝐹𝑥) ⊆ V) → (∀𝑞 ∈ (𝐹 “ (𝐹𝑥))(𝑡𝑞 → (𝑡𝑞) = ∅) ↔ ∀𝑤 ∈ (𝐹𝑥)(𝑡 ≠ (𝐹𝑤) → (𝑡 ∩ (𝐹𝑤)) = ∅)))
264, 5, 25mp2an 692 . . . . . 6 (∀𝑞 ∈ (𝐹 “ (𝐹𝑥))(𝑡𝑞 → (𝑡𝑞) = ∅) ↔ ∀𝑤 ∈ (𝐹𝑥)(𝑡 ≠ (𝐹𝑤) → (𝑡 ∩ (𝐹𝑤)) = ∅))
2726ralbii 3078 . . . . 5 (∀𝑡 ∈ (𝐹 “ (𝐹𝑥))∀𝑞 ∈ (𝐹 “ (𝐹𝑥))(𝑡𝑞 → (𝑡𝑞) = ∅) ↔ ∀𝑡 ∈ (𝐹 “ (𝐹𝑥))∀𝑤 ∈ (𝐹𝑥)(𝑡 ≠ (𝐹𝑤) → (𝑡 ∩ (𝐹𝑤)) = ∅))
28 neeq1 2990 . . . . . . . . 9 (𝑡 = (𝐹𝑧) → (𝑡 ≠ (𝐹𝑤) ↔ (𝐹𝑧) ≠ (𝐹𝑤)))
29 ineq1 4162 . . . . . . . . . 10 (𝑡 = (𝐹𝑧) → (𝑡 ∩ (𝐹𝑤)) = ((𝐹𝑧) ∩ (𝐹𝑤)))
3029eqeq1d 2733 . . . . . . . . 9 (𝑡 = (𝐹𝑧) → ((𝑡 ∩ (𝐹𝑤)) = ∅ ↔ ((𝐹𝑧) ∩ (𝐹𝑤)) = ∅))
3128, 30imbi12d 344 . . . . . . . 8 (𝑡 = (𝐹𝑧) → ((𝑡 ≠ (𝐹𝑤) → (𝑡 ∩ (𝐹𝑤)) = ∅) ↔ ((𝐹𝑧) ≠ (𝐹𝑤) → ((𝐹𝑧) ∩ (𝐹𝑤)) = ∅)))
3231ralbidv 3155 . . . . . . 7 (𝑡 = (𝐹𝑧) → (∀𝑤 ∈ (𝐹𝑥)(𝑡 ≠ (𝐹𝑤) → (𝑡 ∩ (𝐹𝑤)) = ∅) ↔ ∀𝑤 ∈ (𝐹𝑥)((𝐹𝑧) ≠ (𝐹𝑤) → ((𝐹𝑧) ∩ (𝐹𝑤)) = ∅)))
3332ralima 7177 . . . . . 6 ((𝐹 Fn V ∧ (𝐹𝑥) ⊆ V) → (∀𝑡 ∈ (𝐹 “ (𝐹𝑥))∀𝑤 ∈ (𝐹𝑥)(𝑡 ≠ (𝐹𝑤) → (𝑡 ∩ (𝐹𝑤)) = ∅) ↔ ∀𝑧 ∈ (𝐹𝑥)∀𝑤 ∈ (𝐹𝑥)((𝐹𝑧) ≠ (𝐹𝑤) → ((𝐹𝑧) ∩ (𝐹𝑤)) = ∅)))
344, 5, 33mp2an 692 . . . . 5 (∀𝑡 ∈ (𝐹 “ (𝐹𝑥))∀𝑤 ∈ (𝐹𝑥)(𝑡 ≠ (𝐹𝑤) → (𝑡 ∩ (𝐹𝑤)) = ∅) ↔ ∀𝑧 ∈ (𝐹𝑥)∀𝑤 ∈ (𝐹𝑥)((𝐹𝑧) ≠ (𝐹𝑤) → ((𝐹𝑧) ∩ (𝐹𝑤)) = ∅))
35 r2al 3168 . . . . 5 (∀𝑧 ∈ (𝐹𝑥)∀𝑤 ∈ (𝐹𝑥)((𝐹𝑧) ≠ (𝐹𝑤) → ((𝐹𝑧) ∩ (𝐹𝑤)) = ∅) ↔ ∀𝑧𝑤((𝑧 ∈ (𝐹𝑥) ∧ 𝑤 ∈ (𝐹𝑥)) → ((𝐹𝑧) ≠ (𝐹𝑤) → ((𝐹𝑧) ∩ (𝐹𝑤)) = ∅)))
3627, 34, 353bitri 297 . . . 4 (∀𝑡 ∈ (𝐹 “ (𝐹𝑥))∀𝑞 ∈ (𝐹 “ (𝐹𝑥))(𝑡𝑞 → (𝑡𝑞) = ∅) ↔ ∀𝑧𝑤((𝑧 ∈ (𝐹𝑥) ∧ 𝑤 ∈ (𝐹𝑥)) → ((𝐹𝑧) ≠ (𝐹𝑤) → ((𝐹𝑧) ∩ (𝐹𝑤)) = ∅)))
372, 9, 13, 11brpermmodel 45101 . . . . . . 7 (𝑤𝑅𝑥𝑤 ∈ (𝐹𝑥))
3812, 37anbi12i 628 . . . . . 6 ((𝑧𝑅𝑥𝑤𝑅𝑥) ↔ (𝑧 ∈ (𝐹𝑥) ∧ 𝑤 ∈ (𝐹𝑥)))
39 df-ne 2929 . . . . . . . 8 ((𝐹𝑧) ≠ (𝐹𝑤) ↔ ¬ (𝐹𝑧) = (𝐹𝑤))
40 f1of1 6768 . . . . . . . . . . . 12 (𝐹:V–1-1-onto→V → 𝐹:V–1-1→V)
412, 40ax-mp 5 . . . . . . . . . . 11 𝐹:V–1-1→V
42 f1fveq 7202 . . . . . . . . . . 11 ((𝐹:V–1-1→V ∧ (𝑧 ∈ V ∧ 𝑤 ∈ V)) → ((𝐹𝑧) = (𝐹𝑤) ↔ 𝑧 = 𝑤))
4341, 42mpan 690 . . . . . . . . . 10 ((𝑧 ∈ V ∧ 𝑤 ∈ V) → ((𝐹𝑧) = (𝐹𝑤) ↔ 𝑧 = 𝑤))
4443el2v 3443 . . . . . . . . 9 ((𝐹𝑧) = (𝐹𝑤) ↔ 𝑧 = 𝑤)
4544notbii 320 . . . . . . . 8 (¬ (𝐹𝑧) = (𝐹𝑤) ↔ ¬ 𝑧 = 𝑤)
4639, 45bitr2i 276 . . . . . . 7 𝑧 = 𝑤 ↔ (𝐹𝑧) ≠ (𝐹𝑤))
47 vex 3440 . . . . . . . . . . 11 𝑦 ∈ V
482, 9, 47, 10brpermmodel 45101 . . . . . . . . . 10 (𝑦𝑅𝑧𝑦 ∈ (𝐹𝑧))
492, 9, 47, 13brpermmodel 45101 . . . . . . . . . . 11 (𝑦𝑅𝑤𝑦 ∈ (𝐹𝑤))
5049notbii 320 . . . . . . . . . 10 𝑦𝑅𝑤 ↔ ¬ 𝑦 ∈ (𝐹𝑤))
5148, 50imbi12i 350 . . . . . . . . 9 ((𝑦𝑅𝑧 → ¬ 𝑦𝑅𝑤) ↔ (𝑦 ∈ (𝐹𝑧) → ¬ 𝑦 ∈ (𝐹𝑤)))
5251albii 1820 . . . . . . . 8 (∀𝑦(𝑦𝑅𝑧 → ¬ 𝑦𝑅𝑤) ↔ ∀𝑦(𝑦 ∈ (𝐹𝑧) → ¬ 𝑦 ∈ (𝐹𝑤)))
53 disj1 4401 . . . . . . . 8 (((𝐹𝑧) ∩ (𝐹𝑤)) = ∅ ↔ ∀𝑦(𝑦 ∈ (𝐹𝑧) → ¬ 𝑦 ∈ (𝐹𝑤)))
5452, 53bitr4i 278 . . . . . . 7 (∀𝑦(𝑦𝑅𝑧 → ¬ 𝑦𝑅𝑤) ↔ ((𝐹𝑧) ∩ (𝐹𝑤)) = ∅)
5546, 54imbi12i 350 . . . . . 6 ((¬ 𝑧 = 𝑤 → ∀𝑦(𝑦𝑅𝑧 → ¬ 𝑦𝑅𝑤)) ↔ ((𝐹𝑧) ≠ (𝐹𝑤) → ((𝐹𝑧) ∩ (𝐹𝑤)) = ∅))
5638, 55imbi12i 350 . . . . 5 (((𝑧𝑅𝑥𝑤𝑅𝑥) → (¬ 𝑧 = 𝑤 → ∀𝑦(𝑦𝑅𝑧 → ¬ 𝑦𝑅𝑤))) ↔ ((𝑧 ∈ (𝐹𝑥) ∧ 𝑤 ∈ (𝐹𝑥)) → ((𝐹𝑧) ≠ (𝐹𝑤) → ((𝐹𝑧) ∩ (𝐹𝑤)) = ∅)))
57562albii 1821 . . . 4 (∀𝑧𝑤((𝑧𝑅𝑥𝑤𝑅𝑥) → (¬ 𝑧 = 𝑤 → ∀𝑦(𝑦𝑅𝑧 → ¬ 𝑦𝑅𝑤))) ↔ ∀𝑧𝑤((𝑧 ∈ (𝐹𝑥) ∧ 𝑤 ∈ (𝐹𝑥)) → ((𝐹𝑧) ≠ (𝐹𝑤) → ((𝐹𝑧) ∩ (𝐹𝑤)) = ∅)))
5836, 57bitr4i 278 . . 3 (∀𝑡 ∈ (𝐹 “ (𝐹𝑥))∀𝑞 ∈ (𝐹 “ (𝐹𝑥))(𝑡𝑞 → (𝑡𝑞) = ∅) ↔ ∀𝑧𝑤((𝑧𝑅𝑥𝑤𝑅𝑥) → (¬ 𝑧 = 𝑤 → ∀𝑦(𝑦𝑅𝑧 → ¬ 𝑦𝑅𝑤))))
59 f1ofun 6771 . . . . 5 (𝐹:V–1-1-onto→V → Fun 𝐹)
60 fvex 6841 . . . . . 6 (𝐹𝑥) ∈ V
6160funimaex 6575 . . . . 5 (Fun 𝐹 → (𝐹 “ (𝐹𝑥)) ∈ V)
622, 59, 61mp2b 10 . . . 4 (𝐹 “ (𝐹𝑥)) ∈ V
63 raleq 3289 . . . . . 6 (𝑟 = (𝐹 “ (𝐹𝑥)) → (∀𝑡𝑟 𝑡 ≠ ∅ ↔ ∀𝑡 ∈ (𝐹 “ (𝐹𝑥))𝑡 ≠ ∅))
64 raleq 3289 . . . . . . 7 (𝑟 = (𝐹 “ (𝐹𝑥)) → (∀𝑞𝑟 (𝑡𝑞 → (𝑡𝑞) = ∅) ↔ ∀𝑞 ∈ (𝐹 “ (𝐹𝑥))(𝑡𝑞 → (𝑡𝑞) = ∅)))
6564raleqbi1dv 3304 . . . . . 6 (𝑟 = (𝐹 “ (𝐹𝑥)) → (∀𝑡𝑟𝑞𝑟 (𝑡𝑞 → (𝑡𝑞) = ∅) ↔ ∀𝑡 ∈ (𝐹 “ (𝐹𝑥))∀𝑞 ∈ (𝐹 “ (𝐹𝑥))(𝑡𝑞 → (𝑡𝑞) = ∅)))
6663, 65anbi12d 632 . . . . 5 (𝑟 = (𝐹 “ (𝐹𝑥)) → ((∀𝑡𝑟 𝑡 ≠ ∅ ∧ ∀𝑡𝑟𝑞𝑟 (𝑡𝑞 → (𝑡𝑞) = ∅)) ↔ (∀𝑡 ∈ (𝐹 “ (𝐹𝑥))𝑡 ≠ ∅ ∧ ∀𝑡 ∈ (𝐹 “ (𝐹𝑥))∀𝑞 ∈ (𝐹 “ (𝐹𝑥))(𝑡𝑞 → (𝑡𝑞) = ∅))))
67 raleq 3289 . . . . . 6 (𝑟 = (𝐹 “ (𝐹𝑥)) → (∀𝑡𝑟 ∃!𝑣 𝑣 ∈ (𝑡𝑠) ↔ ∀𝑡 ∈ (𝐹 “ (𝐹𝑥))∃!𝑣 𝑣 ∈ (𝑡𝑠)))
6867exbidv 1922 . . . . 5 (𝑟 = (𝐹 “ (𝐹𝑥)) → (∃𝑠𝑡𝑟 ∃!𝑣 𝑣 ∈ (𝑡𝑠) ↔ ∃𝑠𝑡 ∈ (𝐹 “ (𝐹𝑥))∃!𝑣 𝑣 ∈ (𝑡𝑠)))
6966, 68imbi12d 344 . . . 4 (𝑟 = (𝐹 “ (𝐹𝑥)) → (((∀𝑡𝑟 𝑡 ≠ ∅ ∧ ∀𝑡𝑟𝑞𝑟 (𝑡𝑞 → (𝑡𝑞) = ∅)) → ∃𝑠𝑡𝑟 ∃!𝑣 𝑣 ∈ (𝑡𝑠)) ↔ ((∀𝑡 ∈ (𝐹 “ (𝐹𝑥))𝑡 ≠ ∅ ∧ ∀𝑡 ∈ (𝐹 “ (𝐹𝑥))∀𝑞 ∈ (𝐹 “ (𝐹𝑥))(𝑡𝑞 → (𝑡𝑞) = ∅)) → ∃𝑠𝑡 ∈ (𝐹 “ (𝐹𝑥))∃!𝑣 𝑣 ∈ (𝑡𝑠))))
70 ac8 10389 . . . 4 ((∀𝑡𝑟 𝑡 ≠ ∅ ∧ ∀𝑡𝑟𝑞𝑟 (𝑡𝑞 → (𝑡𝑞) = ∅)) → ∃𝑠𝑡𝑟 ∃!𝑣 𝑣 ∈ (𝑡𝑠))
7162, 69, 70vtocl 3511 . . 3 ((∀𝑡 ∈ (𝐹 “ (𝐹𝑥))𝑡 ≠ ∅ ∧ ∀𝑡 ∈ (𝐹 “ (𝐹𝑥))∀𝑞 ∈ (𝐹 “ (𝐹𝑥))(𝑡𝑞 → (𝑡𝑞) = ∅)) → ∃𝑠𝑡 ∈ (𝐹 “ (𝐹𝑥))∃!𝑣 𝑣 ∈ (𝑡𝑠))
7220, 58, 71syl2anbr 599 . 2 ((∀𝑧(𝑧𝑅𝑥 → ∃𝑤 𝑤𝑅𝑧) ∧ ∀𝑧𝑤((𝑧𝑅𝑥𝑤𝑅𝑥) → (¬ 𝑧 = 𝑤 → ∀𝑦(𝑦𝑅𝑧 → ¬ 𝑦𝑅𝑤)))) → ∃𝑠𝑡 ∈ (𝐹 “ (𝐹𝑥))∃!𝑣 𝑣 ∈ (𝑡𝑠))
73 ineq1 4162 . . . . . . . . 9 (𝑡 = (𝐹𝑧) → (𝑡𝑠) = ((𝐹𝑧) ∩ 𝑠))
7473eleq2d 2817 . . . . . . . 8 (𝑡 = (𝐹𝑧) → (𝑣 ∈ (𝑡𝑠) ↔ 𝑣 ∈ ((𝐹𝑧) ∩ 𝑠)))
7574eubidv 2581 . . . . . . 7 (𝑡 = (𝐹𝑧) → (∃!𝑣 𝑣 ∈ (𝑡𝑠) ↔ ∃!𝑣 𝑣 ∈ ((𝐹𝑧) ∩ 𝑠)))
7675ralima 7177 . . . . . 6 ((𝐹 Fn V ∧ (𝐹𝑥) ⊆ V) → (∀𝑡 ∈ (𝐹 “ (𝐹𝑥))∃!𝑣 𝑣 ∈ (𝑡𝑠) ↔ ∀𝑧 ∈ (𝐹𝑥)∃!𝑣 𝑣 ∈ ((𝐹𝑧) ∩ 𝑠)))
774, 5, 76mp2an 692 . . . . 5 (∀𝑡 ∈ (𝐹 “ (𝐹𝑥))∃!𝑣 𝑣 ∈ (𝑡𝑠) ↔ ∀𝑧 ∈ (𝐹𝑥)∃!𝑣 𝑣 ∈ ((𝐹𝑧) ∩ 𝑠))
78 df-ral 3048 . . . . 5 (∀𝑧 ∈ (𝐹𝑥)∃!𝑣 𝑣 ∈ ((𝐹𝑧) ∩ 𝑠) ↔ ∀𝑧(𝑧 ∈ (𝐹𝑥) → ∃!𝑣 𝑣 ∈ ((𝐹𝑧) ∩ 𝑠)))
7977, 78bitri 275 . . . 4 (∀𝑡 ∈ (𝐹 “ (𝐹𝑥))∃!𝑣 𝑣 ∈ (𝑡𝑠) ↔ ∀𝑧(𝑧 ∈ (𝐹𝑥) → ∃!𝑣 𝑣 ∈ ((𝐹𝑧) ∩ 𝑠)))
80 fvex 6841 . . . . 5 (𝐹𝑠) ∈ V
8112a1i 11 . . . . . . 7 (𝑦 = (𝐹𝑠) → (𝑧𝑅𝑥𝑧 ∈ (𝐹𝑥)))
82 vex 3440 . . . . . . . . . . . . . 14 𝑣 ∈ V
832, 9, 82, 10brpermmodel 45101 . . . . . . . . . . . . 13 (𝑣𝑅𝑧𝑣 ∈ (𝐹𝑧))
8483a1i 11 . . . . . . . . . . . 12 (𝑦 = (𝐹𝑠) → (𝑣𝑅𝑧𝑣 ∈ (𝐹𝑧)))
85 breq2 5097 . . . . . . . . . . . . 13 (𝑦 = (𝐹𝑠) → (𝑣𝑅𝑦𝑣𝑅(𝐹𝑠)))
86 vex 3440 . . . . . . . . . . . . . 14 𝑠 ∈ V
872, 9, 82, 86brpermmodelcnv 45102 . . . . . . . . . . . . 13 (𝑣𝑅(𝐹𝑠) ↔ 𝑣𝑠)
8885, 87bitrdi 287 . . . . . . . . . . . 12 (𝑦 = (𝐹𝑠) → (𝑣𝑅𝑦𝑣𝑠))
8984, 88anbi12d 632 . . . . . . . . . . 11 (𝑦 = (𝐹𝑠) → ((𝑣𝑅𝑧𝑣𝑅𝑦) ↔ (𝑣 ∈ (𝐹𝑧) ∧ 𝑣𝑠)))
9089bibi1d 343 . . . . . . . . . 10 (𝑦 = (𝐹𝑠) → (((𝑣𝑅𝑧𝑣𝑅𝑦) ↔ 𝑣 = 𝑤) ↔ ((𝑣 ∈ (𝐹𝑧) ∧ 𝑣𝑠) ↔ 𝑣 = 𝑤)))
9190albidv 1921 . . . . . . . . 9 (𝑦 = (𝐹𝑠) → (∀𝑣((𝑣𝑅𝑧𝑣𝑅𝑦) ↔ 𝑣 = 𝑤) ↔ ∀𝑣((𝑣 ∈ (𝐹𝑧) ∧ 𝑣𝑠) ↔ 𝑣 = 𝑤)))
9291exbidv 1922 . . . . . . . 8 (𝑦 = (𝐹𝑠) → (∃𝑤𝑣((𝑣𝑅𝑧𝑣𝑅𝑦) ↔ 𝑣 = 𝑤) ↔ ∃𝑤𝑣((𝑣 ∈ (𝐹𝑧) ∧ 𝑣𝑠) ↔ 𝑣 = 𝑤)))
93 elin 3913 . . . . . . . . . 10 (𝑣 ∈ ((𝐹𝑧) ∩ 𝑠) ↔ (𝑣 ∈ (𝐹𝑧) ∧ 𝑣𝑠))
9493eubii 2580 . . . . . . . . 9 (∃!𝑣 𝑣 ∈ ((𝐹𝑧) ∩ 𝑠) ↔ ∃!𝑣(𝑣 ∈ (𝐹𝑧) ∧ 𝑣𝑠))
95 eu6 2569 . . . . . . . . 9 (∃!𝑣(𝑣 ∈ (𝐹𝑧) ∧ 𝑣𝑠) ↔ ∃𝑤𝑣((𝑣 ∈ (𝐹𝑧) ∧ 𝑣𝑠) ↔ 𝑣 = 𝑤))
9694, 95bitri 275 . . . . . . . 8 (∃!𝑣 𝑣 ∈ ((𝐹𝑧) ∩ 𝑠) ↔ ∃𝑤𝑣((𝑣 ∈ (𝐹𝑧) ∧ 𝑣𝑠) ↔ 𝑣 = 𝑤))
9792, 96bitr4di 289 . . . . . . 7 (𝑦 = (𝐹𝑠) → (∃𝑤𝑣((𝑣𝑅𝑧𝑣𝑅𝑦) ↔ 𝑣 = 𝑤) ↔ ∃!𝑣 𝑣 ∈ ((𝐹𝑧) ∩ 𝑠)))
9881, 97imbi12d 344 . . . . . 6 (𝑦 = (𝐹𝑠) → ((𝑧𝑅𝑥 → ∃𝑤𝑣((𝑣𝑅𝑧𝑣𝑅𝑦) ↔ 𝑣 = 𝑤)) ↔ (𝑧 ∈ (𝐹𝑥) → ∃!𝑣 𝑣 ∈ ((𝐹𝑧) ∩ 𝑠))))
9998albidv 1921 . . . . 5 (𝑦 = (𝐹𝑠) → (∀𝑧(𝑧𝑅𝑥 → ∃𝑤𝑣((𝑣𝑅𝑧𝑣𝑅𝑦) ↔ 𝑣 = 𝑤)) ↔ ∀𝑧(𝑧 ∈ (𝐹𝑥) → ∃!𝑣 𝑣 ∈ ((𝐹𝑧) ∩ 𝑠))))
10080, 99spcev 3556 . . . 4 (∀𝑧(𝑧 ∈ (𝐹𝑥) → ∃!𝑣 𝑣 ∈ ((𝐹𝑧) ∩ 𝑠)) → ∃𝑦𝑧(𝑧𝑅𝑥 → ∃𝑤𝑣((𝑣𝑅𝑧𝑣𝑅𝑦) ↔ 𝑣 = 𝑤)))
10179, 100sylbi 217 . . 3 (∀𝑡 ∈ (𝐹 “ (𝐹𝑥))∃!𝑣 𝑣 ∈ (𝑡𝑠) → ∃𝑦𝑧(𝑧𝑅𝑥 → ∃𝑤𝑣((𝑣𝑅𝑧𝑣𝑅𝑦) ↔ 𝑣 = 𝑤)))
102101exlimiv 1931 . 2 (∃𝑠𝑡 ∈ (𝐹 “ (𝐹𝑥))∃!𝑣 𝑣 ∈ (𝑡𝑠) → ∃𝑦𝑧(𝑧𝑅𝑥 → ∃𝑤𝑣((𝑣𝑅𝑧𝑣𝑅𝑦) ↔ 𝑣 = 𝑤)))
10372, 102syl 17 1 ((∀𝑧(𝑧𝑅𝑥 → ∃𝑤 𝑤𝑅𝑧) ∧ ∀𝑧𝑤((𝑧𝑅𝑥𝑤𝑅𝑥) → (¬ 𝑧 = 𝑤 → ∀𝑦(𝑦𝑅𝑧 → ¬ 𝑦𝑅𝑤)))) → ∃𝑦𝑧(𝑧𝑅𝑥 → ∃𝑤𝑣((𝑣𝑅𝑧𝑣𝑅𝑦) ↔ 𝑣 = 𝑤)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1539   = wceq 1541  wex 1780  wcel 2111  ∃!weu 2563  wne 2928  wral 3047  Vcvv 3436  cin 3896  wss 3897  c0 4282   class class class wbr 5093   E cep 5518  ccnv 5618  cima 5622  ccom 5623  Fun wfun 6481   Fn wfn 6482  1-1wf1 6484  1-1-ontowf1o 6486  cfv 6487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-ac2 10360
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-eprel 5519  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-ac 10013
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator