Proof of Theorem permaxinf2lem
| Step | Hyp | Ref
| Expression |
| 1 | | fvex 6885 |
. 2
⊢ (◡𝐹‘𝑍) ∈ V |
| 2 | | breq2 5120 |
. . . . 5
⊢ (𝑥 = (◡𝐹‘𝑍) → (𝑦𝑅𝑥 ↔ 𝑦𝑅(◡𝐹‘𝑍))) |
| 3 | 2 | anbi1d 631 |
. . . 4
⊢ (𝑥 = (◡𝐹‘𝑍) → ((𝑦𝑅𝑥 ∧ ∀𝑧 ¬ 𝑧𝑅𝑦) ↔ (𝑦𝑅(◡𝐹‘𝑍) ∧ ∀𝑧 ¬ 𝑧𝑅𝑦))) |
| 4 | 3 | exbidv 1920 |
. . 3
⊢ (𝑥 = (◡𝐹‘𝑍) → (∃𝑦(𝑦𝑅𝑥 ∧ ∀𝑧 ¬ 𝑧𝑅𝑦) ↔ ∃𝑦(𝑦𝑅(◡𝐹‘𝑍) ∧ ∀𝑧 ¬ 𝑧𝑅𝑦))) |
| 5 | | breq2 5120 |
. . . . . . 7
⊢ (𝑥 = (◡𝐹‘𝑍) → (𝑧𝑅𝑥 ↔ 𝑧𝑅(◡𝐹‘𝑍))) |
| 6 | 5 | anbi1d 631 |
. . . . . 6
⊢ (𝑥 = (◡𝐹‘𝑍) → ((𝑧𝑅𝑥 ∧ ∀𝑤(𝑤𝑅𝑧 ↔ (𝑤𝑅𝑦 ∨ 𝑤 = 𝑦))) ↔ (𝑧𝑅(◡𝐹‘𝑍) ∧ ∀𝑤(𝑤𝑅𝑧 ↔ (𝑤𝑅𝑦 ∨ 𝑤 = 𝑦))))) |
| 7 | 6 | exbidv 1920 |
. . . . 5
⊢ (𝑥 = (◡𝐹‘𝑍) → (∃𝑧(𝑧𝑅𝑥 ∧ ∀𝑤(𝑤𝑅𝑧 ↔ (𝑤𝑅𝑦 ∨ 𝑤 = 𝑦))) ↔ ∃𝑧(𝑧𝑅(◡𝐹‘𝑍) ∧ ∀𝑤(𝑤𝑅𝑧 ↔ (𝑤𝑅𝑦 ∨ 𝑤 = 𝑦))))) |
| 8 | 2, 7 | imbi12d 344 |
. . . 4
⊢ (𝑥 = (◡𝐹‘𝑍) → ((𝑦𝑅𝑥 → ∃𝑧(𝑧𝑅𝑥 ∧ ∀𝑤(𝑤𝑅𝑧 ↔ (𝑤𝑅𝑦 ∨ 𝑤 = 𝑦)))) ↔ (𝑦𝑅(◡𝐹‘𝑍) → ∃𝑧(𝑧𝑅(◡𝐹‘𝑍) ∧ ∀𝑤(𝑤𝑅𝑧 ↔ (𝑤𝑅𝑦 ∨ 𝑤 = 𝑦)))))) |
| 9 | 8 | albidv 1919 |
. . 3
⊢ (𝑥 = (◡𝐹‘𝑍) → (∀𝑦(𝑦𝑅𝑥 → ∃𝑧(𝑧𝑅𝑥 ∧ ∀𝑤(𝑤𝑅𝑧 ↔ (𝑤𝑅𝑦 ∨ 𝑤 = 𝑦)))) ↔ ∀𝑦(𝑦𝑅(◡𝐹‘𝑍) → ∃𝑧(𝑧𝑅(◡𝐹‘𝑍) ∧ ∀𝑤(𝑤𝑅𝑧 ↔ (𝑤𝑅𝑦 ∨ 𝑤 = 𝑦)))))) |
| 10 | 4, 9 | anbi12d 632 |
. 2
⊢ (𝑥 = (◡𝐹‘𝑍) → ((∃𝑦(𝑦𝑅𝑥 ∧ ∀𝑧 ¬ 𝑧𝑅𝑦) ∧ ∀𝑦(𝑦𝑅𝑥 → ∃𝑧(𝑧𝑅𝑥 ∧ ∀𝑤(𝑤𝑅𝑧 ↔ (𝑤𝑅𝑦 ∨ 𝑤 = 𝑦))))) ↔ (∃𝑦(𝑦𝑅(◡𝐹‘𝑍) ∧ ∀𝑧 ¬ 𝑧𝑅𝑦) ∧ ∀𝑦(𝑦𝑅(◡𝐹‘𝑍) → ∃𝑧(𝑧𝑅(◡𝐹‘𝑍) ∧ ∀𝑤(𝑤𝑅𝑧 ↔ (𝑤𝑅𝑦 ∨ 𝑤 = 𝑦))))))) |
| 11 | | fvex 6885 |
. . . 4
⊢ (◡𝐹‘∅) ∈ V |
| 12 | | breq1 5119 |
. . . . 5
⊢ (𝑦 = (◡𝐹‘∅) → (𝑦𝑅(◡𝐹‘𝑍) ↔ (◡𝐹‘∅)𝑅(◡𝐹‘𝑍))) |
| 13 | | breq2 5120 |
. . . . . . 7
⊢ (𝑦 = (◡𝐹‘∅) → (𝑧𝑅𝑦 ↔ 𝑧𝑅(◡𝐹‘∅))) |
| 14 | 13 | notbid 318 |
. . . . . 6
⊢ (𝑦 = (◡𝐹‘∅) → (¬ 𝑧𝑅𝑦 ↔ ¬ 𝑧𝑅(◡𝐹‘∅))) |
| 15 | 14 | albidv 1919 |
. . . . 5
⊢ (𝑦 = (◡𝐹‘∅) → (∀𝑧 ¬ 𝑧𝑅𝑦 ↔ ∀𝑧 ¬ 𝑧𝑅(◡𝐹‘∅))) |
| 16 | 12, 15 | anbi12d 632 |
. . . 4
⊢ (𝑦 = (◡𝐹‘∅) → ((𝑦𝑅(◡𝐹‘𝑍) ∧ ∀𝑧 ¬ 𝑧𝑅𝑦) ↔ ((◡𝐹‘∅)𝑅(◡𝐹‘𝑍) ∧ ∀𝑧 ¬ 𝑧𝑅(◡𝐹‘∅)))) |
| 17 | | orbitinit 44908 |
. . . . . . . 8
⊢ ((◡𝐹‘∅) ∈ V → (◡𝐹‘∅) ∈ (rec((𝑣 ∈ V ↦ (◡𝐹‘((𝐹‘𝑣) ∪ {𝑣}))), (◡𝐹‘∅)) “
ω)) |
| 18 | | permaxinf2lem.3 |
. . . . . . . 8
⊢ 𝑍 = (rec((𝑣 ∈ V ↦ (◡𝐹‘((𝐹‘𝑣) ∪ {𝑣}))), (◡𝐹‘∅)) “
ω) |
| 19 | 17, 18 | eleqtrrdi 2844 |
. . . . . . 7
⊢ ((◡𝐹‘∅) ∈ V → (◡𝐹‘∅) ∈ 𝑍) |
| 20 | 11, 19 | ax-mp 5 |
. . . . . 6
⊢ (◡𝐹‘∅) ∈ 𝑍 |
| 21 | | permmodel.1 |
. . . . . . 7
⊢ 𝐹:V–1-1-onto→V |
| 22 | | permmodel.2 |
. . . . . . 7
⊢ 𝑅 = (◡𝐹 ∘ E ) |
| 23 | | orbitex 44907 |
. . . . . . . 8
⊢
(rec((𝑣 ∈ V
↦ (◡𝐹‘((𝐹‘𝑣) ∪ {𝑣}))), (◡𝐹‘∅)) “ ω) ∈
V |
| 24 | 18, 23 | eqeltri 2829 |
. . . . . . 7
⊢ 𝑍 ∈ V |
| 25 | 21, 22, 11, 24 | brpermmodelcnv 44956 |
. . . . . 6
⊢ ((◡𝐹‘∅)𝑅(◡𝐹‘𝑍) ↔ (◡𝐹‘∅) ∈ 𝑍) |
| 26 | 20, 25 | mpbir 231 |
. . . . 5
⊢ (◡𝐹‘∅)𝑅(◡𝐹‘𝑍) |
| 27 | | noel 4311 |
. . . . . . 7
⊢ ¬
𝑧 ∈
∅ |
| 28 | | vex 3461 |
. . . . . . . 8
⊢ 𝑧 ∈ V |
| 29 | | 0ex 5274 |
. . . . . . . 8
⊢ ∅
∈ V |
| 30 | 21, 22, 28, 29 | brpermmodelcnv 44956 |
. . . . . . 7
⊢ (𝑧𝑅(◡𝐹‘∅) ↔ 𝑧 ∈ ∅) |
| 31 | 27, 30 | mtbir 323 |
. . . . . 6
⊢ ¬
𝑧𝑅(◡𝐹‘∅) |
| 32 | 31 | ax-gen 1794 |
. . . . 5
⊢
∀𝑧 ¬
𝑧𝑅(◡𝐹‘∅) |
| 33 | 26, 32 | pm3.2i 470 |
. . . 4
⊢ ((◡𝐹‘∅)𝑅(◡𝐹‘𝑍) ∧ ∀𝑧 ¬ 𝑧𝑅(◡𝐹‘∅)) |
| 34 | 11, 16, 33 | ceqsexv2d 3510 |
. . 3
⊢
∃𝑦(𝑦𝑅(◡𝐹‘𝑍) ∧ ∀𝑧 ¬ 𝑧𝑅𝑦) |
| 35 | | fvex 6885 |
. . . . . . 7
⊢ (◡𝐹‘((𝐹‘𝑦) ∪ {𝑦})) ∈ V |
| 36 | | nfcv 2897 |
. . . . . . . 8
⊢
Ⅎ𝑣𝑦 |
| 37 | | nfcv 2897 |
. . . . . . . 8
⊢
Ⅎ𝑣(◡𝐹‘((𝐹‘𝑦) ∪ {𝑦})) |
| 38 | | fveq2 6872 |
. . . . . . . . . 10
⊢ (𝑣 = 𝑦 → (𝐹‘𝑣) = (𝐹‘𝑦)) |
| 39 | | sneq 4609 |
. . . . . . . . . 10
⊢ (𝑣 = 𝑦 → {𝑣} = {𝑦}) |
| 40 | 38, 39 | uneq12d 4142 |
. . . . . . . . 9
⊢ (𝑣 = 𝑦 → ((𝐹‘𝑣) ∪ {𝑣}) = ((𝐹‘𝑦) ∪ {𝑦})) |
| 41 | 40 | fveq2d 6876 |
. . . . . . . 8
⊢ (𝑣 = 𝑦 → (◡𝐹‘((𝐹‘𝑣) ∪ {𝑣})) = (◡𝐹‘((𝐹‘𝑦) ∪ {𝑦}))) |
| 42 | 36, 37, 18, 41 | orbitclmpt 44910 |
. . . . . . 7
⊢ ((𝑦 ∈ 𝑍 ∧ (◡𝐹‘((𝐹‘𝑦) ∪ {𝑦})) ∈ V) → (◡𝐹‘((𝐹‘𝑦) ∪ {𝑦})) ∈ 𝑍) |
| 43 | 35, 42 | mpan2 691 |
. . . . . 6
⊢ (𝑦 ∈ 𝑍 → (◡𝐹‘((𝐹‘𝑦) ∪ {𝑦})) ∈ 𝑍) |
| 44 | | vex 3461 |
. . . . . . 7
⊢ 𝑦 ∈ V |
| 45 | 21, 22, 44, 24 | brpermmodelcnv 44956 |
. . . . . 6
⊢ (𝑦𝑅(◡𝐹‘𝑍) ↔ 𝑦 ∈ 𝑍) |
| 46 | 21, 22, 35, 24 | brpermmodelcnv 44956 |
. . . . . 6
⊢ ((◡𝐹‘((𝐹‘𝑦) ∪ {𝑦}))𝑅(◡𝐹‘𝑍) ↔ (◡𝐹‘((𝐹‘𝑦) ∪ {𝑦})) ∈ 𝑍) |
| 47 | 43, 45, 46 | 3imtr4i 292 |
. . . . 5
⊢ (𝑦𝑅(◡𝐹‘𝑍) → (◡𝐹‘((𝐹‘𝑦) ∪ {𝑦}))𝑅(◡𝐹‘𝑍)) |
| 48 | | vex 3461 |
. . . . . . . 8
⊢ 𝑤 ∈ V |
| 49 | | fvex 6885 |
. . . . . . . . 9
⊢ (𝐹‘𝑦) ∈ V |
| 50 | | vsnex 5401 |
. . . . . . . . 9
⊢ {𝑦} ∈ V |
| 51 | 49, 50 | unex 7732 |
. . . . . . . 8
⊢ ((𝐹‘𝑦) ∪ {𝑦}) ∈ V |
| 52 | 21, 22, 48, 51 | brpermmodelcnv 44956 |
. . . . . . 7
⊢ (𝑤𝑅(◡𝐹‘((𝐹‘𝑦) ∪ {𝑦})) ↔ 𝑤 ∈ ((𝐹‘𝑦) ∪ {𝑦})) |
| 53 | | elun 4126 |
. . . . . . 7
⊢ (𝑤 ∈ ((𝐹‘𝑦) ∪ {𝑦}) ↔ (𝑤 ∈ (𝐹‘𝑦) ∨ 𝑤 ∈ {𝑦})) |
| 54 | 21, 22, 48, 44 | brpermmodel 44955 |
. . . . . . . . 9
⊢ (𝑤𝑅𝑦 ↔ 𝑤 ∈ (𝐹‘𝑦)) |
| 55 | 54 | bicomi 224 |
. . . . . . . 8
⊢ (𝑤 ∈ (𝐹‘𝑦) ↔ 𝑤𝑅𝑦) |
| 56 | | velsn 4615 |
. . . . . . . 8
⊢ (𝑤 ∈ {𝑦} ↔ 𝑤 = 𝑦) |
| 57 | 55, 56 | orbi12i 914 |
. . . . . . 7
⊢ ((𝑤 ∈ (𝐹‘𝑦) ∨ 𝑤 ∈ {𝑦}) ↔ (𝑤𝑅𝑦 ∨ 𝑤 = 𝑦)) |
| 58 | 52, 53, 57 | 3bitri 297 |
. . . . . 6
⊢ (𝑤𝑅(◡𝐹‘((𝐹‘𝑦) ∪ {𝑦})) ↔ (𝑤𝑅𝑦 ∨ 𝑤 = 𝑦)) |
| 59 | 58 | ax-gen 1794 |
. . . . 5
⊢
∀𝑤(𝑤𝑅(◡𝐹‘((𝐹‘𝑦) ∪ {𝑦})) ↔ (𝑤𝑅𝑦 ∨ 𝑤 = 𝑦)) |
| 60 | | breq1 5119 |
. . . . . . 7
⊢ (𝑧 = (◡𝐹‘((𝐹‘𝑦) ∪ {𝑦})) → (𝑧𝑅(◡𝐹‘𝑍) ↔ (◡𝐹‘((𝐹‘𝑦) ∪ {𝑦}))𝑅(◡𝐹‘𝑍))) |
| 61 | | breq2 5120 |
. . . . . . . . 9
⊢ (𝑧 = (◡𝐹‘((𝐹‘𝑦) ∪ {𝑦})) → (𝑤𝑅𝑧 ↔ 𝑤𝑅(◡𝐹‘((𝐹‘𝑦) ∪ {𝑦})))) |
| 62 | 61 | bibi1d 343 |
. . . . . . . 8
⊢ (𝑧 = (◡𝐹‘((𝐹‘𝑦) ∪ {𝑦})) → ((𝑤𝑅𝑧 ↔ (𝑤𝑅𝑦 ∨ 𝑤 = 𝑦)) ↔ (𝑤𝑅(◡𝐹‘((𝐹‘𝑦) ∪ {𝑦})) ↔ (𝑤𝑅𝑦 ∨ 𝑤 = 𝑦)))) |
| 63 | 62 | albidv 1919 |
. . . . . . 7
⊢ (𝑧 = (◡𝐹‘((𝐹‘𝑦) ∪ {𝑦})) → (∀𝑤(𝑤𝑅𝑧 ↔ (𝑤𝑅𝑦 ∨ 𝑤 = 𝑦)) ↔ ∀𝑤(𝑤𝑅(◡𝐹‘((𝐹‘𝑦) ∪ {𝑦})) ↔ (𝑤𝑅𝑦 ∨ 𝑤 = 𝑦)))) |
| 64 | 60, 63 | anbi12d 632 |
. . . . . 6
⊢ (𝑧 = (◡𝐹‘((𝐹‘𝑦) ∪ {𝑦})) → ((𝑧𝑅(◡𝐹‘𝑍) ∧ ∀𝑤(𝑤𝑅𝑧 ↔ (𝑤𝑅𝑦 ∨ 𝑤 = 𝑦))) ↔ ((◡𝐹‘((𝐹‘𝑦) ∪ {𝑦}))𝑅(◡𝐹‘𝑍) ∧ ∀𝑤(𝑤𝑅(◡𝐹‘((𝐹‘𝑦) ∪ {𝑦})) ↔ (𝑤𝑅𝑦 ∨ 𝑤 = 𝑦))))) |
| 65 | 35, 64 | spcev 3583 |
. . . . 5
⊢ (((◡𝐹‘((𝐹‘𝑦) ∪ {𝑦}))𝑅(◡𝐹‘𝑍) ∧ ∀𝑤(𝑤𝑅(◡𝐹‘((𝐹‘𝑦) ∪ {𝑦})) ↔ (𝑤𝑅𝑦 ∨ 𝑤 = 𝑦))) → ∃𝑧(𝑧𝑅(◡𝐹‘𝑍) ∧ ∀𝑤(𝑤𝑅𝑧 ↔ (𝑤𝑅𝑦 ∨ 𝑤 = 𝑦)))) |
| 66 | 47, 59, 65 | sylancl 586 |
. . . 4
⊢ (𝑦𝑅(◡𝐹‘𝑍) → ∃𝑧(𝑧𝑅(◡𝐹‘𝑍) ∧ ∀𝑤(𝑤𝑅𝑧 ↔ (𝑤𝑅𝑦 ∨ 𝑤 = 𝑦)))) |
| 67 | 66 | ax-gen 1794 |
. . 3
⊢
∀𝑦(𝑦𝑅(◡𝐹‘𝑍) → ∃𝑧(𝑧𝑅(◡𝐹‘𝑍) ∧ ∀𝑤(𝑤𝑅𝑧 ↔ (𝑤𝑅𝑦 ∨ 𝑤 = 𝑦)))) |
| 68 | 34, 67 | pm3.2i 470 |
. 2
⊢
(∃𝑦(𝑦𝑅(◡𝐹‘𝑍) ∧ ∀𝑧 ¬ 𝑧𝑅𝑦) ∧ ∀𝑦(𝑦𝑅(◡𝐹‘𝑍) → ∃𝑧(𝑧𝑅(◡𝐹‘𝑍) ∧ ∀𝑤(𝑤𝑅𝑧 ↔ (𝑤𝑅𝑦 ∨ 𝑤 = 𝑦))))) |
| 69 | 1, 10, 68 | ceqsexv2d 3510 |
1
⊢
∃𝑥(∃𝑦(𝑦𝑅𝑥 ∧ ∀𝑧 ¬ 𝑧𝑅𝑦) ∧ ∀𝑦(𝑦𝑅𝑥 → ∃𝑧(𝑧𝑅𝑥 ∧ ∀𝑤(𝑤𝑅𝑧 ↔ (𝑤𝑅𝑦 ∨ 𝑤 = 𝑦))))) |