Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  permaxinf2lem Structured version   Visualization version   GIF version

Theorem permaxinf2lem 44995
Description: Lemma for permaxinf2 44996. (Contributed by Eric Schmidt, 6-Nov-2025.)
Hypotheses
Ref Expression
permmodel.1 𝐹:V–1-1-onto→V
permmodel.2 𝑅 = (𝐹 ∘ E )
permaxinf2lem.3 𝑍 = (rec((𝑣 ∈ V ↦ (𝐹‘((𝐹𝑣) ∪ {𝑣}))), (𝐹‘∅)) “ ω)
Assertion
Ref Expression
permaxinf2lem 𝑥(∃𝑦(𝑦𝑅𝑥 ∧ ∀𝑧 ¬ 𝑧𝑅𝑦) ∧ ∀𝑦(𝑦𝑅𝑥 → ∃𝑧(𝑧𝑅𝑥 ∧ ∀𝑤(𝑤𝑅𝑧 ↔ (𝑤𝑅𝑦𝑤 = 𝑦)))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤,𝑣,𝐹   𝑧,𝑅   𝑥,𝑍,𝑦,𝑧
Allowed substitution hints:   𝑅(𝑥,𝑦,𝑤,𝑣)   𝑍(𝑤,𝑣)

Proof of Theorem permaxinf2lem
StepHypRef Expression
1 fvex 6873 . 2 (𝐹𝑍) ∈ V
2 breq2 5113 . . . . 5 (𝑥 = (𝐹𝑍) → (𝑦𝑅𝑥𝑦𝑅(𝐹𝑍)))
32anbi1d 631 . . . 4 (𝑥 = (𝐹𝑍) → ((𝑦𝑅𝑥 ∧ ∀𝑧 ¬ 𝑧𝑅𝑦) ↔ (𝑦𝑅(𝐹𝑍) ∧ ∀𝑧 ¬ 𝑧𝑅𝑦)))
43exbidv 1921 . . 3 (𝑥 = (𝐹𝑍) → (∃𝑦(𝑦𝑅𝑥 ∧ ∀𝑧 ¬ 𝑧𝑅𝑦) ↔ ∃𝑦(𝑦𝑅(𝐹𝑍) ∧ ∀𝑧 ¬ 𝑧𝑅𝑦)))
5 breq2 5113 . . . . . . 7 (𝑥 = (𝐹𝑍) → (𝑧𝑅𝑥𝑧𝑅(𝐹𝑍)))
65anbi1d 631 . . . . . 6 (𝑥 = (𝐹𝑍) → ((𝑧𝑅𝑥 ∧ ∀𝑤(𝑤𝑅𝑧 ↔ (𝑤𝑅𝑦𝑤 = 𝑦))) ↔ (𝑧𝑅(𝐹𝑍) ∧ ∀𝑤(𝑤𝑅𝑧 ↔ (𝑤𝑅𝑦𝑤 = 𝑦)))))
76exbidv 1921 . . . . 5 (𝑥 = (𝐹𝑍) → (∃𝑧(𝑧𝑅𝑥 ∧ ∀𝑤(𝑤𝑅𝑧 ↔ (𝑤𝑅𝑦𝑤 = 𝑦))) ↔ ∃𝑧(𝑧𝑅(𝐹𝑍) ∧ ∀𝑤(𝑤𝑅𝑧 ↔ (𝑤𝑅𝑦𝑤 = 𝑦)))))
82, 7imbi12d 344 . . . 4 (𝑥 = (𝐹𝑍) → ((𝑦𝑅𝑥 → ∃𝑧(𝑧𝑅𝑥 ∧ ∀𝑤(𝑤𝑅𝑧 ↔ (𝑤𝑅𝑦𝑤 = 𝑦)))) ↔ (𝑦𝑅(𝐹𝑍) → ∃𝑧(𝑧𝑅(𝐹𝑍) ∧ ∀𝑤(𝑤𝑅𝑧 ↔ (𝑤𝑅𝑦𝑤 = 𝑦))))))
98albidv 1920 . . 3 (𝑥 = (𝐹𝑍) → (∀𝑦(𝑦𝑅𝑥 → ∃𝑧(𝑧𝑅𝑥 ∧ ∀𝑤(𝑤𝑅𝑧 ↔ (𝑤𝑅𝑦𝑤 = 𝑦)))) ↔ ∀𝑦(𝑦𝑅(𝐹𝑍) → ∃𝑧(𝑧𝑅(𝐹𝑍) ∧ ∀𝑤(𝑤𝑅𝑧 ↔ (𝑤𝑅𝑦𝑤 = 𝑦))))))
104, 9anbi12d 632 . 2 (𝑥 = (𝐹𝑍) → ((∃𝑦(𝑦𝑅𝑥 ∧ ∀𝑧 ¬ 𝑧𝑅𝑦) ∧ ∀𝑦(𝑦𝑅𝑥 → ∃𝑧(𝑧𝑅𝑥 ∧ ∀𝑤(𝑤𝑅𝑧 ↔ (𝑤𝑅𝑦𝑤 = 𝑦))))) ↔ (∃𝑦(𝑦𝑅(𝐹𝑍) ∧ ∀𝑧 ¬ 𝑧𝑅𝑦) ∧ ∀𝑦(𝑦𝑅(𝐹𝑍) → ∃𝑧(𝑧𝑅(𝐹𝑍) ∧ ∀𝑤(𝑤𝑅𝑧 ↔ (𝑤𝑅𝑦𝑤 = 𝑦)))))))
11 fvex 6873 . . . 4 (𝐹‘∅) ∈ V
12 breq1 5112 . . . . 5 (𝑦 = (𝐹‘∅) → (𝑦𝑅(𝐹𝑍) ↔ (𝐹‘∅)𝑅(𝐹𝑍)))
13 breq2 5113 . . . . . . 7 (𝑦 = (𝐹‘∅) → (𝑧𝑅𝑦𝑧𝑅(𝐹‘∅)))
1413notbid 318 . . . . . 6 (𝑦 = (𝐹‘∅) → (¬ 𝑧𝑅𝑦 ↔ ¬ 𝑧𝑅(𝐹‘∅)))
1514albidv 1920 . . . . 5 (𝑦 = (𝐹‘∅) → (∀𝑧 ¬ 𝑧𝑅𝑦 ↔ ∀𝑧 ¬ 𝑧𝑅(𝐹‘∅)))
1612, 15anbi12d 632 . . . 4 (𝑦 = (𝐹‘∅) → ((𝑦𝑅(𝐹𝑍) ∧ ∀𝑧 ¬ 𝑧𝑅𝑦) ↔ ((𝐹‘∅)𝑅(𝐹𝑍) ∧ ∀𝑧 ¬ 𝑧𝑅(𝐹‘∅))))
17 orbitinit 44939 . . . . . . . 8 ((𝐹‘∅) ∈ V → (𝐹‘∅) ∈ (rec((𝑣 ∈ V ↦ (𝐹‘((𝐹𝑣) ∪ {𝑣}))), (𝐹‘∅)) “ ω))
18 permaxinf2lem.3 . . . . . . . 8 𝑍 = (rec((𝑣 ∈ V ↦ (𝐹‘((𝐹𝑣) ∪ {𝑣}))), (𝐹‘∅)) “ ω)
1917, 18eleqtrrdi 2840 . . . . . . 7 ((𝐹‘∅) ∈ V → (𝐹‘∅) ∈ 𝑍)
2011, 19ax-mp 5 . . . . . 6 (𝐹‘∅) ∈ 𝑍
21 permmodel.1 . . . . . . 7 𝐹:V–1-1-onto→V
22 permmodel.2 . . . . . . 7 𝑅 = (𝐹 ∘ E )
23 orbitex 44938 . . . . . . . 8 (rec((𝑣 ∈ V ↦ (𝐹‘((𝐹𝑣) ∪ {𝑣}))), (𝐹‘∅)) “ ω) ∈ V
2418, 23eqeltri 2825 . . . . . . 7 𝑍 ∈ V
2521, 22, 11, 24brpermmodelcnv 44987 . . . . . 6 ((𝐹‘∅)𝑅(𝐹𝑍) ↔ (𝐹‘∅) ∈ 𝑍)
2620, 25mpbir 231 . . . . 5 (𝐹‘∅)𝑅(𝐹𝑍)
27 noel 4303 . . . . . . 7 ¬ 𝑧 ∈ ∅
28 vex 3454 . . . . . . . 8 𝑧 ∈ V
29 0ex 5264 . . . . . . . 8 ∅ ∈ V
3021, 22, 28, 29brpermmodelcnv 44987 . . . . . . 7 (𝑧𝑅(𝐹‘∅) ↔ 𝑧 ∈ ∅)
3127, 30mtbir 323 . . . . . 6 ¬ 𝑧𝑅(𝐹‘∅)
3231ax-gen 1795 . . . . 5 𝑧 ¬ 𝑧𝑅(𝐹‘∅)
3326, 32pm3.2i 470 . . . 4 ((𝐹‘∅)𝑅(𝐹𝑍) ∧ ∀𝑧 ¬ 𝑧𝑅(𝐹‘∅))
3411, 16, 33ceqsexv2d 3502 . . 3 𝑦(𝑦𝑅(𝐹𝑍) ∧ ∀𝑧 ¬ 𝑧𝑅𝑦)
35 fvex 6873 . . . . . . 7 (𝐹‘((𝐹𝑦) ∪ {𝑦})) ∈ V
36 nfcv 2892 . . . . . . . 8 𝑣𝑦
37 nfcv 2892 . . . . . . . 8 𝑣(𝐹‘((𝐹𝑦) ∪ {𝑦}))
38 fveq2 6860 . . . . . . . . . 10 (𝑣 = 𝑦 → (𝐹𝑣) = (𝐹𝑦))
39 sneq 4601 . . . . . . . . . 10 (𝑣 = 𝑦 → {𝑣} = {𝑦})
4038, 39uneq12d 4134 . . . . . . . . 9 (𝑣 = 𝑦 → ((𝐹𝑣) ∪ {𝑣}) = ((𝐹𝑦) ∪ {𝑦}))
4140fveq2d 6864 . . . . . . . 8 (𝑣 = 𝑦 → (𝐹‘((𝐹𝑣) ∪ {𝑣})) = (𝐹‘((𝐹𝑦) ∪ {𝑦})))
4236, 37, 18, 41orbitclmpt 44941 . . . . . . 7 ((𝑦𝑍 ∧ (𝐹‘((𝐹𝑦) ∪ {𝑦})) ∈ V) → (𝐹‘((𝐹𝑦) ∪ {𝑦})) ∈ 𝑍)
4335, 42mpan2 691 . . . . . 6 (𝑦𝑍 → (𝐹‘((𝐹𝑦) ∪ {𝑦})) ∈ 𝑍)
44 vex 3454 . . . . . . 7 𝑦 ∈ V
4521, 22, 44, 24brpermmodelcnv 44987 . . . . . 6 (𝑦𝑅(𝐹𝑍) ↔ 𝑦𝑍)
4621, 22, 35, 24brpermmodelcnv 44987 . . . . . 6 ((𝐹‘((𝐹𝑦) ∪ {𝑦}))𝑅(𝐹𝑍) ↔ (𝐹‘((𝐹𝑦) ∪ {𝑦})) ∈ 𝑍)
4743, 45, 463imtr4i 292 . . . . 5 (𝑦𝑅(𝐹𝑍) → (𝐹‘((𝐹𝑦) ∪ {𝑦}))𝑅(𝐹𝑍))
48 vex 3454 . . . . . . . 8 𝑤 ∈ V
49 fvex 6873 . . . . . . . . 9 (𝐹𝑦) ∈ V
50 vsnex 5391 . . . . . . . . 9 {𝑦} ∈ V
5149, 50unex 7722 . . . . . . . 8 ((𝐹𝑦) ∪ {𝑦}) ∈ V
5221, 22, 48, 51brpermmodelcnv 44987 . . . . . . 7 (𝑤𝑅(𝐹‘((𝐹𝑦) ∪ {𝑦})) ↔ 𝑤 ∈ ((𝐹𝑦) ∪ {𝑦}))
53 elun 4118 . . . . . . 7 (𝑤 ∈ ((𝐹𝑦) ∪ {𝑦}) ↔ (𝑤 ∈ (𝐹𝑦) ∨ 𝑤 ∈ {𝑦}))
5421, 22, 48, 44brpermmodel 44986 . . . . . . . . 9 (𝑤𝑅𝑦𝑤 ∈ (𝐹𝑦))
5554bicomi 224 . . . . . . . 8 (𝑤 ∈ (𝐹𝑦) ↔ 𝑤𝑅𝑦)
56 velsn 4607 . . . . . . . 8 (𝑤 ∈ {𝑦} ↔ 𝑤 = 𝑦)
5755, 56orbi12i 914 . . . . . . 7 ((𝑤 ∈ (𝐹𝑦) ∨ 𝑤 ∈ {𝑦}) ↔ (𝑤𝑅𝑦𝑤 = 𝑦))
5852, 53, 573bitri 297 . . . . . 6 (𝑤𝑅(𝐹‘((𝐹𝑦) ∪ {𝑦})) ↔ (𝑤𝑅𝑦𝑤 = 𝑦))
5958ax-gen 1795 . . . . 5 𝑤(𝑤𝑅(𝐹‘((𝐹𝑦) ∪ {𝑦})) ↔ (𝑤𝑅𝑦𝑤 = 𝑦))
60 breq1 5112 . . . . . . 7 (𝑧 = (𝐹‘((𝐹𝑦) ∪ {𝑦})) → (𝑧𝑅(𝐹𝑍) ↔ (𝐹‘((𝐹𝑦) ∪ {𝑦}))𝑅(𝐹𝑍)))
61 breq2 5113 . . . . . . . . 9 (𝑧 = (𝐹‘((𝐹𝑦) ∪ {𝑦})) → (𝑤𝑅𝑧𝑤𝑅(𝐹‘((𝐹𝑦) ∪ {𝑦}))))
6261bibi1d 343 . . . . . . . 8 (𝑧 = (𝐹‘((𝐹𝑦) ∪ {𝑦})) → ((𝑤𝑅𝑧 ↔ (𝑤𝑅𝑦𝑤 = 𝑦)) ↔ (𝑤𝑅(𝐹‘((𝐹𝑦) ∪ {𝑦})) ↔ (𝑤𝑅𝑦𝑤 = 𝑦))))
6362albidv 1920 . . . . . . 7 (𝑧 = (𝐹‘((𝐹𝑦) ∪ {𝑦})) → (∀𝑤(𝑤𝑅𝑧 ↔ (𝑤𝑅𝑦𝑤 = 𝑦)) ↔ ∀𝑤(𝑤𝑅(𝐹‘((𝐹𝑦) ∪ {𝑦})) ↔ (𝑤𝑅𝑦𝑤 = 𝑦))))
6460, 63anbi12d 632 . . . . . 6 (𝑧 = (𝐹‘((𝐹𝑦) ∪ {𝑦})) → ((𝑧𝑅(𝐹𝑍) ∧ ∀𝑤(𝑤𝑅𝑧 ↔ (𝑤𝑅𝑦𝑤 = 𝑦))) ↔ ((𝐹‘((𝐹𝑦) ∪ {𝑦}))𝑅(𝐹𝑍) ∧ ∀𝑤(𝑤𝑅(𝐹‘((𝐹𝑦) ∪ {𝑦})) ↔ (𝑤𝑅𝑦𝑤 = 𝑦)))))
6535, 64spcev 3575 . . . . 5 (((𝐹‘((𝐹𝑦) ∪ {𝑦}))𝑅(𝐹𝑍) ∧ ∀𝑤(𝑤𝑅(𝐹‘((𝐹𝑦) ∪ {𝑦})) ↔ (𝑤𝑅𝑦𝑤 = 𝑦))) → ∃𝑧(𝑧𝑅(𝐹𝑍) ∧ ∀𝑤(𝑤𝑅𝑧 ↔ (𝑤𝑅𝑦𝑤 = 𝑦))))
6647, 59, 65sylancl 586 . . . 4 (𝑦𝑅(𝐹𝑍) → ∃𝑧(𝑧𝑅(𝐹𝑍) ∧ ∀𝑤(𝑤𝑅𝑧 ↔ (𝑤𝑅𝑦𝑤 = 𝑦))))
6766ax-gen 1795 . . 3 𝑦(𝑦𝑅(𝐹𝑍) → ∃𝑧(𝑧𝑅(𝐹𝑍) ∧ ∀𝑤(𝑤𝑅𝑧 ↔ (𝑤𝑅𝑦𝑤 = 𝑦))))
6834, 67pm3.2i 470 . 2 (∃𝑦(𝑦𝑅(𝐹𝑍) ∧ ∀𝑧 ¬ 𝑧𝑅𝑦) ∧ ∀𝑦(𝑦𝑅(𝐹𝑍) → ∃𝑧(𝑧𝑅(𝐹𝑍) ∧ ∀𝑤(𝑤𝑅𝑧 ↔ (𝑤𝑅𝑦𝑤 = 𝑦)))))
691, 10, 68ceqsexv2d 3502 1 𝑥(∃𝑦(𝑦𝑅𝑥 ∧ ∀𝑧 ¬ 𝑧𝑅𝑦) ∧ ∀𝑦(𝑦𝑅𝑥 → ∃𝑧(𝑧𝑅𝑥 ∧ ∀𝑤(𝑤𝑅𝑧 ↔ (𝑤𝑅𝑦𝑤 = 𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  wal 1538   = wceq 1540  wex 1779  wcel 2109  Vcvv 3450  cun 3914  c0 4298  {csn 4591   class class class wbr 5109  cmpt 5190   E cep 5539  ccnv 5639  cima 5643  ccom 5644  1-1-ontowf1o 6512  cfv 6513  ωcom 7844  reccrdg 8379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pr 5389  ax-un 7713  ax-inf2 9600
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-ov 7392  df-om 7845  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380
This theorem is referenced by:  permaxinf2  44996
  Copyright terms: Public domain W3C validator