Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  permaxinf2lem Structured version   Visualization version   GIF version

Theorem permaxinf2lem 45045
Description: Lemma for permaxinf2 45046. (Contributed by Eric Schmidt, 6-Nov-2025.)
Hypotheses
Ref Expression
permmodel.1 𝐹:V–1-1-onto→V
permmodel.2 𝑅 = (𝐹 ∘ E )
permaxinf2lem.3 𝑍 = (rec((𝑣 ∈ V ↦ (𝐹‘((𝐹𝑣) ∪ {𝑣}))), (𝐹‘∅)) “ ω)
Assertion
Ref Expression
permaxinf2lem 𝑥(∃𝑦(𝑦𝑅𝑥 ∧ ∀𝑧 ¬ 𝑧𝑅𝑦) ∧ ∀𝑦(𝑦𝑅𝑥 → ∃𝑧(𝑧𝑅𝑥 ∧ ∀𝑤(𝑤𝑅𝑧 ↔ (𝑤𝑅𝑦𝑤 = 𝑦)))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤,𝑣,𝐹   𝑧,𝑅   𝑥,𝑍,𝑦,𝑧
Allowed substitution hints:   𝑅(𝑥,𝑦,𝑤,𝑣)   𝑍(𝑤,𝑣)

Proof of Theorem permaxinf2lem
StepHypRef Expression
1 fvex 6830 . 2 (𝐹𝑍) ∈ V
2 breq2 5090 . . . . 5 (𝑥 = (𝐹𝑍) → (𝑦𝑅𝑥𝑦𝑅(𝐹𝑍)))
32anbi1d 631 . . . 4 (𝑥 = (𝐹𝑍) → ((𝑦𝑅𝑥 ∧ ∀𝑧 ¬ 𝑧𝑅𝑦) ↔ (𝑦𝑅(𝐹𝑍) ∧ ∀𝑧 ¬ 𝑧𝑅𝑦)))
43exbidv 1922 . . 3 (𝑥 = (𝐹𝑍) → (∃𝑦(𝑦𝑅𝑥 ∧ ∀𝑧 ¬ 𝑧𝑅𝑦) ↔ ∃𝑦(𝑦𝑅(𝐹𝑍) ∧ ∀𝑧 ¬ 𝑧𝑅𝑦)))
5 breq2 5090 . . . . . . 7 (𝑥 = (𝐹𝑍) → (𝑧𝑅𝑥𝑧𝑅(𝐹𝑍)))
65anbi1d 631 . . . . . 6 (𝑥 = (𝐹𝑍) → ((𝑧𝑅𝑥 ∧ ∀𝑤(𝑤𝑅𝑧 ↔ (𝑤𝑅𝑦𝑤 = 𝑦))) ↔ (𝑧𝑅(𝐹𝑍) ∧ ∀𝑤(𝑤𝑅𝑧 ↔ (𝑤𝑅𝑦𝑤 = 𝑦)))))
76exbidv 1922 . . . . 5 (𝑥 = (𝐹𝑍) → (∃𝑧(𝑧𝑅𝑥 ∧ ∀𝑤(𝑤𝑅𝑧 ↔ (𝑤𝑅𝑦𝑤 = 𝑦))) ↔ ∃𝑧(𝑧𝑅(𝐹𝑍) ∧ ∀𝑤(𝑤𝑅𝑧 ↔ (𝑤𝑅𝑦𝑤 = 𝑦)))))
82, 7imbi12d 344 . . . 4 (𝑥 = (𝐹𝑍) → ((𝑦𝑅𝑥 → ∃𝑧(𝑧𝑅𝑥 ∧ ∀𝑤(𝑤𝑅𝑧 ↔ (𝑤𝑅𝑦𝑤 = 𝑦)))) ↔ (𝑦𝑅(𝐹𝑍) → ∃𝑧(𝑧𝑅(𝐹𝑍) ∧ ∀𝑤(𝑤𝑅𝑧 ↔ (𝑤𝑅𝑦𝑤 = 𝑦))))))
98albidv 1921 . . 3 (𝑥 = (𝐹𝑍) → (∀𝑦(𝑦𝑅𝑥 → ∃𝑧(𝑧𝑅𝑥 ∧ ∀𝑤(𝑤𝑅𝑧 ↔ (𝑤𝑅𝑦𝑤 = 𝑦)))) ↔ ∀𝑦(𝑦𝑅(𝐹𝑍) → ∃𝑧(𝑧𝑅(𝐹𝑍) ∧ ∀𝑤(𝑤𝑅𝑧 ↔ (𝑤𝑅𝑦𝑤 = 𝑦))))))
104, 9anbi12d 632 . 2 (𝑥 = (𝐹𝑍) → ((∃𝑦(𝑦𝑅𝑥 ∧ ∀𝑧 ¬ 𝑧𝑅𝑦) ∧ ∀𝑦(𝑦𝑅𝑥 → ∃𝑧(𝑧𝑅𝑥 ∧ ∀𝑤(𝑤𝑅𝑧 ↔ (𝑤𝑅𝑦𝑤 = 𝑦))))) ↔ (∃𝑦(𝑦𝑅(𝐹𝑍) ∧ ∀𝑧 ¬ 𝑧𝑅𝑦) ∧ ∀𝑦(𝑦𝑅(𝐹𝑍) → ∃𝑧(𝑧𝑅(𝐹𝑍) ∧ ∀𝑤(𝑤𝑅𝑧 ↔ (𝑤𝑅𝑦𝑤 = 𝑦)))))))
11 fvex 6830 . . . 4 (𝐹‘∅) ∈ V
12 breq1 5089 . . . . 5 (𝑦 = (𝐹‘∅) → (𝑦𝑅(𝐹𝑍) ↔ (𝐹‘∅)𝑅(𝐹𝑍)))
13 breq2 5090 . . . . . . 7 (𝑦 = (𝐹‘∅) → (𝑧𝑅𝑦𝑧𝑅(𝐹‘∅)))
1413notbid 318 . . . . . 6 (𝑦 = (𝐹‘∅) → (¬ 𝑧𝑅𝑦 ↔ ¬ 𝑧𝑅(𝐹‘∅)))
1514albidv 1921 . . . . 5 (𝑦 = (𝐹‘∅) → (∀𝑧 ¬ 𝑧𝑅𝑦 ↔ ∀𝑧 ¬ 𝑧𝑅(𝐹‘∅)))
1612, 15anbi12d 632 . . . 4 (𝑦 = (𝐹‘∅) → ((𝑦𝑅(𝐹𝑍) ∧ ∀𝑧 ¬ 𝑧𝑅𝑦) ↔ ((𝐹‘∅)𝑅(𝐹𝑍) ∧ ∀𝑧 ¬ 𝑧𝑅(𝐹‘∅))))
17 orbitinit 44989 . . . . . . . 8 ((𝐹‘∅) ∈ V → (𝐹‘∅) ∈ (rec((𝑣 ∈ V ↦ (𝐹‘((𝐹𝑣) ∪ {𝑣}))), (𝐹‘∅)) “ ω))
18 permaxinf2lem.3 . . . . . . . 8 𝑍 = (rec((𝑣 ∈ V ↦ (𝐹‘((𝐹𝑣) ∪ {𝑣}))), (𝐹‘∅)) “ ω)
1917, 18eleqtrrdi 2842 . . . . . . 7 ((𝐹‘∅) ∈ V → (𝐹‘∅) ∈ 𝑍)
2011, 19ax-mp 5 . . . . . 6 (𝐹‘∅) ∈ 𝑍
21 permmodel.1 . . . . . . 7 𝐹:V–1-1-onto→V
22 permmodel.2 . . . . . . 7 𝑅 = (𝐹 ∘ E )
23 orbitex 44988 . . . . . . . 8 (rec((𝑣 ∈ V ↦ (𝐹‘((𝐹𝑣) ∪ {𝑣}))), (𝐹‘∅)) “ ω) ∈ V
2418, 23eqeltri 2827 . . . . . . 7 𝑍 ∈ V
2521, 22, 11, 24brpermmodelcnv 45037 . . . . . 6 ((𝐹‘∅)𝑅(𝐹𝑍) ↔ (𝐹‘∅) ∈ 𝑍)
2620, 25mpbir 231 . . . . 5 (𝐹‘∅)𝑅(𝐹𝑍)
27 noel 4283 . . . . . . 7 ¬ 𝑧 ∈ ∅
28 vex 3440 . . . . . . . 8 𝑧 ∈ V
29 0ex 5240 . . . . . . . 8 ∅ ∈ V
3021, 22, 28, 29brpermmodelcnv 45037 . . . . . . 7 (𝑧𝑅(𝐹‘∅) ↔ 𝑧 ∈ ∅)
3127, 30mtbir 323 . . . . . 6 ¬ 𝑧𝑅(𝐹‘∅)
3231ax-gen 1796 . . . . 5 𝑧 ¬ 𝑧𝑅(𝐹‘∅)
3326, 32pm3.2i 470 . . . 4 ((𝐹‘∅)𝑅(𝐹𝑍) ∧ ∀𝑧 ¬ 𝑧𝑅(𝐹‘∅))
3411, 16, 33ceqsexv2d 3487 . . 3 𝑦(𝑦𝑅(𝐹𝑍) ∧ ∀𝑧 ¬ 𝑧𝑅𝑦)
35 fvex 6830 . . . . . . 7 (𝐹‘((𝐹𝑦) ∪ {𝑦})) ∈ V
36 nfcv 2894 . . . . . . . 8 𝑣𝑦
37 nfcv 2894 . . . . . . . 8 𝑣(𝐹‘((𝐹𝑦) ∪ {𝑦}))
38 fveq2 6817 . . . . . . . . . 10 (𝑣 = 𝑦 → (𝐹𝑣) = (𝐹𝑦))
39 sneq 4581 . . . . . . . . . 10 (𝑣 = 𝑦 → {𝑣} = {𝑦})
4038, 39uneq12d 4114 . . . . . . . . 9 (𝑣 = 𝑦 → ((𝐹𝑣) ∪ {𝑣}) = ((𝐹𝑦) ∪ {𝑦}))
4140fveq2d 6821 . . . . . . . 8 (𝑣 = 𝑦 → (𝐹‘((𝐹𝑣) ∪ {𝑣})) = (𝐹‘((𝐹𝑦) ∪ {𝑦})))
4236, 37, 18, 41orbitclmpt 44991 . . . . . . 7 ((𝑦𝑍 ∧ (𝐹‘((𝐹𝑦) ∪ {𝑦})) ∈ V) → (𝐹‘((𝐹𝑦) ∪ {𝑦})) ∈ 𝑍)
4335, 42mpan2 691 . . . . . 6 (𝑦𝑍 → (𝐹‘((𝐹𝑦) ∪ {𝑦})) ∈ 𝑍)
44 vex 3440 . . . . . . 7 𝑦 ∈ V
4521, 22, 44, 24brpermmodelcnv 45037 . . . . . 6 (𝑦𝑅(𝐹𝑍) ↔ 𝑦𝑍)
4621, 22, 35, 24brpermmodelcnv 45037 . . . . . 6 ((𝐹‘((𝐹𝑦) ∪ {𝑦}))𝑅(𝐹𝑍) ↔ (𝐹‘((𝐹𝑦) ∪ {𝑦})) ∈ 𝑍)
4743, 45, 463imtr4i 292 . . . . 5 (𝑦𝑅(𝐹𝑍) → (𝐹‘((𝐹𝑦) ∪ {𝑦}))𝑅(𝐹𝑍))
48 vex 3440 . . . . . . . 8 𝑤 ∈ V
49 fvex 6830 . . . . . . . . 9 (𝐹𝑦) ∈ V
50 vsnex 5367 . . . . . . . . 9 {𝑦} ∈ V
5149, 50unex 7672 . . . . . . . 8 ((𝐹𝑦) ∪ {𝑦}) ∈ V
5221, 22, 48, 51brpermmodelcnv 45037 . . . . . . 7 (𝑤𝑅(𝐹‘((𝐹𝑦) ∪ {𝑦})) ↔ 𝑤 ∈ ((𝐹𝑦) ∪ {𝑦}))
53 elun 4098 . . . . . . 7 (𝑤 ∈ ((𝐹𝑦) ∪ {𝑦}) ↔ (𝑤 ∈ (𝐹𝑦) ∨ 𝑤 ∈ {𝑦}))
5421, 22, 48, 44brpermmodel 45036 . . . . . . . . 9 (𝑤𝑅𝑦𝑤 ∈ (𝐹𝑦))
5554bicomi 224 . . . . . . . 8 (𝑤 ∈ (𝐹𝑦) ↔ 𝑤𝑅𝑦)
56 velsn 4587 . . . . . . . 8 (𝑤 ∈ {𝑦} ↔ 𝑤 = 𝑦)
5755, 56orbi12i 914 . . . . . . 7 ((𝑤 ∈ (𝐹𝑦) ∨ 𝑤 ∈ {𝑦}) ↔ (𝑤𝑅𝑦𝑤 = 𝑦))
5852, 53, 573bitri 297 . . . . . 6 (𝑤𝑅(𝐹‘((𝐹𝑦) ∪ {𝑦})) ↔ (𝑤𝑅𝑦𝑤 = 𝑦))
5958ax-gen 1796 . . . . 5 𝑤(𝑤𝑅(𝐹‘((𝐹𝑦) ∪ {𝑦})) ↔ (𝑤𝑅𝑦𝑤 = 𝑦))
60 breq1 5089 . . . . . . 7 (𝑧 = (𝐹‘((𝐹𝑦) ∪ {𝑦})) → (𝑧𝑅(𝐹𝑍) ↔ (𝐹‘((𝐹𝑦) ∪ {𝑦}))𝑅(𝐹𝑍)))
61 breq2 5090 . . . . . . . . 9 (𝑧 = (𝐹‘((𝐹𝑦) ∪ {𝑦})) → (𝑤𝑅𝑧𝑤𝑅(𝐹‘((𝐹𝑦) ∪ {𝑦}))))
6261bibi1d 343 . . . . . . . 8 (𝑧 = (𝐹‘((𝐹𝑦) ∪ {𝑦})) → ((𝑤𝑅𝑧 ↔ (𝑤𝑅𝑦𝑤 = 𝑦)) ↔ (𝑤𝑅(𝐹‘((𝐹𝑦) ∪ {𝑦})) ↔ (𝑤𝑅𝑦𝑤 = 𝑦))))
6362albidv 1921 . . . . . . 7 (𝑧 = (𝐹‘((𝐹𝑦) ∪ {𝑦})) → (∀𝑤(𝑤𝑅𝑧 ↔ (𝑤𝑅𝑦𝑤 = 𝑦)) ↔ ∀𝑤(𝑤𝑅(𝐹‘((𝐹𝑦) ∪ {𝑦})) ↔ (𝑤𝑅𝑦𝑤 = 𝑦))))
6460, 63anbi12d 632 . . . . . 6 (𝑧 = (𝐹‘((𝐹𝑦) ∪ {𝑦})) → ((𝑧𝑅(𝐹𝑍) ∧ ∀𝑤(𝑤𝑅𝑧 ↔ (𝑤𝑅𝑦𝑤 = 𝑦))) ↔ ((𝐹‘((𝐹𝑦) ∪ {𝑦}))𝑅(𝐹𝑍) ∧ ∀𝑤(𝑤𝑅(𝐹‘((𝐹𝑦) ∪ {𝑦})) ↔ (𝑤𝑅𝑦𝑤 = 𝑦)))))
6535, 64spcev 3556 . . . . 5 (((𝐹‘((𝐹𝑦) ∪ {𝑦}))𝑅(𝐹𝑍) ∧ ∀𝑤(𝑤𝑅(𝐹‘((𝐹𝑦) ∪ {𝑦})) ↔ (𝑤𝑅𝑦𝑤 = 𝑦))) → ∃𝑧(𝑧𝑅(𝐹𝑍) ∧ ∀𝑤(𝑤𝑅𝑧 ↔ (𝑤𝑅𝑦𝑤 = 𝑦))))
6647, 59, 65sylancl 586 . . . 4 (𝑦𝑅(𝐹𝑍) → ∃𝑧(𝑧𝑅(𝐹𝑍) ∧ ∀𝑤(𝑤𝑅𝑧 ↔ (𝑤𝑅𝑦𝑤 = 𝑦))))
6766ax-gen 1796 . . 3 𝑦(𝑦𝑅(𝐹𝑍) → ∃𝑧(𝑧𝑅(𝐹𝑍) ∧ ∀𝑤(𝑤𝑅𝑧 ↔ (𝑤𝑅𝑦𝑤 = 𝑦))))
6834, 67pm3.2i 470 . 2 (∃𝑦(𝑦𝑅(𝐹𝑍) ∧ ∀𝑧 ¬ 𝑧𝑅𝑦) ∧ ∀𝑦(𝑦𝑅(𝐹𝑍) → ∃𝑧(𝑧𝑅(𝐹𝑍) ∧ ∀𝑤(𝑤𝑅𝑧 ↔ (𝑤𝑅𝑦𝑤 = 𝑦)))))
691, 10, 68ceqsexv2d 3487 1 𝑥(∃𝑦(𝑦𝑅𝑥 ∧ ∀𝑧 ¬ 𝑧𝑅𝑦) ∧ ∀𝑦(𝑦𝑅𝑥 → ∃𝑧(𝑧𝑅𝑥 ∧ ∀𝑤(𝑤𝑅𝑧 ↔ (𝑤𝑅𝑦𝑤 = 𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  wal 1539   = wceq 1541  wex 1780  wcel 2111  Vcvv 3436  cun 3895  c0 4278  {csn 4571   class class class wbr 5086  cmpt 5167   E cep 5510  ccnv 5610  cima 5614  ccom 5615  1-1-ontowf1o 6475  cfv 6476  ωcom 7791  reccrdg 8323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pr 5365  ax-un 7663  ax-inf2 9526
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-ov 7344  df-om 7792  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324
This theorem is referenced by:  permaxinf2  45046
  Copyright terms: Public domain W3C validator