Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  permaxinf2lem Structured version   Visualization version   GIF version

Theorem permaxinf2lem 45169
Description: Lemma for permaxinf2 45170. (Contributed by Eric Schmidt, 6-Nov-2025.)
Hypotheses
Ref Expression
permmodel.1 𝐹:V–1-1-onto→V
permmodel.2 𝑅 = (𝐹 ∘ E )
permaxinf2lem.3 𝑍 = (rec((𝑣 ∈ V ↦ (𝐹‘((𝐹𝑣) ∪ {𝑣}))), (𝐹‘∅)) “ ω)
Assertion
Ref Expression
permaxinf2lem 𝑥(∃𝑦(𝑦𝑅𝑥 ∧ ∀𝑧 ¬ 𝑧𝑅𝑦) ∧ ∀𝑦(𝑦𝑅𝑥 → ∃𝑧(𝑧𝑅𝑥 ∧ ∀𝑤(𝑤𝑅𝑧 ↔ (𝑤𝑅𝑦𝑤 = 𝑦)))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤,𝑣,𝐹   𝑧,𝑅   𝑥,𝑍,𝑦,𝑧
Allowed substitution hints:   𝑅(𝑥,𝑦,𝑤,𝑣)   𝑍(𝑤,𝑣)

Proof of Theorem permaxinf2lem
StepHypRef Expression
1 fvex 6844 . 2 (𝐹𝑍) ∈ V
2 breq2 5099 . . . . 5 (𝑥 = (𝐹𝑍) → (𝑦𝑅𝑥𝑦𝑅(𝐹𝑍)))
32anbi1d 631 . . . 4 (𝑥 = (𝐹𝑍) → ((𝑦𝑅𝑥 ∧ ∀𝑧 ¬ 𝑧𝑅𝑦) ↔ (𝑦𝑅(𝐹𝑍) ∧ ∀𝑧 ¬ 𝑧𝑅𝑦)))
43exbidv 1922 . . 3 (𝑥 = (𝐹𝑍) → (∃𝑦(𝑦𝑅𝑥 ∧ ∀𝑧 ¬ 𝑧𝑅𝑦) ↔ ∃𝑦(𝑦𝑅(𝐹𝑍) ∧ ∀𝑧 ¬ 𝑧𝑅𝑦)))
5 breq2 5099 . . . . . . 7 (𝑥 = (𝐹𝑍) → (𝑧𝑅𝑥𝑧𝑅(𝐹𝑍)))
65anbi1d 631 . . . . . 6 (𝑥 = (𝐹𝑍) → ((𝑧𝑅𝑥 ∧ ∀𝑤(𝑤𝑅𝑧 ↔ (𝑤𝑅𝑦𝑤 = 𝑦))) ↔ (𝑧𝑅(𝐹𝑍) ∧ ∀𝑤(𝑤𝑅𝑧 ↔ (𝑤𝑅𝑦𝑤 = 𝑦)))))
76exbidv 1922 . . . . 5 (𝑥 = (𝐹𝑍) → (∃𝑧(𝑧𝑅𝑥 ∧ ∀𝑤(𝑤𝑅𝑧 ↔ (𝑤𝑅𝑦𝑤 = 𝑦))) ↔ ∃𝑧(𝑧𝑅(𝐹𝑍) ∧ ∀𝑤(𝑤𝑅𝑧 ↔ (𝑤𝑅𝑦𝑤 = 𝑦)))))
82, 7imbi12d 344 . . . 4 (𝑥 = (𝐹𝑍) → ((𝑦𝑅𝑥 → ∃𝑧(𝑧𝑅𝑥 ∧ ∀𝑤(𝑤𝑅𝑧 ↔ (𝑤𝑅𝑦𝑤 = 𝑦)))) ↔ (𝑦𝑅(𝐹𝑍) → ∃𝑧(𝑧𝑅(𝐹𝑍) ∧ ∀𝑤(𝑤𝑅𝑧 ↔ (𝑤𝑅𝑦𝑤 = 𝑦))))))
98albidv 1921 . . 3 (𝑥 = (𝐹𝑍) → (∀𝑦(𝑦𝑅𝑥 → ∃𝑧(𝑧𝑅𝑥 ∧ ∀𝑤(𝑤𝑅𝑧 ↔ (𝑤𝑅𝑦𝑤 = 𝑦)))) ↔ ∀𝑦(𝑦𝑅(𝐹𝑍) → ∃𝑧(𝑧𝑅(𝐹𝑍) ∧ ∀𝑤(𝑤𝑅𝑧 ↔ (𝑤𝑅𝑦𝑤 = 𝑦))))))
104, 9anbi12d 632 . 2 (𝑥 = (𝐹𝑍) → ((∃𝑦(𝑦𝑅𝑥 ∧ ∀𝑧 ¬ 𝑧𝑅𝑦) ∧ ∀𝑦(𝑦𝑅𝑥 → ∃𝑧(𝑧𝑅𝑥 ∧ ∀𝑤(𝑤𝑅𝑧 ↔ (𝑤𝑅𝑦𝑤 = 𝑦))))) ↔ (∃𝑦(𝑦𝑅(𝐹𝑍) ∧ ∀𝑧 ¬ 𝑧𝑅𝑦) ∧ ∀𝑦(𝑦𝑅(𝐹𝑍) → ∃𝑧(𝑧𝑅(𝐹𝑍) ∧ ∀𝑤(𝑤𝑅𝑧 ↔ (𝑤𝑅𝑦𝑤 = 𝑦)))))))
11 fvex 6844 . . . 4 (𝐹‘∅) ∈ V
12 breq1 5098 . . . . 5 (𝑦 = (𝐹‘∅) → (𝑦𝑅(𝐹𝑍) ↔ (𝐹‘∅)𝑅(𝐹𝑍)))
13 breq2 5099 . . . . . . 7 (𝑦 = (𝐹‘∅) → (𝑧𝑅𝑦𝑧𝑅(𝐹‘∅)))
1413notbid 318 . . . . . 6 (𝑦 = (𝐹‘∅) → (¬ 𝑧𝑅𝑦 ↔ ¬ 𝑧𝑅(𝐹‘∅)))
1514albidv 1921 . . . . 5 (𝑦 = (𝐹‘∅) → (∀𝑧 ¬ 𝑧𝑅𝑦 ↔ ∀𝑧 ¬ 𝑧𝑅(𝐹‘∅)))
1612, 15anbi12d 632 . . . 4 (𝑦 = (𝐹‘∅) → ((𝑦𝑅(𝐹𝑍) ∧ ∀𝑧 ¬ 𝑧𝑅𝑦) ↔ ((𝐹‘∅)𝑅(𝐹𝑍) ∧ ∀𝑧 ¬ 𝑧𝑅(𝐹‘∅))))
17 orbitinit 45113 . . . . . . . 8 ((𝐹‘∅) ∈ V → (𝐹‘∅) ∈ (rec((𝑣 ∈ V ↦ (𝐹‘((𝐹𝑣) ∪ {𝑣}))), (𝐹‘∅)) “ ω))
18 permaxinf2lem.3 . . . . . . . 8 𝑍 = (rec((𝑣 ∈ V ↦ (𝐹‘((𝐹𝑣) ∪ {𝑣}))), (𝐹‘∅)) “ ω)
1917, 18eleqtrrdi 2844 . . . . . . 7 ((𝐹‘∅) ∈ V → (𝐹‘∅) ∈ 𝑍)
2011, 19ax-mp 5 . . . . . 6 (𝐹‘∅) ∈ 𝑍
21 permmodel.1 . . . . . . 7 𝐹:V–1-1-onto→V
22 permmodel.2 . . . . . . 7 𝑅 = (𝐹 ∘ E )
23 orbitex 45112 . . . . . . . 8 (rec((𝑣 ∈ V ↦ (𝐹‘((𝐹𝑣) ∪ {𝑣}))), (𝐹‘∅)) “ ω) ∈ V
2418, 23eqeltri 2829 . . . . . . 7 𝑍 ∈ V
2521, 22, 11, 24brpermmodelcnv 45161 . . . . . 6 ((𝐹‘∅)𝑅(𝐹𝑍) ↔ (𝐹‘∅) ∈ 𝑍)
2620, 25mpbir 231 . . . . 5 (𝐹‘∅)𝑅(𝐹𝑍)
27 noel 4287 . . . . . . 7 ¬ 𝑧 ∈ ∅
28 vex 3441 . . . . . . . 8 𝑧 ∈ V
29 0ex 5249 . . . . . . . 8 ∅ ∈ V
3021, 22, 28, 29brpermmodelcnv 45161 . . . . . . 7 (𝑧𝑅(𝐹‘∅) ↔ 𝑧 ∈ ∅)
3127, 30mtbir 323 . . . . . 6 ¬ 𝑧𝑅(𝐹‘∅)
3231ax-gen 1796 . . . . 5 𝑧 ¬ 𝑧𝑅(𝐹‘∅)
3326, 32pm3.2i 470 . . . 4 ((𝐹‘∅)𝑅(𝐹𝑍) ∧ ∀𝑧 ¬ 𝑧𝑅(𝐹‘∅))
3411, 16, 33ceqsexv2d 3488 . . 3 𝑦(𝑦𝑅(𝐹𝑍) ∧ ∀𝑧 ¬ 𝑧𝑅𝑦)
35 fvex 6844 . . . . . . 7 (𝐹‘((𝐹𝑦) ∪ {𝑦})) ∈ V
36 nfcv 2895 . . . . . . . 8 𝑣𝑦
37 nfcv 2895 . . . . . . . 8 𝑣(𝐹‘((𝐹𝑦) ∪ {𝑦}))
38 fveq2 6831 . . . . . . . . . 10 (𝑣 = 𝑦 → (𝐹𝑣) = (𝐹𝑦))
39 sneq 4587 . . . . . . . . . 10 (𝑣 = 𝑦 → {𝑣} = {𝑦})
4038, 39uneq12d 4118 . . . . . . . . 9 (𝑣 = 𝑦 → ((𝐹𝑣) ∪ {𝑣}) = ((𝐹𝑦) ∪ {𝑦}))
4140fveq2d 6835 . . . . . . . 8 (𝑣 = 𝑦 → (𝐹‘((𝐹𝑣) ∪ {𝑣})) = (𝐹‘((𝐹𝑦) ∪ {𝑦})))
4236, 37, 18, 41orbitclmpt 45115 . . . . . . 7 ((𝑦𝑍 ∧ (𝐹‘((𝐹𝑦) ∪ {𝑦})) ∈ V) → (𝐹‘((𝐹𝑦) ∪ {𝑦})) ∈ 𝑍)
4335, 42mpan2 691 . . . . . 6 (𝑦𝑍 → (𝐹‘((𝐹𝑦) ∪ {𝑦})) ∈ 𝑍)
44 vex 3441 . . . . . . 7 𝑦 ∈ V
4521, 22, 44, 24brpermmodelcnv 45161 . . . . . 6 (𝑦𝑅(𝐹𝑍) ↔ 𝑦𝑍)
4621, 22, 35, 24brpermmodelcnv 45161 . . . . . 6 ((𝐹‘((𝐹𝑦) ∪ {𝑦}))𝑅(𝐹𝑍) ↔ (𝐹‘((𝐹𝑦) ∪ {𝑦})) ∈ 𝑍)
4743, 45, 463imtr4i 292 . . . . 5 (𝑦𝑅(𝐹𝑍) → (𝐹‘((𝐹𝑦) ∪ {𝑦}))𝑅(𝐹𝑍))
48 vex 3441 . . . . . . . 8 𝑤 ∈ V
49 fvex 6844 . . . . . . . . 9 (𝐹𝑦) ∈ V
50 vsnex 5376 . . . . . . . . 9 {𝑦} ∈ V
5149, 50unex 7686 . . . . . . . 8 ((𝐹𝑦) ∪ {𝑦}) ∈ V
5221, 22, 48, 51brpermmodelcnv 45161 . . . . . . 7 (𝑤𝑅(𝐹‘((𝐹𝑦) ∪ {𝑦})) ↔ 𝑤 ∈ ((𝐹𝑦) ∪ {𝑦}))
53 elun 4102 . . . . . . 7 (𝑤 ∈ ((𝐹𝑦) ∪ {𝑦}) ↔ (𝑤 ∈ (𝐹𝑦) ∨ 𝑤 ∈ {𝑦}))
5421, 22, 48, 44brpermmodel 45160 . . . . . . . . 9 (𝑤𝑅𝑦𝑤 ∈ (𝐹𝑦))
5554bicomi 224 . . . . . . . 8 (𝑤 ∈ (𝐹𝑦) ↔ 𝑤𝑅𝑦)
56 velsn 4593 . . . . . . . 8 (𝑤 ∈ {𝑦} ↔ 𝑤 = 𝑦)
5755, 56orbi12i 914 . . . . . . 7 ((𝑤 ∈ (𝐹𝑦) ∨ 𝑤 ∈ {𝑦}) ↔ (𝑤𝑅𝑦𝑤 = 𝑦))
5852, 53, 573bitri 297 . . . . . 6 (𝑤𝑅(𝐹‘((𝐹𝑦) ∪ {𝑦})) ↔ (𝑤𝑅𝑦𝑤 = 𝑦))
5958ax-gen 1796 . . . . 5 𝑤(𝑤𝑅(𝐹‘((𝐹𝑦) ∪ {𝑦})) ↔ (𝑤𝑅𝑦𝑤 = 𝑦))
60 breq1 5098 . . . . . . 7 (𝑧 = (𝐹‘((𝐹𝑦) ∪ {𝑦})) → (𝑧𝑅(𝐹𝑍) ↔ (𝐹‘((𝐹𝑦) ∪ {𝑦}))𝑅(𝐹𝑍)))
61 breq2 5099 . . . . . . . . 9 (𝑧 = (𝐹‘((𝐹𝑦) ∪ {𝑦})) → (𝑤𝑅𝑧𝑤𝑅(𝐹‘((𝐹𝑦) ∪ {𝑦}))))
6261bibi1d 343 . . . . . . . 8 (𝑧 = (𝐹‘((𝐹𝑦) ∪ {𝑦})) → ((𝑤𝑅𝑧 ↔ (𝑤𝑅𝑦𝑤 = 𝑦)) ↔ (𝑤𝑅(𝐹‘((𝐹𝑦) ∪ {𝑦})) ↔ (𝑤𝑅𝑦𝑤 = 𝑦))))
6362albidv 1921 . . . . . . 7 (𝑧 = (𝐹‘((𝐹𝑦) ∪ {𝑦})) → (∀𝑤(𝑤𝑅𝑧 ↔ (𝑤𝑅𝑦𝑤 = 𝑦)) ↔ ∀𝑤(𝑤𝑅(𝐹‘((𝐹𝑦) ∪ {𝑦})) ↔ (𝑤𝑅𝑦𝑤 = 𝑦))))
6460, 63anbi12d 632 . . . . . 6 (𝑧 = (𝐹‘((𝐹𝑦) ∪ {𝑦})) → ((𝑧𝑅(𝐹𝑍) ∧ ∀𝑤(𝑤𝑅𝑧 ↔ (𝑤𝑅𝑦𝑤 = 𝑦))) ↔ ((𝐹‘((𝐹𝑦) ∪ {𝑦}))𝑅(𝐹𝑍) ∧ ∀𝑤(𝑤𝑅(𝐹‘((𝐹𝑦) ∪ {𝑦})) ↔ (𝑤𝑅𝑦𝑤 = 𝑦)))))
6535, 64spcev 3557 . . . . 5 (((𝐹‘((𝐹𝑦) ∪ {𝑦}))𝑅(𝐹𝑍) ∧ ∀𝑤(𝑤𝑅(𝐹‘((𝐹𝑦) ∪ {𝑦})) ↔ (𝑤𝑅𝑦𝑤 = 𝑦))) → ∃𝑧(𝑧𝑅(𝐹𝑍) ∧ ∀𝑤(𝑤𝑅𝑧 ↔ (𝑤𝑅𝑦𝑤 = 𝑦))))
6647, 59, 65sylancl 586 . . . 4 (𝑦𝑅(𝐹𝑍) → ∃𝑧(𝑧𝑅(𝐹𝑍) ∧ ∀𝑤(𝑤𝑅𝑧 ↔ (𝑤𝑅𝑦𝑤 = 𝑦))))
6766ax-gen 1796 . . 3 𝑦(𝑦𝑅(𝐹𝑍) → ∃𝑧(𝑧𝑅(𝐹𝑍) ∧ ∀𝑤(𝑤𝑅𝑧 ↔ (𝑤𝑅𝑦𝑤 = 𝑦))))
6834, 67pm3.2i 470 . 2 (∃𝑦(𝑦𝑅(𝐹𝑍) ∧ ∀𝑧 ¬ 𝑧𝑅𝑦) ∧ ∀𝑦(𝑦𝑅(𝐹𝑍) → ∃𝑧(𝑧𝑅(𝐹𝑍) ∧ ∀𝑤(𝑤𝑅𝑧 ↔ (𝑤𝑅𝑦𝑤 = 𝑦)))))
691, 10, 68ceqsexv2d 3488 1 𝑥(∃𝑦(𝑦𝑅𝑥 ∧ ∀𝑧 ¬ 𝑧𝑅𝑦) ∧ ∀𝑦(𝑦𝑅𝑥 → ∃𝑧(𝑧𝑅𝑥 ∧ ∀𝑤(𝑤𝑅𝑧 ↔ (𝑤𝑅𝑦𝑤 = 𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  wal 1539   = wceq 1541  wex 1780  wcel 2113  Vcvv 3437  cun 3896  c0 4282  {csn 4577   class class class wbr 5095  cmpt 5176   E cep 5520  ccnv 5620  cima 5624  ccom 5625  1-1-ontowf1o 6488  cfv 6489  ωcom 7805  reccrdg 8337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7677  ax-inf2 9542
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-om 7806  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338
This theorem is referenced by:  permaxinf2  45170
  Copyright terms: Public domain W3C validator