MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnsdomg Structured version   Visualization version   GIF version

Theorem nnsdomg 9298
Description: Omega strictly dominates a natural number. Example 3 of [Enderton] p. 146. In order to avoid the Axiom of Infinity, we include it as part of the antecedent. See nnsdom 9645 for the version without this sethood requirement. (Contributed by NM, 15-Jun-1998.) Avoid ax-pow 5362. (Revised by BTernaryTau, 7-Jan-2025.)
Assertion
Ref Expression
nnsdomg ((ω ∈ V ∧ 𝐴 ∈ ω) → 𝐴 ≺ ω)

Proof of Theorem nnsdomg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ordom 7861 . . . . . 6 Ord ω
2 ordelss 6377 . . . . . 6 ((Ord ω ∧ 𝐴 ∈ ω) → 𝐴 ⊆ ω)
31, 2mpan 688 . . . . 5 (𝐴 ∈ ω → 𝐴 ⊆ ω)
43adantr 481 . . . 4 ((𝐴 ∈ ω ∧ ω ∈ V) → 𝐴 ⊆ ω)
5 nnfi 9163 . . . . 5 (𝐴 ∈ ω → 𝐴 ∈ Fin)
6 ssdomfi2 9196 . . . . 5 ((𝐴 ∈ Fin ∧ ω ∈ V ∧ 𝐴 ⊆ ω) → 𝐴 ≼ ω)
75, 6syl3an1 1163 . . . 4 ((𝐴 ∈ ω ∧ ω ∈ V ∧ 𝐴 ⊆ ω) → 𝐴 ≼ ω)
84, 7mpd3an3 1462 . . 3 ((𝐴 ∈ ω ∧ ω ∈ V) → 𝐴 ≼ ω)
98ancoms 459 . 2 ((ω ∈ V ∧ 𝐴 ∈ ω) → 𝐴 ≼ ω)
10 ominf 9254 . . . 4 ¬ ω ∈ Fin
11 ensymfib 9183 . . . . . 6 (𝐴 ∈ Fin → (𝐴 ≈ ω ↔ ω ≈ 𝐴))
125, 11syl 17 . . . . 5 (𝐴 ∈ ω → (𝐴 ≈ ω ↔ ω ≈ 𝐴))
13 breq2 5151 . . . . . . . 8 (𝑥 = 𝐴 → (ω ≈ 𝑥 ↔ ω ≈ 𝐴))
1413rspcev 3612 . . . . . . 7 ((𝐴 ∈ ω ∧ ω ≈ 𝐴) → ∃𝑥 ∈ ω ω ≈ 𝑥)
15 isfi 8968 . . . . . . 7 (ω ∈ Fin ↔ ∃𝑥 ∈ ω ω ≈ 𝑥)
1614, 15sylibr 233 . . . . . 6 ((𝐴 ∈ ω ∧ ω ≈ 𝐴) → ω ∈ Fin)
1716ex 413 . . . . 5 (𝐴 ∈ ω → (ω ≈ 𝐴 → ω ∈ Fin))
1812, 17sylbid 239 . . . 4 (𝐴 ∈ ω → (𝐴 ≈ ω → ω ∈ Fin))
1910, 18mtoi 198 . . 3 (𝐴 ∈ ω → ¬ 𝐴 ≈ ω)
2019adantl 482 . 2 ((ω ∈ V ∧ 𝐴 ∈ ω) → ¬ 𝐴 ≈ ω)
21 brsdom 8967 . 2 (𝐴 ≺ ω ↔ (𝐴 ≼ ω ∧ ¬ 𝐴 ≈ ω))
229, 20, 21sylanbrc 583 1 ((ω ∈ V ∧ 𝐴 ∈ ω) → 𝐴 ≺ ω)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wcel 2106  wrex 3070  Vcvv 3474  wss 3947   class class class wbr 5147  Ord word 6360  ωcom 7851  cen 8932  cdom 8933  csdm 8934  Fincfn 8935
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-om 7852  df-1o 8462  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939
This theorem is referenced by:  isfiniteg  9300  infsdomnn  9301  infsdomnnOLD  9302  nnsdom  9645
  Copyright terms: Public domain W3C validator