![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nnsdomg | Structured version Visualization version GIF version |
Description: Omega strictly dominates a natural number. Example 3 of [Enderton] p. 146. In order to avoid the Axiom of Infinity, we include it as part of the antecedent. See nnsdom 9723 for the version without this sethood requirement. (Contributed by NM, 15-Jun-1998.) Avoid ax-pow 5383. (Revised by BTernaryTau, 7-Jan-2025.) |
Ref | Expression |
---|---|
nnsdomg | ⊢ ((ω ∈ V ∧ 𝐴 ∈ ω) → 𝐴 ≺ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordom 7913 | . . . . . 6 ⊢ Ord ω | |
2 | ordelss 6411 | . . . . . 6 ⊢ ((Ord ω ∧ 𝐴 ∈ ω) → 𝐴 ⊆ ω) | |
3 | 1, 2 | mpan 689 | . . . . 5 ⊢ (𝐴 ∈ ω → 𝐴 ⊆ ω) |
4 | 3 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ ω ∈ V) → 𝐴 ⊆ ω) |
5 | nnfi 9233 | . . . . 5 ⊢ (𝐴 ∈ ω → 𝐴 ∈ Fin) | |
6 | ssdomfi2 9263 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ ω ∈ V ∧ 𝐴 ⊆ ω) → 𝐴 ≼ ω) | |
7 | 5, 6 | syl3an1 1163 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ ω ∈ V ∧ 𝐴 ⊆ ω) → 𝐴 ≼ ω) |
8 | 4, 7 | mpd3an3 1462 | . . 3 ⊢ ((𝐴 ∈ ω ∧ ω ∈ V) → 𝐴 ≼ ω) |
9 | 8 | ancoms 458 | . 2 ⊢ ((ω ∈ V ∧ 𝐴 ∈ ω) → 𝐴 ≼ ω) |
10 | ominf 9321 | . . . 4 ⊢ ¬ ω ∈ Fin | |
11 | ensymfib 9250 | . . . . . 6 ⊢ (𝐴 ∈ Fin → (𝐴 ≈ ω ↔ ω ≈ 𝐴)) | |
12 | 5, 11 | syl 17 | . . . . 5 ⊢ (𝐴 ∈ ω → (𝐴 ≈ ω ↔ ω ≈ 𝐴)) |
13 | breq2 5170 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → (ω ≈ 𝑥 ↔ ω ≈ 𝐴)) | |
14 | 13 | rspcev 3635 | . . . . . . 7 ⊢ ((𝐴 ∈ ω ∧ ω ≈ 𝐴) → ∃𝑥 ∈ ω ω ≈ 𝑥) |
15 | isfi 9036 | . . . . . . 7 ⊢ (ω ∈ Fin ↔ ∃𝑥 ∈ ω ω ≈ 𝑥) | |
16 | 14, 15 | sylibr 234 | . . . . . 6 ⊢ ((𝐴 ∈ ω ∧ ω ≈ 𝐴) → ω ∈ Fin) |
17 | 16 | ex 412 | . . . . 5 ⊢ (𝐴 ∈ ω → (ω ≈ 𝐴 → ω ∈ Fin)) |
18 | 12, 17 | sylbid 240 | . . . 4 ⊢ (𝐴 ∈ ω → (𝐴 ≈ ω → ω ∈ Fin)) |
19 | 10, 18 | mtoi 199 | . . 3 ⊢ (𝐴 ∈ ω → ¬ 𝐴 ≈ ω) |
20 | 19 | adantl 481 | . 2 ⊢ ((ω ∈ V ∧ 𝐴 ∈ ω) → ¬ 𝐴 ≈ ω) |
21 | brsdom 9035 | . 2 ⊢ (𝐴 ≺ ω ↔ (𝐴 ≼ ω ∧ ¬ 𝐴 ≈ ω)) | |
22 | 9, 20, 21 | sylanbrc 582 | 1 ⊢ ((ω ∈ V ∧ 𝐴 ∈ ω) → 𝐴 ≺ ω) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 ∃wrex 3076 Vcvv 3488 ⊆ wss 3976 class class class wbr 5166 Ord word 6394 ωcom 7903 ≈ cen 9000 ≼ cdom 9001 ≺ csdm 9002 Fincfn 9003 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-om 7904 df-1o 8522 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 |
This theorem is referenced by: isfiniteg 9365 infsdomnn 9366 infsdomnnOLD 9367 nnsdom 9723 |
Copyright terms: Public domain | W3C validator |