MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnsdomg Structured version   Visualization version   GIF version

Theorem nnsdomg 8930
Description: Omega strictly dominates a natural number. Example 3 of [Enderton] p. 146. In order to avoid the Axiom of infinity, we include it as a hypothesis. (Contributed by NM, 15-Jun-1998.)
Assertion
Ref Expression
nnsdomg ((ω ∈ V ∧ 𝐴 ∈ ω) → 𝐴 ≺ ω)

Proof of Theorem nnsdomg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ssdomg 8674 . . 3 (ω ∈ V → (𝐴 ⊆ ω → 𝐴 ≼ ω))
2 ordom 7654 . . . 4 Ord ω
3 ordelss 6229 . . . 4 ((Ord ω ∧ 𝐴 ∈ ω) → 𝐴 ⊆ ω)
42, 3mpan 690 . . 3 (𝐴 ∈ ω → 𝐴 ⊆ ω)
51, 4impel 509 . 2 ((ω ∈ V ∧ 𝐴 ∈ ω) → 𝐴 ≼ ω)
6 ominf 8890 . . . 4 ¬ ω ∈ Fin
7 ensym 8677 . . . . 5 (𝐴 ≈ ω → ω ≈ 𝐴)
8 breq2 5057 . . . . . . . 8 (𝑥 = 𝐴 → (ω ≈ 𝑥 ↔ ω ≈ 𝐴))
98rspcev 3537 . . . . . . 7 ((𝐴 ∈ ω ∧ ω ≈ 𝐴) → ∃𝑥 ∈ ω ω ≈ 𝑥)
10 isfi 8652 . . . . . . 7 (ω ∈ Fin ↔ ∃𝑥 ∈ ω ω ≈ 𝑥)
119, 10sylibr 237 . . . . . 6 ((𝐴 ∈ ω ∧ ω ≈ 𝐴) → ω ∈ Fin)
1211ex 416 . . . . 5 (𝐴 ∈ ω → (ω ≈ 𝐴 → ω ∈ Fin))
137, 12syl5 34 . . . 4 (𝐴 ∈ ω → (𝐴 ≈ ω → ω ∈ Fin))
146, 13mtoi 202 . . 3 (𝐴 ∈ ω → ¬ 𝐴 ≈ ω)
1514adantl 485 . 2 ((ω ∈ V ∧ 𝐴 ∈ ω) → ¬ 𝐴 ≈ ω)
16 brsdom 8651 . 2 (𝐴 ≺ ω ↔ (𝐴 ≼ ω ∧ ¬ 𝐴 ≈ ω))
175, 15, 16sylanbrc 586 1 ((ω ∈ V ∧ 𝐴 ∈ ω) → 𝐴 ≺ ω)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  wcel 2110  wrex 3062  Vcvv 3408  wss 3866   class class class wbr 5053  Ord word 6212  ωcom 7644  cen 8623  cdom 8624  csdm 8625  Fincfn 8626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-br 5054  df-opab 5116  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-om 7645  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630
This theorem is referenced by:  isfiniteg  8931  infsdomnn  8932  nnsdom  9269
  Copyright terms: Public domain W3C validator