| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nnsdomg | Structured version Visualization version GIF version | ||
| Description: Omega strictly dominates a natural number. Example 3 of [Enderton] p. 146. In order to avoid the Axiom of Infinity, we include it as part of the antecedent. See nnsdom 9614 for the version without this sethood requirement. (Contributed by NM, 15-Jun-1998.) Avoid ax-pow 5323. (Revised by BTernaryTau, 7-Jan-2025.) |
| Ref | Expression |
|---|---|
| nnsdomg | ⊢ ((ω ∈ V ∧ 𝐴 ∈ ω) → 𝐴 ≺ ω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordom 7855 | . . . . . 6 ⊢ Ord ω | |
| 2 | ordelss 6351 | . . . . . 6 ⊢ ((Ord ω ∧ 𝐴 ∈ ω) → 𝐴 ⊆ ω) | |
| 3 | 1, 2 | mpan 690 | . . . . 5 ⊢ (𝐴 ∈ ω → 𝐴 ⊆ ω) |
| 4 | 3 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ ω ∈ V) → 𝐴 ⊆ ω) |
| 5 | nnfi 9137 | . . . . 5 ⊢ (𝐴 ∈ ω → 𝐴 ∈ Fin) | |
| 6 | ssdomfi2 9167 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ ω ∈ V ∧ 𝐴 ⊆ ω) → 𝐴 ≼ ω) | |
| 7 | 5, 6 | syl3an1 1163 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ ω ∈ V ∧ 𝐴 ⊆ ω) → 𝐴 ≼ ω) |
| 8 | 4, 7 | mpd3an3 1464 | . . 3 ⊢ ((𝐴 ∈ ω ∧ ω ∈ V) → 𝐴 ≼ ω) |
| 9 | 8 | ancoms 458 | . 2 ⊢ ((ω ∈ V ∧ 𝐴 ∈ ω) → 𝐴 ≼ ω) |
| 10 | ominf 9212 | . . . 4 ⊢ ¬ ω ∈ Fin | |
| 11 | ensymfib 9154 | . . . . . 6 ⊢ (𝐴 ∈ Fin → (𝐴 ≈ ω ↔ ω ≈ 𝐴)) | |
| 12 | 5, 11 | syl 17 | . . . . 5 ⊢ (𝐴 ∈ ω → (𝐴 ≈ ω ↔ ω ≈ 𝐴)) |
| 13 | breq2 5114 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → (ω ≈ 𝑥 ↔ ω ≈ 𝐴)) | |
| 14 | 13 | rspcev 3591 | . . . . . . 7 ⊢ ((𝐴 ∈ ω ∧ ω ≈ 𝐴) → ∃𝑥 ∈ ω ω ≈ 𝑥) |
| 15 | isfi 8950 | . . . . . . 7 ⊢ (ω ∈ Fin ↔ ∃𝑥 ∈ ω ω ≈ 𝑥) | |
| 16 | 14, 15 | sylibr 234 | . . . . . 6 ⊢ ((𝐴 ∈ ω ∧ ω ≈ 𝐴) → ω ∈ Fin) |
| 17 | 16 | ex 412 | . . . . 5 ⊢ (𝐴 ∈ ω → (ω ≈ 𝐴 → ω ∈ Fin)) |
| 18 | 12, 17 | sylbid 240 | . . . 4 ⊢ (𝐴 ∈ ω → (𝐴 ≈ ω → ω ∈ Fin)) |
| 19 | 10, 18 | mtoi 199 | . . 3 ⊢ (𝐴 ∈ ω → ¬ 𝐴 ≈ ω) |
| 20 | 19 | adantl 481 | . 2 ⊢ ((ω ∈ V ∧ 𝐴 ∈ ω) → ¬ 𝐴 ≈ ω) |
| 21 | brsdom 8949 | . 2 ⊢ (𝐴 ≺ ω ↔ (𝐴 ≼ ω ∧ ¬ 𝐴 ≈ ω)) | |
| 22 | 9, 20, 21 | sylanbrc 583 | 1 ⊢ ((ω ∈ V ∧ 𝐴 ∈ ω) → 𝐴 ≺ ω) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ∃wrex 3054 Vcvv 3450 ⊆ wss 3917 class class class wbr 5110 Ord word 6334 ωcom 7845 ≈ cen 8918 ≼ cdom 8919 ≺ csdm 8920 Fincfn 8921 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-om 7846 df-1o 8437 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 |
| This theorem is referenced by: isfiniteg 9255 infsdomnn 9256 infsdomnnOLD 9257 nnsdom 9614 |
| Copyright terms: Public domain | W3C validator |