MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnsdomg Structured version   Visualization version   GIF version

Theorem nnsdomg 9297
Description: Omega strictly dominates a natural number. Example 3 of [Enderton] p. 146. In order to avoid the Axiom of Infinity, we include it as part of the antecedent. See nnsdom 9644 for the version without this sethood requirement. (Contributed by NM, 15-Jun-1998.) Avoid ax-pow 5361. (Revised by BTernaryTau, 7-Jan-2025.)
Assertion
Ref Expression
nnsdomg ((ω ∈ V ∧ 𝐴 ∈ ω) → 𝐴 ≺ ω)

Proof of Theorem nnsdomg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ordom 7859 . . . . . 6 Ord ω
2 ordelss 6376 . . . . . 6 ((Ord ω ∧ 𝐴 ∈ ω) → 𝐴 ⊆ ω)
31, 2mpan 689 . . . . 5 (𝐴 ∈ ω → 𝐴 ⊆ ω)
43adantr 482 . . . 4 ((𝐴 ∈ ω ∧ ω ∈ V) → 𝐴 ⊆ ω)
5 nnfi 9162 . . . . 5 (𝐴 ∈ ω → 𝐴 ∈ Fin)
6 ssdomfi2 9195 . . . . 5 ((𝐴 ∈ Fin ∧ ω ∈ V ∧ 𝐴 ⊆ ω) → 𝐴 ≼ ω)
75, 6syl3an1 1164 . . . 4 ((𝐴 ∈ ω ∧ ω ∈ V ∧ 𝐴 ⊆ ω) → 𝐴 ≼ ω)
84, 7mpd3an3 1463 . . 3 ((𝐴 ∈ ω ∧ ω ∈ V) → 𝐴 ≼ ω)
98ancoms 460 . 2 ((ω ∈ V ∧ 𝐴 ∈ ω) → 𝐴 ≼ ω)
10 ominf 9253 . . . 4 ¬ ω ∈ Fin
11 ensymfib 9182 . . . . . 6 (𝐴 ∈ Fin → (𝐴 ≈ ω ↔ ω ≈ 𝐴))
125, 11syl 17 . . . . 5 (𝐴 ∈ ω → (𝐴 ≈ ω ↔ ω ≈ 𝐴))
13 breq2 5150 . . . . . . . 8 (𝑥 = 𝐴 → (ω ≈ 𝑥 ↔ ω ≈ 𝐴))
1413rspcev 3611 . . . . . . 7 ((𝐴 ∈ ω ∧ ω ≈ 𝐴) → ∃𝑥 ∈ ω ω ≈ 𝑥)
15 isfi 8967 . . . . . . 7 (ω ∈ Fin ↔ ∃𝑥 ∈ ω ω ≈ 𝑥)
1614, 15sylibr 233 . . . . . 6 ((𝐴 ∈ ω ∧ ω ≈ 𝐴) → ω ∈ Fin)
1716ex 414 . . . . 5 (𝐴 ∈ ω → (ω ≈ 𝐴 → ω ∈ Fin))
1812, 17sylbid 239 . . . 4 (𝐴 ∈ ω → (𝐴 ≈ ω → ω ∈ Fin))
1910, 18mtoi 198 . . 3 (𝐴 ∈ ω → ¬ 𝐴 ≈ ω)
2019adantl 483 . 2 ((ω ∈ V ∧ 𝐴 ∈ ω) → ¬ 𝐴 ≈ ω)
21 brsdom 8966 . 2 (𝐴 ≺ ω ↔ (𝐴 ≼ ω ∧ ¬ 𝐴 ≈ ω))
229, 20, 21sylanbrc 584 1 ((ω ∈ V ∧ 𝐴 ∈ ω) → 𝐴 ≺ ω)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  wcel 2107  wrex 3071  Vcvv 3475  wss 3946   class class class wbr 5146  Ord word 6359  ωcom 7849  cen 8931  cdom 8932  csdm 8933  Fincfn 8934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5297  ax-nul 5304  ax-pr 5425  ax-un 7719
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3965  df-nul 4321  df-if 4527  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4907  df-br 5147  df-opab 5209  df-mpt 5230  df-tr 5264  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-ord 6363  df-on 6364  df-lim 6365  df-suc 6366  df-iota 6491  df-fun 6541  df-fn 6542  df-f 6543  df-f1 6544  df-fo 6545  df-f1o 6546  df-fv 6547  df-om 7850  df-1o 8460  df-en 8935  df-dom 8936  df-sdom 8937  df-fin 8938
This theorem is referenced by:  isfiniteg  9299  infsdomnn  9300  infsdomnnOLD  9301  nnsdom  9644
  Copyright terms: Public domain W3C validator