MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnsdomg Structured version   Visualization version   GIF version

Theorem nnsdomg 9363
Description: Omega strictly dominates a natural number. Example 3 of [Enderton] p. 146. In order to avoid the Axiom of Infinity, we include it as part of the antecedent. See nnsdom 9723 for the version without this sethood requirement. (Contributed by NM, 15-Jun-1998.) Avoid ax-pow 5383. (Revised by BTernaryTau, 7-Jan-2025.)
Assertion
Ref Expression
nnsdomg ((ω ∈ V ∧ 𝐴 ∈ ω) → 𝐴 ≺ ω)

Proof of Theorem nnsdomg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ordom 7913 . . . . . 6 Ord ω
2 ordelss 6411 . . . . . 6 ((Ord ω ∧ 𝐴 ∈ ω) → 𝐴 ⊆ ω)
31, 2mpan 689 . . . . 5 (𝐴 ∈ ω → 𝐴 ⊆ ω)
43adantr 480 . . . 4 ((𝐴 ∈ ω ∧ ω ∈ V) → 𝐴 ⊆ ω)
5 nnfi 9233 . . . . 5 (𝐴 ∈ ω → 𝐴 ∈ Fin)
6 ssdomfi2 9263 . . . . 5 ((𝐴 ∈ Fin ∧ ω ∈ V ∧ 𝐴 ⊆ ω) → 𝐴 ≼ ω)
75, 6syl3an1 1163 . . . 4 ((𝐴 ∈ ω ∧ ω ∈ V ∧ 𝐴 ⊆ ω) → 𝐴 ≼ ω)
84, 7mpd3an3 1462 . . 3 ((𝐴 ∈ ω ∧ ω ∈ V) → 𝐴 ≼ ω)
98ancoms 458 . 2 ((ω ∈ V ∧ 𝐴 ∈ ω) → 𝐴 ≼ ω)
10 ominf 9321 . . . 4 ¬ ω ∈ Fin
11 ensymfib 9250 . . . . . 6 (𝐴 ∈ Fin → (𝐴 ≈ ω ↔ ω ≈ 𝐴))
125, 11syl 17 . . . . 5 (𝐴 ∈ ω → (𝐴 ≈ ω ↔ ω ≈ 𝐴))
13 breq2 5170 . . . . . . . 8 (𝑥 = 𝐴 → (ω ≈ 𝑥 ↔ ω ≈ 𝐴))
1413rspcev 3635 . . . . . . 7 ((𝐴 ∈ ω ∧ ω ≈ 𝐴) → ∃𝑥 ∈ ω ω ≈ 𝑥)
15 isfi 9036 . . . . . . 7 (ω ∈ Fin ↔ ∃𝑥 ∈ ω ω ≈ 𝑥)
1614, 15sylibr 234 . . . . . 6 ((𝐴 ∈ ω ∧ ω ≈ 𝐴) → ω ∈ Fin)
1716ex 412 . . . . 5 (𝐴 ∈ ω → (ω ≈ 𝐴 → ω ∈ Fin))
1812, 17sylbid 240 . . . 4 (𝐴 ∈ ω → (𝐴 ≈ ω → ω ∈ Fin))
1910, 18mtoi 199 . . 3 (𝐴 ∈ ω → ¬ 𝐴 ≈ ω)
2019adantl 481 . 2 ((ω ∈ V ∧ 𝐴 ∈ ω) → ¬ 𝐴 ≈ ω)
21 brsdom 9035 . 2 (𝐴 ≺ ω ↔ (𝐴 ≼ ω ∧ ¬ 𝐴 ≈ ω))
229, 20, 21sylanbrc 582 1 ((ω ∈ V ∧ 𝐴 ∈ ω) → 𝐴 ≺ ω)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wcel 2108  wrex 3076  Vcvv 3488  wss 3976   class class class wbr 5166  Ord word 6394  ωcom 7903  cen 9000  cdom 9001  csdm 9002  Fincfn 9003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-om 7904  df-1o 8522  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007
This theorem is referenced by:  isfiniteg  9365  infsdomnn  9366  infsdomnnOLD  9367  nnsdom  9723
  Copyright terms: Public domain W3C validator