| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nnsdomg | Structured version Visualization version GIF version | ||
| Description: Omega strictly dominates a natural number. Example 3 of [Enderton] p. 146. In order to avoid the Axiom of Infinity, we include it as part of the antecedent. See nnsdom 9544 for the version without this sethood requirement. (Contributed by NM, 15-Jun-1998.) Avoid ax-pow 5301. (Revised by BTernaryTau, 7-Jan-2025.) |
| Ref | Expression |
|---|---|
| nnsdomg | ⊢ ((ω ∈ V ∧ 𝐴 ∈ ω) → 𝐴 ≺ ω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordom 7806 | . . . . . 6 ⊢ Ord ω | |
| 2 | ordelss 6322 | . . . . . 6 ⊢ ((Ord ω ∧ 𝐴 ∈ ω) → 𝐴 ⊆ ω) | |
| 3 | 1, 2 | mpan 690 | . . . . 5 ⊢ (𝐴 ∈ ω → 𝐴 ⊆ ω) |
| 4 | 3 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ ω ∈ V) → 𝐴 ⊆ ω) |
| 5 | nnfi 9077 | . . . . 5 ⊢ (𝐴 ∈ ω → 𝐴 ∈ Fin) | |
| 6 | ssdomfi2 9106 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ ω ∈ V ∧ 𝐴 ⊆ ω) → 𝐴 ≼ ω) | |
| 7 | 5, 6 | syl3an1 1163 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ ω ∈ V ∧ 𝐴 ⊆ ω) → 𝐴 ≼ ω) |
| 8 | 4, 7 | mpd3an3 1464 | . . 3 ⊢ ((𝐴 ∈ ω ∧ ω ∈ V) → 𝐴 ≼ ω) |
| 9 | 8 | ancoms 458 | . 2 ⊢ ((ω ∈ V ∧ 𝐴 ∈ ω) → 𝐴 ≼ ω) |
| 10 | ominf 9148 | . . . 4 ⊢ ¬ ω ∈ Fin | |
| 11 | ensymfib 9093 | . . . . . 6 ⊢ (𝐴 ∈ Fin → (𝐴 ≈ ω ↔ ω ≈ 𝐴)) | |
| 12 | 5, 11 | syl 17 | . . . . 5 ⊢ (𝐴 ∈ ω → (𝐴 ≈ ω ↔ ω ≈ 𝐴)) |
| 13 | breq2 5093 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → (ω ≈ 𝑥 ↔ ω ≈ 𝐴)) | |
| 14 | 13 | rspcev 3572 | . . . . . . 7 ⊢ ((𝐴 ∈ ω ∧ ω ≈ 𝐴) → ∃𝑥 ∈ ω ω ≈ 𝑥) |
| 15 | isfi 8898 | . . . . . . 7 ⊢ (ω ∈ Fin ↔ ∃𝑥 ∈ ω ω ≈ 𝑥) | |
| 16 | 14, 15 | sylibr 234 | . . . . . 6 ⊢ ((𝐴 ∈ ω ∧ ω ≈ 𝐴) → ω ∈ Fin) |
| 17 | 16 | ex 412 | . . . . 5 ⊢ (𝐴 ∈ ω → (ω ≈ 𝐴 → ω ∈ Fin)) |
| 18 | 12, 17 | sylbid 240 | . . . 4 ⊢ (𝐴 ∈ ω → (𝐴 ≈ ω → ω ∈ Fin)) |
| 19 | 10, 18 | mtoi 199 | . . 3 ⊢ (𝐴 ∈ ω → ¬ 𝐴 ≈ ω) |
| 20 | 19 | adantl 481 | . 2 ⊢ ((ω ∈ V ∧ 𝐴 ∈ ω) → ¬ 𝐴 ≈ ω) |
| 21 | brsdom 8897 | . 2 ⊢ (𝐴 ≺ ω ↔ (𝐴 ≼ ω ∧ ¬ 𝐴 ≈ ω)) | |
| 22 | 9, 20, 21 | sylanbrc 583 | 1 ⊢ ((ω ∈ V ∧ 𝐴 ∈ ω) → 𝐴 ≺ ω) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2111 ∃wrex 3056 Vcvv 3436 ⊆ wss 3897 class class class wbr 5089 Ord word 6305 ωcom 7796 ≈ cen 8866 ≼ cdom 8867 ≺ csdm 8868 Fincfn 8869 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-om 7797 df-1o 8385 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 |
| This theorem is referenced by: isfiniteg 9184 infsdomnn 9185 nnsdom 9544 |
| Copyright terms: Public domain | W3C validator |