MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1dom Structured version   Visualization version   GIF version

Theorem f1dom 9014
Description: The domain of a one-to-one function is dominated by its codomain. (Contributed by NM, 19-Jun-1998.)
Hypothesis
Ref Expression
f1dom.1 𝐵 ∈ V
Assertion
Ref Expression
f1dom (𝐹:𝐴1-1𝐵𝐴𝐵)

Proof of Theorem f1dom
StepHypRef Expression
1 f1dom.1 . 2 𝐵 ∈ V
2 f1domg 9012 . 2 (𝐵 ∈ V → (𝐹:𝐴1-1𝐵𝐴𝐵))
31, 2ax-mp 5 1 (𝐹:𝐴1-1𝐵𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  Vcvv 3480   class class class wbr 5143  1-1wf1 6558  cdom 8983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-dom 8987
This theorem is referenced by:  dominf  10485  dominfac  10613  lgsqrlem4  27393  fimgmcyc  42544
  Copyright terms: Public domain W3C validator