![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1dom | Structured version Visualization version GIF version |
Description: The domain of a one-to-one function is dominated by its codomain. (Contributed by NM, 19-Jun-1998.) |
Ref | Expression |
---|---|
f1dom.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
f1dom | ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐴 ≼ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1dom.1 | . 2 ⊢ 𝐵 ∈ V | |
2 | f1domg 8324 | . 2 ⊢ (𝐵 ∈ V → (𝐹:𝐴–1-1→𝐵 → 𝐴 ≼ 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐴 ≼ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2051 Vcvv 3408 class class class wbr 4925 –1-1→wf1 6182 ≼ cdom 8302 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2743 ax-rep 5045 ax-sep 5056 ax-nul 5063 ax-pr 5182 ax-un 7277 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2752 df-cleq 2764 df-clel 2839 df-nfc 2911 df-ne 2961 df-ral 3086 df-rex 3087 df-reu 3088 df-rab 3090 df-v 3410 df-sbc 3675 df-csb 3780 df-dif 3825 df-un 3827 df-in 3829 df-ss 3836 df-nul 4173 df-if 4345 df-sn 4436 df-pr 4438 df-op 4442 df-uni 4709 df-iun 4790 df-br 4926 df-opab 4988 df-mpt 5005 df-id 5308 df-xp 5409 df-rel 5410 df-cnv 5411 df-co 5412 df-dm 5413 df-rn 5414 df-res 5415 df-ima 5416 df-iota 6149 df-fun 6187 df-fn 6188 df-f 6189 df-f1 6190 df-fo 6191 df-f1o 6192 df-fv 6193 df-dom 8306 |
This theorem is referenced by: dominf 9663 dominfac 9791 lgsqrlem4 25642 |
Copyright terms: Public domain | W3C validator |