MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashsdom Structured version   Visualization version   GIF version

Theorem hashsdom 13806
Description: Strict dominance relation for the size function. (Contributed by Mario Carneiro, 18-Aug-2014.)
Assertion
Ref Expression
hashsdom ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) < (♯‘𝐵) ↔ 𝐴𝐵))

Proof of Theorem hashsdom
StepHypRef Expression
1 hashcl 13781 . . . 4 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0)
2 hashcl 13781 . . . 4 (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0)
3 nn0re 11957 . . . . 5 ((♯‘𝐴) ∈ ℕ0 → (♯‘𝐴) ∈ ℝ)
4 nn0re 11957 . . . . 5 ((♯‘𝐵) ∈ ℕ0 → (♯‘𝐵) ∈ ℝ)
5 ltlen 10793 . . . . 5 (((♯‘𝐴) ∈ ℝ ∧ (♯‘𝐵) ∈ ℝ) → ((♯‘𝐴) < (♯‘𝐵) ↔ ((♯‘𝐴) ≤ (♯‘𝐵) ∧ (♯‘𝐵) ≠ (♯‘𝐴))))
63, 4, 5syl2an 598 . . . 4 (((♯‘𝐴) ∈ ℕ0 ∧ (♯‘𝐵) ∈ ℕ0) → ((♯‘𝐴) < (♯‘𝐵) ↔ ((♯‘𝐴) ≤ (♯‘𝐵) ∧ (♯‘𝐵) ≠ (♯‘𝐴))))
71, 2, 6syl2an 598 . . 3 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) < (♯‘𝐵) ↔ ((♯‘𝐴) ≤ (♯‘𝐵) ∧ (♯‘𝐵) ≠ (♯‘𝐴))))
8 hashdom 13804 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) ≤ (♯‘𝐵) ↔ 𝐴𝐵))
9 eqcom 2766 . . . . . 6 ((♯‘𝐵) = (♯‘𝐴) ↔ (♯‘𝐴) = (♯‘𝐵))
10 hashen 13771 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) = (♯‘𝐵) ↔ 𝐴𝐵))
119, 10syl5bb 286 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐵) = (♯‘𝐴) ↔ 𝐴𝐵))
1211necon3abid 2988 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐵) ≠ (♯‘𝐴) ↔ ¬ 𝐴𝐵))
138, 12anbi12d 633 . . 3 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (((♯‘𝐴) ≤ (♯‘𝐵) ∧ (♯‘𝐵) ≠ (♯‘𝐴)) ↔ (𝐴𝐵 ∧ ¬ 𝐴𝐵)))
147, 13bitrd 282 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) < (♯‘𝐵) ↔ (𝐴𝐵 ∧ ¬ 𝐴𝐵)))
15 brsdom 8564 . 2 (𝐴𝐵 ↔ (𝐴𝐵 ∧ ¬ 𝐴𝐵))
1614, 15bitr4di 292 1 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) < (♯‘𝐵) ↔ 𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1539  wcel 2112  wne 2952   class class class wbr 5037  cfv 6341  cen 8538  cdom 8539  csdm 8540  Fincfn 8541  cr 10588   < clt 10727  cle 10728  0cn0 11948  chash 13754
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5174  ax-nul 5181  ax-pow 5239  ax-pr 5303  ax-un 7466  ax-cnex 10645  ax-resscn 10646  ax-1cn 10647  ax-icn 10648  ax-addcl 10649  ax-addrcl 10650  ax-mulcl 10651  ax-mulrcl 10652  ax-mulcom 10653  ax-addass 10654  ax-mulass 10655  ax-distr 10656  ax-i2m1 10657  ax-1ne0 10658  ax-1rid 10659  ax-rnegex 10660  ax-rrecex 10661  ax-cnre 10662  ax-pre-lttri 10663  ax-pre-lttrn 10664  ax-pre-ltadd 10665  ax-pre-mulgt0 10666
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rab 3080  df-v 3412  df-sbc 3700  df-csb 3809  df-dif 3864  df-un 3866  df-in 3868  df-ss 3878  df-pss 3880  df-nul 4229  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-tp 4531  df-op 4533  df-uni 4803  df-int 4843  df-iun 4889  df-br 5038  df-opab 5100  df-mpt 5118  df-tr 5144  df-id 5435  df-eprel 5440  df-po 5448  df-so 5449  df-fr 5488  df-we 5490  df-xp 5535  df-rel 5536  df-cnv 5537  df-co 5538  df-dm 5539  df-rn 5540  df-res 5541  df-ima 5542  df-pred 6132  df-ord 6178  df-on 6179  df-lim 6180  df-suc 6181  df-iota 6300  df-fun 6343  df-fn 6344  df-f 6345  df-f1 6346  df-fo 6347  df-f1o 6348  df-fv 6349  df-riota 7115  df-ov 7160  df-oprab 7161  df-mpo 7162  df-om 7587  df-1st 7700  df-2nd 7701  df-wrecs 7964  df-recs 8025  df-rdg 8063  df-oadd 8123  df-er 8306  df-en 8542  df-dom 8543  df-sdom 8544  df-fin 8545  df-card 9415  df-pnf 10729  df-mnf 10730  df-xr 10731  df-ltxr 10732  df-le 10733  df-sub 10924  df-neg 10925  df-nn 11689  df-n0 11949  df-xnn0 12021  df-z 12035  df-uz 12297  df-fz 12954  df-hash 13755
This theorem is referenced by:  fzsdom2  13853  vdwlem12  16398  odcau  18811  pgpssslw  18821  pgpfaclem2  19287  ppiltx  25876  erdszelem10  32692  rp-isfinite6  40645
  Copyright terms: Public domain W3C validator