![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hashsdom | Structured version Visualization version GIF version |
Description: Strict dominance relation for the size function. (Contributed by Mario Carneiro, 18-Aug-2014.) |
Ref | Expression |
---|---|
hashsdom | ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) < (♯‘𝐵) ↔ 𝐴 ≺ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hashcl 14298 | . . . 4 ⊢ (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0) | |
2 | hashcl 14298 | . . . 4 ⊢ (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0) | |
3 | nn0re 12463 | . . . . 5 ⊢ ((♯‘𝐴) ∈ ℕ0 → (♯‘𝐴) ∈ ℝ) | |
4 | nn0re 12463 | . . . . 5 ⊢ ((♯‘𝐵) ∈ ℕ0 → (♯‘𝐵) ∈ ℝ) | |
5 | ltlen 11297 | . . . . 5 ⊢ (((♯‘𝐴) ∈ ℝ ∧ (♯‘𝐵) ∈ ℝ) → ((♯‘𝐴) < (♯‘𝐵) ↔ ((♯‘𝐴) ≤ (♯‘𝐵) ∧ (♯‘𝐵) ≠ (♯‘𝐴)))) | |
6 | 3, 4, 5 | syl2an 596 | . . . 4 ⊢ (((♯‘𝐴) ∈ ℕ0 ∧ (♯‘𝐵) ∈ ℕ0) → ((♯‘𝐴) < (♯‘𝐵) ↔ ((♯‘𝐴) ≤ (♯‘𝐵) ∧ (♯‘𝐵) ≠ (♯‘𝐴)))) |
7 | 1, 2, 6 | syl2an 596 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) < (♯‘𝐵) ↔ ((♯‘𝐴) ≤ (♯‘𝐵) ∧ (♯‘𝐵) ≠ (♯‘𝐴)))) |
8 | hashdom 14321 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) ≤ (♯‘𝐵) ↔ 𝐴 ≼ 𝐵)) | |
9 | eqcom 2738 | . . . . . 6 ⊢ ((♯‘𝐵) = (♯‘𝐴) ↔ (♯‘𝐴) = (♯‘𝐵)) | |
10 | hashen 14289 | . . . . . 6 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) = (♯‘𝐵) ↔ 𝐴 ≈ 𝐵)) | |
11 | 9, 10 | bitrid 282 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐵) = (♯‘𝐴) ↔ 𝐴 ≈ 𝐵)) |
12 | 11 | necon3abid 2976 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐵) ≠ (♯‘𝐴) ↔ ¬ 𝐴 ≈ 𝐵)) |
13 | 8, 12 | anbi12d 631 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (((♯‘𝐴) ≤ (♯‘𝐵) ∧ (♯‘𝐵) ≠ (♯‘𝐴)) ↔ (𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ≈ 𝐵))) |
14 | 7, 13 | bitrd 278 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) < (♯‘𝐵) ↔ (𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ≈ 𝐵))) |
15 | brsdom 8954 | . 2 ⊢ (𝐴 ≺ 𝐵 ↔ (𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ≈ 𝐵)) | |
16 | 14, 15 | bitr4di 288 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) < (♯‘𝐵) ↔ 𝐴 ≺ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ≠ wne 2939 class class class wbr 5141 ‘cfv 6532 ≈ cen 8919 ≼ cdom 8920 ≺ csdm 8921 Fincfn 8922 ℝcr 11091 < clt 11230 ≤ cle 11231 ℕ0cn0 12454 ♯chash 14272 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7708 ax-cnex 11148 ax-resscn 11149 ax-1cn 11150 ax-icn 11151 ax-addcl 11152 ax-addrcl 11153 ax-mulcl 11154 ax-mulrcl 11155 ax-mulcom 11156 ax-addass 11157 ax-mulass 11158 ax-distr 11159 ax-i2m1 11160 ax-1ne0 11161 ax-1rid 11162 ax-rnegex 11163 ax-rrecex 11164 ax-cnre 11165 ax-pre-lttri 11166 ax-pre-lttrn 11167 ax-pre-ltadd 11168 ax-pre-mulgt0 11169 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6289 df-ord 6356 df-on 6357 df-lim 6358 df-suc 6359 df-iota 6484 df-fun 6534 df-fn 6535 df-f 6536 df-f1 6537 df-fo 6538 df-f1o 6539 df-fv 6540 df-riota 7349 df-ov 7396 df-oprab 7397 df-mpo 7398 df-om 7839 df-1st 7957 df-2nd 7958 df-frecs 8248 df-wrecs 8279 df-recs 8353 df-rdg 8392 df-1o 8448 df-oadd 8452 df-er 8686 df-en 8923 df-dom 8924 df-sdom 8925 df-fin 8926 df-card 9916 df-pnf 11232 df-mnf 11233 df-xr 11234 df-ltxr 11235 df-le 11236 df-sub 11428 df-neg 11429 df-nn 12195 df-n0 12455 df-xnn0 12527 df-z 12541 df-uz 12805 df-fz 13467 df-hash 14273 |
This theorem is referenced by: fzsdom2 14370 vdwlem12 16907 odcau 19436 pgpssslw 19446 pgpfaclem2 19911 ppiltx 26608 erdszelem10 34022 rp-isfinite6 42040 |
Copyright terms: Public domain | W3C validator |