MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashsdom Structured version   Visualization version   GIF version

Theorem hashsdom 14340
Description: Strict dominance relation for the size function. (Contributed by Mario Carneiro, 18-Aug-2014.)
Assertion
Ref Expression
hashsdom ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) < (♯‘𝐵) ↔ 𝐴𝐵))

Proof of Theorem hashsdom
StepHypRef Expression
1 hashcl 14315 . . . 4 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0)
2 hashcl 14315 . . . 4 (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0)
3 nn0re 12480 . . . . 5 ((♯‘𝐴) ∈ ℕ0 → (♯‘𝐴) ∈ ℝ)
4 nn0re 12480 . . . . 5 ((♯‘𝐵) ∈ ℕ0 → (♯‘𝐵) ∈ ℝ)
5 ltlen 11314 . . . . 5 (((♯‘𝐴) ∈ ℝ ∧ (♯‘𝐵) ∈ ℝ) → ((♯‘𝐴) < (♯‘𝐵) ↔ ((♯‘𝐴) ≤ (♯‘𝐵) ∧ (♯‘𝐵) ≠ (♯‘𝐴))))
63, 4, 5syl2an 596 . . . 4 (((♯‘𝐴) ∈ ℕ0 ∧ (♯‘𝐵) ∈ ℕ0) → ((♯‘𝐴) < (♯‘𝐵) ↔ ((♯‘𝐴) ≤ (♯‘𝐵) ∧ (♯‘𝐵) ≠ (♯‘𝐴))))
71, 2, 6syl2an 596 . . 3 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) < (♯‘𝐵) ↔ ((♯‘𝐴) ≤ (♯‘𝐵) ∧ (♯‘𝐵) ≠ (♯‘𝐴))))
8 hashdom 14338 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) ≤ (♯‘𝐵) ↔ 𝐴𝐵))
9 eqcom 2739 . . . . . 6 ((♯‘𝐵) = (♯‘𝐴) ↔ (♯‘𝐴) = (♯‘𝐵))
10 hashen 14306 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) = (♯‘𝐵) ↔ 𝐴𝐵))
119, 10bitrid 282 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐵) = (♯‘𝐴) ↔ 𝐴𝐵))
1211necon3abid 2977 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐵) ≠ (♯‘𝐴) ↔ ¬ 𝐴𝐵))
138, 12anbi12d 631 . . 3 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (((♯‘𝐴) ≤ (♯‘𝐵) ∧ (♯‘𝐵) ≠ (♯‘𝐴)) ↔ (𝐴𝐵 ∧ ¬ 𝐴𝐵)))
147, 13bitrd 278 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) < (♯‘𝐵) ↔ (𝐴𝐵 ∧ ¬ 𝐴𝐵)))
15 brsdom 8970 . 2 (𝐴𝐵 ↔ (𝐴𝐵 ∧ ¬ 𝐴𝐵))
1614, 15bitr4di 288 1 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) < (♯‘𝐵) ↔ 𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wne 2940   class class class wbr 5148  cfv 6543  cen 8935  cdom 8936  csdm 8937  Fincfn 8938  cr 11108   < clt 11247  cle 11248  0cn0 12471  chash 14289
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-1st 7974  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-1o 8465  df-oadd 8469  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-card 9933  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-n0 12472  df-xnn0 12544  df-z 12558  df-uz 12822  df-fz 13484  df-hash 14290
This theorem is referenced by:  fzsdom2  14387  vdwlem12  16924  odcau  19471  pgpssslw  19481  pgpfaclem2  19951  ppiltx  26678  erdszelem10  34186  rp-isfinite6  42259
  Copyright terms: Public domain W3C validator