Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hashsdom | Structured version Visualization version GIF version |
Description: Strict dominance relation for the size function. (Contributed by Mario Carneiro, 18-Aug-2014.) |
Ref | Expression |
---|---|
hashsdom | ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) < (♯‘𝐵) ↔ 𝐴 ≺ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hashcl 13781 | . . . 4 ⊢ (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0) | |
2 | hashcl 13781 | . . . 4 ⊢ (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0) | |
3 | nn0re 11957 | . . . . 5 ⊢ ((♯‘𝐴) ∈ ℕ0 → (♯‘𝐴) ∈ ℝ) | |
4 | nn0re 11957 | . . . . 5 ⊢ ((♯‘𝐵) ∈ ℕ0 → (♯‘𝐵) ∈ ℝ) | |
5 | ltlen 10793 | . . . . 5 ⊢ (((♯‘𝐴) ∈ ℝ ∧ (♯‘𝐵) ∈ ℝ) → ((♯‘𝐴) < (♯‘𝐵) ↔ ((♯‘𝐴) ≤ (♯‘𝐵) ∧ (♯‘𝐵) ≠ (♯‘𝐴)))) | |
6 | 3, 4, 5 | syl2an 598 | . . . 4 ⊢ (((♯‘𝐴) ∈ ℕ0 ∧ (♯‘𝐵) ∈ ℕ0) → ((♯‘𝐴) < (♯‘𝐵) ↔ ((♯‘𝐴) ≤ (♯‘𝐵) ∧ (♯‘𝐵) ≠ (♯‘𝐴)))) |
7 | 1, 2, 6 | syl2an 598 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) < (♯‘𝐵) ↔ ((♯‘𝐴) ≤ (♯‘𝐵) ∧ (♯‘𝐵) ≠ (♯‘𝐴)))) |
8 | hashdom 13804 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) ≤ (♯‘𝐵) ↔ 𝐴 ≼ 𝐵)) | |
9 | eqcom 2766 | . . . . . 6 ⊢ ((♯‘𝐵) = (♯‘𝐴) ↔ (♯‘𝐴) = (♯‘𝐵)) | |
10 | hashen 13771 | . . . . . 6 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) = (♯‘𝐵) ↔ 𝐴 ≈ 𝐵)) | |
11 | 9, 10 | syl5bb 286 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐵) = (♯‘𝐴) ↔ 𝐴 ≈ 𝐵)) |
12 | 11 | necon3abid 2988 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐵) ≠ (♯‘𝐴) ↔ ¬ 𝐴 ≈ 𝐵)) |
13 | 8, 12 | anbi12d 633 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (((♯‘𝐴) ≤ (♯‘𝐵) ∧ (♯‘𝐵) ≠ (♯‘𝐴)) ↔ (𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ≈ 𝐵))) |
14 | 7, 13 | bitrd 282 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) < (♯‘𝐵) ↔ (𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ≈ 𝐵))) |
15 | brsdom 8564 | . 2 ⊢ (𝐴 ≺ 𝐵 ↔ (𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ≈ 𝐵)) | |
16 | 14, 15 | bitr4di 292 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) < (♯‘𝐵) ↔ 𝐴 ≺ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1539 ∈ wcel 2112 ≠ wne 2952 class class class wbr 5037 ‘cfv 6341 ≈ cen 8538 ≼ cdom 8539 ≺ csdm 8540 Fincfn 8541 ℝcr 10588 < clt 10727 ≤ cle 10728 ℕ0cn0 11948 ♯chash 13754 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5174 ax-nul 5181 ax-pow 5239 ax-pr 5303 ax-un 7466 ax-cnex 10645 ax-resscn 10646 ax-1cn 10647 ax-icn 10648 ax-addcl 10649 ax-addrcl 10650 ax-mulcl 10651 ax-mulrcl 10652 ax-mulcom 10653 ax-addass 10654 ax-mulass 10655 ax-distr 10656 ax-i2m1 10657 ax-1ne0 10658 ax-1rid 10659 ax-rnegex 10660 ax-rrecex 10661 ax-cnre 10662 ax-pre-lttri 10663 ax-pre-lttrn 10664 ax-pre-ltadd 10665 ax-pre-mulgt0 10666 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rab 3080 df-v 3412 df-sbc 3700 df-csb 3809 df-dif 3864 df-un 3866 df-in 3868 df-ss 3878 df-pss 3880 df-nul 4229 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-tp 4531 df-op 4533 df-uni 4803 df-int 4843 df-iun 4889 df-br 5038 df-opab 5100 df-mpt 5118 df-tr 5144 df-id 5435 df-eprel 5440 df-po 5448 df-so 5449 df-fr 5488 df-we 5490 df-xp 5535 df-rel 5536 df-cnv 5537 df-co 5538 df-dm 5539 df-rn 5540 df-res 5541 df-ima 5542 df-pred 6132 df-ord 6178 df-on 6179 df-lim 6180 df-suc 6181 df-iota 6300 df-fun 6343 df-fn 6344 df-f 6345 df-f1 6346 df-fo 6347 df-f1o 6348 df-fv 6349 df-riota 7115 df-ov 7160 df-oprab 7161 df-mpo 7162 df-om 7587 df-1st 7700 df-2nd 7701 df-wrecs 7964 df-recs 8025 df-rdg 8063 df-oadd 8123 df-er 8306 df-en 8542 df-dom 8543 df-sdom 8544 df-fin 8545 df-card 9415 df-pnf 10729 df-mnf 10730 df-xr 10731 df-ltxr 10732 df-le 10733 df-sub 10924 df-neg 10925 df-nn 11689 df-n0 11949 df-xnn0 12021 df-z 12035 df-uz 12297 df-fz 12954 df-hash 13755 |
This theorem is referenced by: fzsdom2 13853 vdwlem12 16398 odcau 18811 pgpssslw 18821 pgpfaclem2 19287 ppiltx 25876 erdszelem10 32692 rp-isfinite6 40645 |
Copyright terms: Public domain | W3C validator |