![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nnsdomgOLD | Structured version Visualization version GIF version |
Description: Obsolete version of nnsdomg 9305 as of 7-Jan-2025. (Contributed by NM, 15-Jun-1998.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nnsdomgOLD | ⊢ ((ω ∈ V ∧ 𝐴 ∈ ω) → 𝐴 ≺ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssdomg 8999 | . . 3 ⊢ (ω ∈ V → (𝐴 ⊆ ω → 𝐴 ≼ ω)) | |
2 | ordom 7868 | . . . 4 ⊢ Ord ω | |
3 | ordelss 6381 | . . . 4 ⊢ ((Ord ω ∧ 𝐴 ∈ ω) → 𝐴 ⊆ ω) | |
4 | 2, 3 | mpan 687 | . . 3 ⊢ (𝐴 ∈ ω → 𝐴 ⊆ ω) |
5 | 1, 4 | impel 505 | . 2 ⊢ ((ω ∈ V ∧ 𝐴 ∈ ω) → 𝐴 ≼ ω) |
6 | ominf 9261 | . . . 4 ⊢ ¬ ω ∈ Fin | |
7 | ensym 9002 | . . . . 5 ⊢ (𝐴 ≈ ω → ω ≈ 𝐴) | |
8 | breq2 5153 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → (ω ≈ 𝑥 ↔ ω ≈ 𝐴)) | |
9 | 8 | rspcev 3613 | . . . . . . 7 ⊢ ((𝐴 ∈ ω ∧ ω ≈ 𝐴) → ∃𝑥 ∈ ω ω ≈ 𝑥) |
10 | isfi 8975 | . . . . . . 7 ⊢ (ω ∈ Fin ↔ ∃𝑥 ∈ ω ω ≈ 𝑥) | |
11 | 9, 10 | sylibr 233 | . . . . . 6 ⊢ ((𝐴 ∈ ω ∧ ω ≈ 𝐴) → ω ∈ Fin) |
12 | 11 | ex 412 | . . . . 5 ⊢ (𝐴 ∈ ω → (ω ≈ 𝐴 → ω ∈ Fin)) |
13 | 7, 12 | syl5 34 | . . . 4 ⊢ (𝐴 ∈ ω → (𝐴 ≈ ω → ω ∈ Fin)) |
14 | 6, 13 | mtoi 198 | . . 3 ⊢ (𝐴 ∈ ω → ¬ 𝐴 ≈ ω) |
15 | 14 | adantl 481 | . 2 ⊢ ((ω ∈ V ∧ 𝐴 ∈ ω) → ¬ 𝐴 ≈ ω) |
16 | brsdom 8974 | . 2 ⊢ (𝐴 ≺ ω ↔ (𝐴 ≼ ω ∧ ¬ 𝐴 ≈ ω)) | |
17 | 5, 15, 16 | sylanbrc 582 | 1 ⊢ ((ω ∈ V ∧ 𝐴 ∈ ω) → 𝐴 ≺ ω) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2105 ∃wrex 3069 Vcvv 3473 ⊆ wss 3949 class class class wbr 5149 Ord word 6364 ωcom 7858 ≈ cen 8939 ≼ cdom 8940 ≺ csdm 8941 Fincfn 8942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7728 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-om 7859 df-1o 8469 df-er 8706 df-en 8943 df-dom 8944 df-sdom 8945 df-fin 8946 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |