| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nnsdomgOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of nnsdomg 9246 as of 7-Jan-2025. (Contributed by NM, 15-Jun-1998.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nnsdomgOLD | ⊢ ((ω ∈ V ∧ 𝐴 ∈ ω) → 𝐴 ≺ ω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssdomg 8971 | . . 3 ⊢ (ω ∈ V → (𝐴 ⊆ ω → 𝐴 ≼ ω)) | |
| 2 | ordom 7852 | . . . 4 ⊢ Ord ω | |
| 3 | ordelss 6348 | . . . 4 ⊢ ((Ord ω ∧ 𝐴 ∈ ω) → 𝐴 ⊆ ω) | |
| 4 | 2, 3 | mpan 690 | . . 3 ⊢ (𝐴 ∈ ω → 𝐴 ⊆ ω) |
| 5 | 1, 4 | impel 505 | . 2 ⊢ ((ω ∈ V ∧ 𝐴 ∈ ω) → 𝐴 ≼ ω) |
| 6 | ominf 9205 | . . . 4 ⊢ ¬ ω ∈ Fin | |
| 7 | ensym 8974 | . . . . 5 ⊢ (𝐴 ≈ ω → ω ≈ 𝐴) | |
| 8 | breq2 5111 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → (ω ≈ 𝑥 ↔ ω ≈ 𝐴)) | |
| 9 | 8 | rspcev 3588 | . . . . . . 7 ⊢ ((𝐴 ∈ ω ∧ ω ≈ 𝐴) → ∃𝑥 ∈ ω ω ≈ 𝑥) |
| 10 | isfi 8947 | . . . . . . 7 ⊢ (ω ∈ Fin ↔ ∃𝑥 ∈ ω ω ≈ 𝑥) | |
| 11 | 9, 10 | sylibr 234 | . . . . . 6 ⊢ ((𝐴 ∈ ω ∧ ω ≈ 𝐴) → ω ∈ Fin) |
| 12 | 11 | ex 412 | . . . . 5 ⊢ (𝐴 ∈ ω → (ω ≈ 𝐴 → ω ∈ Fin)) |
| 13 | 7, 12 | syl5 34 | . . . 4 ⊢ (𝐴 ∈ ω → (𝐴 ≈ ω → ω ∈ Fin)) |
| 14 | 6, 13 | mtoi 199 | . . 3 ⊢ (𝐴 ∈ ω → ¬ 𝐴 ≈ ω) |
| 15 | 14 | adantl 481 | . 2 ⊢ ((ω ∈ V ∧ 𝐴 ∈ ω) → ¬ 𝐴 ≈ ω) |
| 16 | brsdom 8946 | . 2 ⊢ (𝐴 ≺ ω ↔ (𝐴 ≼ ω ∧ ¬ 𝐴 ≈ ω)) | |
| 17 | 5, 15, 16 | sylanbrc 583 | 1 ⊢ ((ω ∈ V ∧ 𝐴 ∈ ω) → 𝐴 ≺ ω) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2109 ∃wrex 3053 Vcvv 3447 ⊆ wss 3914 class class class wbr 5107 Ord word 6331 ωcom 7842 ≈ cen 8915 ≼ cdom 8916 ≺ csdm 8917 Fincfn 8918 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-om 7843 df-1o 8434 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |