MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sdomdomtrfi Structured version   Visualization version   GIF version

Theorem sdomdomtrfi 9220
Description: Transitivity of strict dominance and dominance when 𝐴 is finite, proved without using the Axiom of Power Sets (unlike sdomdomtr 9129). (Contributed by BTernaryTau, 25-Nov-2024.)
Assertion
Ref Expression
sdomdomtrfi ((𝐴 ∈ Fin ∧ 𝐴𝐵𝐵𝐶) → 𝐴𝐶)

Proof of Theorem sdomdomtrfi
StepHypRef Expression
1 sdomdom 8999 . . 3 (𝐴𝐵𝐴𝐵)
2 domtrfil 9211 . . 3 ((𝐴 ∈ Fin ∧ 𝐴𝐵𝐵𝐶) → 𝐴𝐶)
31, 2syl3an2 1164 . 2 ((𝐴 ∈ Fin ∧ 𝐴𝐵𝐵𝐶) → 𝐴𝐶)
4 simp1 1136 . . . . . . 7 ((𝐴 ∈ Fin ∧ 𝐵𝐶𝐴𝐶) → 𝐴 ∈ Fin)
5 ensymfib 9203 . . . . . . . . . 10 (𝐴 ∈ Fin → (𝐴𝐶𝐶𝐴))
65biimpa 476 . . . . . . . . 9 ((𝐴 ∈ Fin ∧ 𝐴𝐶) → 𝐶𝐴)
763adant2 1131 . . . . . . . 8 ((𝐴 ∈ Fin ∧ 𝐵𝐶𝐴𝐶) → 𝐶𝐴)
8 endom 8998 . . . . . . . . 9 (𝐶𝐴𝐶𝐴)
9 domtrfir 9213 . . . . . . . . 9 ((𝐴 ∈ Fin ∧ 𝐵𝐶𝐶𝐴) → 𝐵𝐴)
108, 9syl3an3 1165 . . . . . . . 8 ((𝐴 ∈ Fin ∧ 𝐵𝐶𝐶𝐴) → 𝐵𝐴)
117, 10syld3an3 1411 . . . . . . 7 ((𝐴 ∈ Fin ∧ 𝐵𝐶𝐴𝐶) → 𝐵𝐴)
12 domfi 9208 . . . . . . . 8 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → 𝐵 ∈ Fin)
13 domnsymfi 9219 . . . . . . . 8 ((𝐵 ∈ Fin ∧ 𝐵𝐴) → ¬ 𝐴𝐵)
1412, 13sylancom 588 . . . . . . 7 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → ¬ 𝐴𝐵)
154, 11, 14syl2anc 584 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐵𝐶𝐴𝐶) → ¬ 𝐴𝐵)
16153expia 1121 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵𝐶) → (𝐴𝐶 → ¬ 𝐴𝐵))
1716con2d 134 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵𝐶) → (𝐴𝐵 → ¬ 𝐴𝐶))
18173impia 1117 . . 3 ((𝐴 ∈ Fin ∧ 𝐵𝐶𝐴𝐵) → ¬ 𝐴𝐶)
19183com23 1126 . 2 ((𝐴 ∈ Fin ∧ 𝐴𝐵𝐵𝐶) → ¬ 𝐴𝐶)
20 brsdom 8994 . 2 (𝐴𝐶 ↔ (𝐴𝐶 ∧ ¬ 𝐴𝐶))
213, 19, 20sylanbrc 583 1 ((𝐴 ∈ Fin ∧ 𝐴𝐵𝐵𝐶) → 𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086  wcel 2109   class class class wbr 5124  cen 8961  cdom 8962  csdm 8963  Fincfn 8964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-om 7867  df-1o 8485  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968
This theorem is referenced by:  php3  9228  sucdom  9248  findcard3  9295  infsdomnn  9315  fodomfib  9346  fisdomnn  42262
  Copyright terms: Public domain W3C validator