|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > sdomdomtrfi | Structured version Visualization version GIF version | ||
| Description: Transitivity of strict dominance and dominance when 𝐴 is finite, proved without using the Axiom of Power Sets (unlike sdomdomtr 9151). (Contributed by BTernaryTau, 25-Nov-2024.) | 
| Ref | Expression | 
|---|---|
| sdomdomtrfi | ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≺ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≺ 𝐶) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sdomdom 9021 | . . 3 ⊢ (𝐴 ≺ 𝐵 → 𝐴 ≼ 𝐵) | |
| 2 | domtrfil 9233 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) | |
| 3 | 1, 2 | syl3an2 1164 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≺ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) | 
| 4 | simp1 1136 | . . . . . . 7 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ≼ 𝐶 ∧ 𝐴 ≈ 𝐶) → 𝐴 ∈ Fin) | |
| 5 | ensymfib 9225 | . . . . . . . . . 10 ⊢ (𝐴 ∈ Fin → (𝐴 ≈ 𝐶 ↔ 𝐶 ≈ 𝐴)) | |
| 6 | 5 | biimpa 476 | . . . . . . . . 9 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≈ 𝐶) → 𝐶 ≈ 𝐴) | 
| 7 | 6 | 3adant2 1131 | . . . . . . . 8 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ≼ 𝐶 ∧ 𝐴 ≈ 𝐶) → 𝐶 ≈ 𝐴) | 
| 8 | endom 9020 | . . . . . . . . 9 ⊢ (𝐶 ≈ 𝐴 → 𝐶 ≼ 𝐴) | |
| 9 | domtrfir 9235 | . . . . . . . . 9 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ≼ 𝐶 ∧ 𝐶 ≼ 𝐴) → 𝐵 ≼ 𝐴) | |
| 10 | 8, 9 | syl3an3 1165 | . . . . . . . 8 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ≼ 𝐶 ∧ 𝐶 ≈ 𝐴) → 𝐵 ≼ 𝐴) | 
| 11 | 7, 10 | syld3an3 1410 | . . . . . . 7 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ≼ 𝐶 ∧ 𝐴 ≈ 𝐶) → 𝐵 ≼ 𝐴) | 
| 12 | domfi 9230 | . . . . . . . 8 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ≼ 𝐴) → 𝐵 ∈ Fin) | |
| 13 | domnsymfi 9241 | . . . . . . . 8 ⊢ ((𝐵 ∈ Fin ∧ 𝐵 ≼ 𝐴) → ¬ 𝐴 ≺ 𝐵) | |
| 14 | 12, 13 | sylancom 588 | . . . . . . 7 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ≼ 𝐴) → ¬ 𝐴 ≺ 𝐵) | 
| 15 | 4, 11, 14 | syl2anc 584 | . . . . . 6 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ≼ 𝐶 ∧ 𝐴 ≈ 𝐶) → ¬ 𝐴 ≺ 𝐵) | 
| 16 | 15 | 3expia 1121 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ≼ 𝐶) → (𝐴 ≈ 𝐶 → ¬ 𝐴 ≺ 𝐵)) | 
| 17 | 16 | con2d 134 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ≼ 𝐶) → (𝐴 ≺ 𝐵 → ¬ 𝐴 ≈ 𝐶)) | 
| 18 | 17 | 3impia 1117 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ≼ 𝐶 ∧ 𝐴 ≺ 𝐵) → ¬ 𝐴 ≈ 𝐶) | 
| 19 | 18 | 3com23 1126 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≺ 𝐵 ∧ 𝐵 ≼ 𝐶) → ¬ 𝐴 ≈ 𝐶) | 
| 20 | brsdom 9016 | . 2 ⊢ (𝐴 ≺ 𝐶 ↔ (𝐴 ≼ 𝐶 ∧ ¬ 𝐴 ≈ 𝐶)) | |
| 21 | 3, 19, 20 | sylanbrc 583 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≺ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≺ 𝐶) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2107 class class class wbr 5142 ≈ cen 8983 ≼ cdom 8984 ≺ csdm 8985 Fincfn 8986 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 ax-un 7756 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-om 7889 df-1o 8507 df-en 8987 df-dom 8988 df-sdom 8989 df-fin 8990 | 
| This theorem is referenced by: php3 9250 sucdom 9272 findcard3 9319 infsdomnn 9339 fodomfib 9370 fisdomnn 42285 | 
| Copyright terms: Public domain | W3C validator |