![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sdomdomtrfi | Structured version Visualization version GIF version |
Description: Transitivity of strict dominance and dominance when 𝐴 is finite, proved without using the Axiom of Power Sets (unlike sdomdomtr 9138). (Contributed by BTernaryTau, 25-Nov-2024.) |
Ref | Expression |
---|---|
sdomdomtrfi | ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≺ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≺ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sdomdom 9001 | . . 3 ⊢ (𝐴 ≺ 𝐵 → 𝐴 ≼ 𝐵) | |
2 | domtrfil 9223 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) | |
3 | 1, 2 | syl3an2 1161 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≺ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) |
4 | simp1 1133 | . . . . . . 7 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ≼ 𝐶 ∧ 𝐴 ≈ 𝐶) → 𝐴 ∈ Fin) | |
5 | ensymfib 9215 | . . . . . . . . . 10 ⊢ (𝐴 ∈ Fin → (𝐴 ≈ 𝐶 ↔ 𝐶 ≈ 𝐴)) | |
6 | 5 | biimpa 475 | . . . . . . . . 9 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≈ 𝐶) → 𝐶 ≈ 𝐴) |
7 | 6 | 3adant2 1128 | . . . . . . . 8 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ≼ 𝐶 ∧ 𝐴 ≈ 𝐶) → 𝐶 ≈ 𝐴) |
8 | endom 9000 | . . . . . . . . 9 ⊢ (𝐶 ≈ 𝐴 → 𝐶 ≼ 𝐴) | |
9 | domtrfir 9225 | . . . . . . . . 9 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ≼ 𝐶 ∧ 𝐶 ≼ 𝐴) → 𝐵 ≼ 𝐴) | |
10 | 8, 9 | syl3an3 1162 | . . . . . . . 8 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ≼ 𝐶 ∧ 𝐶 ≈ 𝐴) → 𝐵 ≼ 𝐴) |
11 | 7, 10 | syld3an3 1406 | . . . . . . 7 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ≼ 𝐶 ∧ 𝐴 ≈ 𝐶) → 𝐵 ≼ 𝐴) |
12 | domfi 9220 | . . . . . . . 8 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ≼ 𝐴) → 𝐵 ∈ Fin) | |
13 | domnsymfi 9231 | . . . . . . . 8 ⊢ ((𝐵 ∈ Fin ∧ 𝐵 ≼ 𝐴) → ¬ 𝐴 ≺ 𝐵) | |
14 | 12, 13 | sylancom 586 | . . . . . . 7 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ≼ 𝐴) → ¬ 𝐴 ≺ 𝐵) |
15 | 4, 11, 14 | syl2anc 582 | . . . . . 6 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ≼ 𝐶 ∧ 𝐴 ≈ 𝐶) → ¬ 𝐴 ≺ 𝐵) |
16 | 15 | 3expia 1118 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ≼ 𝐶) → (𝐴 ≈ 𝐶 → ¬ 𝐴 ≺ 𝐵)) |
17 | 16 | con2d 134 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ≼ 𝐶) → (𝐴 ≺ 𝐵 → ¬ 𝐴 ≈ 𝐶)) |
18 | 17 | 3impia 1114 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ≼ 𝐶 ∧ 𝐴 ≺ 𝐵) → ¬ 𝐴 ≈ 𝐶) |
19 | 18 | 3com23 1123 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≺ 𝐵 ∧ 𝐵 ≼ 𝐶) → ¬ 𝐴 ≈ 𝐶) |
20 | brsdom 8996 | . 2 ⊢ (𝐴 ≺ 𝐶 ↔ (𝐴 ≼ 𝐶 ∧ ¬ 𝐴 ≈ 𝐶)) | |
21 | 3, 19, 20 | sylanbrc 581 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≺ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≺ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 ∧ w3a 1084 ∈ wcel 2098 class class class wbr 5149 ≈ cen 8961 ≼ cdom 8962 ≺ csdm 8963 Fincfn 8964 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pr 5429 ax-un 7741 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-opab 5212 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-om 7872 df-1o 8487 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 |
This theorem is referenced by: php3 9240 sucdom 9263 findcard3 9313 infsdomnn 9333 |
Copyright terms: Public domain | W3C validator |