![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sdomdomtrfi | Structured version Visualization version GIF version |
Description: Transitivity of strict dominance and dominance when 𝐴 is finite, proved without using the Axiom of Power Sets (unlike sdomdomtr 9131). (Contributed by BTernaryTau, 25-Nov-2024.) |
Ref | Expression |
---|---|
sdomdomtrfi | ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≺ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≺ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sdomdom 8997 | . . 3 ⊢ (𝐴 ≺ 𝐵 → 𝐴 ≼ 𝐵) | |
2 | domtrfil 9216 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) | |
3 | 1, 2 | syl3an2 1161 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≺ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) |
4 | simp1 1133 | . . . . . . 7 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ≼ 𝐶 ∧ 𝐴 ≈ 𝐶) → 𝐴 ∈ Fin) | |
5 | ensymfib 9208 | . . . . . . . . . 10 ⊢ (𝐴 ∈ Fin → (𝐴 ≈ 𝐶 ↔ 𝐶 ≈ 𝐴)) | |
6 | 5 | biimpa 475 | . . . . . . . . 9 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≈ 𝐶) → 𝐶 ≈ 𝐴) |
7 | 6 | 3adant2 1128 | . . . . . . . 8 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ≼ 𝐶 ∧ 𝐴 ≈ 𝐶) → 𝐶 ≈ 𝐴) |
8 | endom 8996 | . . . . . . . . 9 ⊢ (𝐶 ≈ 𝐴 → 𝐶 ≼ 𝐴) | |
9 | domtrfir 9218 | . . . . . . . . 9 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ≼ 𝐶 ∧ 𝐶 ≼ 𝐴) → 𝐵 ≼ 𝐴) | |
10 | 8, 9 | syl3an3 1162 | . . . . . . . 8 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ≼ 𝐶 ∧ 𝐶 ≈ 𝐴) → 𝐵 ≼ 𝐴) |
11 | 7, 10 | syld3an3 1406 | . . . . . . 7 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ≼ 𝐶 ∧ 𝐴 ≈ 𝐶) → 𝐵 ≼ 𝐴) |
12 | domfi 9213 | . . . . . . . 8 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ≼ 𝐴) → 𝐵 ∈ Fin) | |
13 | domnsymfi 9224 | . . . . . . . 8 ⊢ ((𝐵 ∈ Fin ∧ 𝐵 ≼ 𝐴) → ¬ 𝐴 ≺ 𝐵) | |
14 | 12, 13 | sylancom 586 | . . . . . . 7 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ≼ 𝐴) → ¬ 𝐴 ≺ 𝐵) |
15 | 4, 11, 14 | syl2anc 582 | . . . . . 6 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ≼ 𝐶 ∧ 𝐴 ≈ 𝐶) → ¬ 𝐴 ≺ 𝐵) |
16 | 15 | 3expia 1118 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ≼ 𝐶) → (𝐴 ≈ 𝐶 → ¬ 𝐴 ≺ 𝐵)) |
17 | 16 | con2d 134 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ≼ 𝐶) → (𝐴 ≺ 𝐵 → ¬ 𝐴 ≈ 𝐶)) |
18 | 17 | 3impia 1114 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ≼ 𝐶 ∧ 𝐴 ≺ 𝐵) → ¬ 𝐴 ≈ 𝐶) |
19 | 18 | 3com23 1123 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≺ 𝐵 ∧ 𝐵 ≼ 𝐶) → ¬ 𝐴 ≈ 𝐶) |
20 | brsdom 8992 | . 2 ⊢ (𝐴 ≺ 𝐶 ↔ (𝐴 ≼ 𝐶 ∧ ¬ 𝐴 ≈ 𝐶)) | |
21 | 3, 19, 20 | sylanbrc 581 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≺ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≺ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 ∧ w3a 1084 ∈ wcel 2098 class class class wbr 5143 ≈ cen 8957 ≼ cdom 8958 ≺ csdm 8959 Fincfn 8960 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pr 5423 ax-un 7737 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3770 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3960 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5144 df-opab 5206 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-om 7868 df-1o 8483 df-en 8961 df-dom 8962 df-sdom 8963 df-fin 8964 |
This theorem is referenced by: php3 9233 sucdom 9256 findcard3 9306 infsdomnn 9326 |
Copyright terms: Public domain | W3C validator |