MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sdomdomtrfi Structured version   Visualization version   GIF version

Theorem sdomdomtrfi 8961
Description: Transitivity of strict dominance and dominance when 𝐴 is finite, proved without using the Axiom of Power Sets (unlike sdomdomtr 8871). (Contributed by BTernaryTau, 25-Nov-2024.)
Assertion
Ref Expression
sdomdomtrfi ((𝐴 ∈ Fin ∧ 𝐴𝐵𝐵𝐶) → 𝐴𝐶)

Proof of Theorem sdomdomtrfi
StepHypRef Expression
1 sdomdom 8743 . . 3 (𝐴𝐵𝐴𝐵)
2 domtrfil 8952 . . 3 ((𝐴 ∈ Fin ∧ 𝐴𝐵𝐵𝐶) → 𝐴𝐶)
31, 2syl3an2 1163 . 2 ((𝐴 ∈ Fin ∧ 𝐴𝐵𝐵𝐶) → 𝐴𝐶)
4 simp1 1135 . . . . . . 7 ((𝐴 ∈ Fin ∧ 𝐵𝐶𝐴𝐶) → 𝐴 ∈ Fin)
5 ensymfib 8944 . . . . . . . . . 10 (𝐴 ∈ Fin → (𝐴𝐶𝐶𝐴))
65biimpa 477 . . . . . . . . 9 ((𝐴 ∈ Fin ∧ 𝐴𝐶) → 𝐶𝐴)
763adant2 1130 . . . . . . . 8 ((𝐴 ∈ Fin ∧ 𝐵𝐶𝐴𝐶) → 𝐶𝐴)
8 endom 8742 . . . . . . . . 9 (𝐶𝐴𝐶𝐴)
9 domtrfir 8954 . . . . . . . . 9 ((𝐴 ∈ Fin ∧ 𝐵𝐶𝐶𝐴) → 𝐵𝐴)
108, 9syl3an3 1164 . . . . . . . 8 ((𝐴 ∈ Fin ∧ 𝐵𝐶𝐶𝐴) → 𝐵𝐴)
117, 10syld3an3 1408 . . . . . . 7 ((𝐴 ∈ Fin ∧ 𝐵𝐶𝐴𝐶) → 𝐵𝐴)
12 domfi 8949 . . . . . . . 8 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → 𝐵 ∈ Fin)
13 domnsymfi 8960 . . . . . . . 8 ((𝐵 ∈ Fin ∧ 𝐵𝐴) → ¬ 𝐴𝐵)
1412, 13sylancom 588 . . . . . . 7 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → ¬ 𝐴𝐵)
154, 11, 14syl2anc 584 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐵𝐶𝐴𝐶) → ¬ 𝐴𝐵)
16153expia 1120 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵𝐶) → (𝐴𝐶 → ¬ 𝐴𝐵))
1716con2d 134 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵𝐶) → (𝐴𝐵 → ¬ 𝐴𝐶))
18173impia 1116 . . 3 ((𝐴 ∈ Fin ∧ 𝐵𝐶𝐴𝐵) → ¬ 𝐴𝐶)
19183com23 1125 . 2 ((𝐴 ∈ Fin ∧ 𝐴𝐵𝐵𝐶) → ¬ 𝐴𝐶)
20 brsdom 8738 . 2 (𝐴𝐶 ↔ (𝐴𝐶 ∧ ¬ 𝐴𝐶))
213, 19, 20sylanbrc 583 1 ((𝐴 ∈ Fin ∧ 𝐴𝐵𝐵𝐶) → 𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1086  wcel 2110   class class class wbr 5079  cen 8705  cdom 8706  csdm 8707  Fincfn 8708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pr 5356  ax-un 7580
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4846  df-br 5080  df-opab 5142  df-tr 5197  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6267  df-on 6268  df-lim 6269  df-suc 6270  df-iota 6389  df-fun 6433  df-fn 6434  df-f 6435  df-f1 6436  df-fo 6437  df-f1o 6438  df-fv 6439  df-om 7702  df-1o 8282  df-en 8709  df-dom 8710  df-sdom 8711  df-fin 8712
This theorem is referenced by:  php3  8968
  Copyright terms: Public domain W3C validator