![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sdomdomtrfi | Structured version Visualization version GIF version |
Description: Transitivity of strict dominance and dominance when 𝐴 is finite, proved without using the Axiom of Power Sets (unlike sdomdomtr 9176). (Contributed by BTernaryTau, 25-Nov-2024.) |
Ref | Expression |
---|---|
sdomdomtrfi | ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≺ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≺ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sdomdom 9040 | . . 3 ⊢ (𝐴 ≺ 𝐵 → 𝐴 ≼ 𝐵) | |
2 | domtrfil 9258 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) | |
3 | 1, 2 | syl3an2 1164 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≺ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) |
4 | simp1 1136 | . . . . . . 7 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ≼ 𝐶 ∧ 𝐴 ≈ 𝐶) → 𝐴 ∈ Fin) | |
5 | ensymfib 9250 | . . . . . . . . . 10 ⊢ (𝐴 ∈ Fin → (𝐴 ≈ 𝐶 ↔ 𝐶 ≈ 𝐴)) | |
6 | 5 | biimpa 476 | . . . . . . . . 9 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≈ 𝐶) → 𝐶 ≈ 𝐴) |
7 | 6 | 3adant2 1131 | . . . . . . . 8 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ≼ 𝐶 ∧ 𝐴 ≈ 𝐶) → 𝐶 ≈ 𝐴) |
8 | endom 9039 | . . . . . . . . 9 ⊢ (𝐶 ≈ 𝐴 → 𝐶 ≼ 𝐴) | |
9 | domtrfir 9260 | . . . . . . . . 9 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ≼ 𝐶 ∧ 𝐶 ≼ 𝐴) → 𝐵 ≼ 𝐴) | |
10 | 8, 9 | syl3an3 1165 | . . . . . . . 8 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ≼ 𝐶 ∧ 𝐶 ≈ 𝐴) → 𝐵 ≼ 𝐴) |
11 | 7, 10 | syld3an3 1409 | . . . . . . 7 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ≼ 𝐶 ∧ 𝐴 ≈ 𝐶) → 𝐵 ≼ 𝐴) |
12 | domfi 9255 | . . . . . . . 8 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ≼ 𝐴) → 𝐵 ∈ Fin) | |
13 | domnsymfi 9266 | . . . . . . . 8 ⊢ ((𝐵 ∈ Fin ∧ 𝐵 ≼ 𝐴) → ¬ 𝐴 ≺ 𝐵) | |
14 | 12, 13 | sylancom 587 | . . . . . . 7 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ≼ 𝐴) → ¬ 𝐴 ≺ 𝐵) |
15 | 4, 11, 14 | syl2anc 583 | . . . . . 6 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ≼ 𝐶 ∧ 𝐴 ≈ 𝐶) → ¬ 𝐴 ≺ 𝐵) |
16 | 15 | 3expia 1121 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ≼ 𝐶) → (𝐴 ≈ 𝐶 → ¬ 𝐴 ≺ 𝐵)) |
17 | 16 | con2d 134 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ≼ 𝐶) → (𝐴 ≺ 𝐵 → ¬ 𝐴 ≈ 𝐶)) |
18 | 17 | 3impia 1117 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ≼ 𝐶 ∧ 𝐴 ≺ 𝐵) → ¬ 𝐴 ≈ 𝐶) |
19 | 18 | 3com23 1126 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≺ 𝐵 ∧ 𝐵 ≼ 𝐶) → ¬ 𝐴 ≈ 𝐶) |
20 | brsdom 9035 | . 2 ⊢ (𝐴 ≺ 𝐶 ↔ (𝐴 ≼ 𝐶 ∧ ¬ 𝐴 ≈ 𝐶)) | |
21 | 3, 19, 20 | sylanbrc 582 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≺ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≺ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1087 ∈ wcel 2108 class class class wbr 5166 ≈ cen 9000 ≼ cdom 9001 ≺ csdm 9002 Fincfn 9003 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-om 7904 df-1o 8522 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 |
This theorem is referenced by: php3 9275 sucdom 9298 findcard3 9346 infsdomnn 9366 fodomfib 9397 fisdomnn 42239 |
Copyright terms: Public domain | W3C validator |