Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > domsdomtrfi | Structured version Visualization version GIF version |
Description: Transitivity of dominance and strict dominance when 𝐴 is finite, proved without using the Axiom of Power Sets (unlike domsdomtr 8937). (Contributed by BTernaryTau, 25-Nov-2024.) |
Ref | Expression |
---|---|
domsdomtrfi | ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝐶) → 𝐴 ≺ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sdomdom 8801 | . . 3 ⊢ (𝐵 ≺ 𝐶 → 𝐵 ≼ 𝐶) | |
2 | domtrfil 9016 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) | |
3 | 1, 2 | syl3an3 1165 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝐶) → 𝐴 ≼ 𝐶) |
4 | ensymfib 9008 | . . . . . . . . . 10 ⊢ (𝐴 ∈ Fin → (𝐴 ≈ 𝐶 ↔ 𝐶 ≈ 𝐴)) | |
5 | 4 | biimpa 478 | . . . . . . . . 9 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≈ 𝐶) → 𝐶 ≈ 𝐴) |
6 | 5 | 3adant3 1132 | . . . . . . . 8 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≈ 𝐶 ∧ 𝐴 ≼ 𝐵) → 𝐶 ≈ 𝐴) |
7 | enfii 9010 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ Fin ∧ 𝐶 ≈ 𝐴) → 𝐶 ∈ Fin) | |
8 | 7 | 3adant3 1132 | . . . . . . . . 9 ⊢ ((𝐴 ∈ Fin ∧ 𝐶 ≈ 𝐴 ∧ 𝐴 ≼ 𝐵) → 𝐶 ∈ Fin) |
9 | endom 8800 | . . . . . . . . . 10 ⊢ (𝐶 ≈ 𝐴 → 𝐶 ≼ 𝐴) | |
10 | domtrfi 9017 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ Fin ∧ 𝐶 ≼ 𝐴 ∧ 𝐴 ≼ 𝐵) → 𝐶 ≼ 𝐵) | |
11 | 9, 10 | syl3an2 1164 | . . . . . . . . 9 ⊢ ((𝐴 ∈ Fin ∧ 𝐶 ≈ 𝐴 ∧ 𝐴 ≼ 𝐵) → 𝐶 ≼ 𝐵) |
12 | 8, 11 | jca 513 | . . . . . . . 8 ⊢ ((𝐴 ∈ Fin ∧ 𝐶 ≈ 𝐴 ∧ 𝐴 ≼ 𝐵) → (𝐶 ∈ Fin ∧ 𝐶 ≼ 𝐵)) |
13 | 6, 12 | syld3an2 1411 | . . . . . . 7 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≈ 𝐶 ∧ 𝐴 ≼ 𝐵) → (𝐶 ∈ Fin ∧ 𝐶 ≼ 𝐵)) |
14 | domnsymfi 9024 | . . . . . . 7 ⊢ ((𝐶 ∈ Fin ∧ 𝐶 ≼ 𝐵) → ¬ 𝐵 ≺ 𝐶) | |
15 | 13, 14 | syl 17 | . . . . . 6 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≈ 𝐶 ∧ 𝐴 ≼ 𝐵) → ¬ 𝐵 ≺ 𝐶) |
16 | 15 | 3com23 1126 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≼ 𝐵 ∧ 𝐴 ≈ 𝐶) → ¬ 𝐵 ≺ 𝐶) |
17 | 16 | 3expia 1121 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≼ 𝐵) → (𝐴 ≈ 𝐶 → ¬ 𝐵 ≺ 𝐶)) |
18 | 17 | con2d 134 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≼ 𝐵) → (𝐵 ≺ 𝐶 → ¬ 𝐴 ≈ 𝐶)) |
19 | 18 | 3impia 1117 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝐶) → ¬ 𝐴 ≈ 𝐶) |
20 | brsdom 8796 | . 2 ⊢ (𝐴 ≺ 𝐶 ↔ (𝐴 ≼ 𝐶 ∧ ¬ 𝐴 ≈ 𝐶)) | |
21 | 3, 19, 20 | sylanbrc 584 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝐶) → 𝐴 ≺ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 ∧ w3a 1087 ∈ wcel 2104 class class class wbr 5081 ≈ cen 8761 ≼ cdom 8762 ≺ csdm 8763 Fincfn 8764 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 ax-un 7620 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-opab 5144 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-om 7745 df-1o 8328 df-en 8765 df-dom 8766 df-sdom 8767 df-fin 8768 |
This theorem is referenced by: php3 9033 |
Copyright terms: Public domain | W3C validator |