| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > domsdomtrfi | Structured version Visualization version GIF version | ||
| Description: Transitivity of dominance and strict dominance when 𝐴 is finite, proved without using the Axiom of Power Sets (unlike domsdomtr 9076). (Contributed by BTernaryTau, 25-Nov-2024.) |
| Ref | Expression |
|---|---|
| domsdomtrfi | ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝐶) → 𝐴 ≺ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sdomdom 8951 | . . 3 ⊢ (𝐵 ≺ 𝐶 → 𝐵 ≼ 𝐶) | |
| 2 | domtrfil 9156 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) | |
| 3 | 1, 2 | syl3an3 1165 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝐶) → 𝐴 ≼ 𝐶) |
| 4 | ensymfib 9148 | . . . . . . . . . 10 ⊢ (𝐴 ∈ Fin → (𝐴 ≈ 𝐶 ↔ 𝐶 ≈ 𝐴)) | |
| 5 | 4 | biimpa 476 | . . . . . . . . 9 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≈ 𝐶) → 𝐶 ≈ 𝐴) |
| 6 | 5 | 3adant3 1132 | . . . . . . . 8 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≈ 𝐶 ∧ 𝐴 ≼ 𝐵) → 𝐶 ≈ 𝐴) |
| 7 | enfii 9150 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ Fin ∧ 𝐶 ≈ 𝐴) → 𝐶 ∈ Fin) | |
| 8 | 7 | 3adant3 1132 | . . . . . . . . 9 ⊢ ((𝐴 ∈ Fin ∧ 𝐶 ≈ 𝐴 ∧ 𝐴 ≼ 𝐵) → 𝐶 ∈ Fin) |
| 9 | endom 8950 | . . . . . . . . . 10 ⊢ (𝐶 ≈ 𝐴 → 𝐶 ≼ 𝐴) | |
| 10 | domtrfi 9157 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ Fin ∧ 𝐶 ≼ 𝐴 ∧ 𝐴 ≼ 𝐵) → 𝐶 ≼ 𝐵) | |
| 11 | 9, 10 | syl3an2 1164 | . . . . . . . . 9 ⊢ ((𝐴 ∈ Fin ∧ 𝐶 ≈ 𝐴 ∧ 𝐴 ≼ 𝐵) → 𝐶 ≼ 𝐵) |
| 12 | 8, 11 | jca 511 | . . . . . . . 8 ⊢ ((𝐴 ∈ Fin ∧ 𝐶 ≈ 𝐴 ∧ 𝐴 ≼ 𝐵) → (𝐶 ∈ Fin ∧ 𝐶 ≼ 𝐵)) |
| 13 | 6, 12 | syld3an2 1413 | . . . . . . 7 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≈ 𝐶 ∧ 𝐴 ≼ 𝐵) → (𝐶 ∈ Fin ∧ 𝐶 ≼ 𝐵)) |
| 14 | domnsymfi 9164 | . . . . . . 7 ⊢ ((𝐶 ∈ Fin ∧ 𝐶 ≼ 𝐵) → ¬ 𝐵 ≺ 𝐶) | |
| 15 | 13, 14 | syl 17 | . . . . . 6 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≈ 𝐶 ∧ 𝐴 ≼ 𝐵) → ¬ 𝐵 ≺ 𝐶) |
| 16 | 15 | 3com23 1126 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≼ 𝐵 ∧ 𝐴 ≈ 𝐶) → ¬ 𝐵 ≺ 𝐶) |
| 17 | 16 | 3expia 1121 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≼ 𝐵) → (𝐴 ≈ 𝐶 → ¬ 𝐵 ≺ 𝐶)) |
| 18 | 17 | con2d 134 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≼ 𝐵) → (𝐵 ≺ 𝐶 → ¬ 𝐴 ≈ 𝐶)) |
| 19 | 18 | 3impia 1117 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝐶) → ¬ 𝐴 ≈ 𝐶) |
| 20 | brsdom 8946 | . 2 ⊢ (𝐴 ≺ 𝐶 ↔ (𝐴 ≼ 𝐶 ∧ ¬ 𝐴 ≈ 𝐶)) | |
| 21 | 3, 19, 20 | sylanbrc 583 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝐶) → 𝐴 ≺ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 class class class wbr 5107 ≈ cen 8915 ≼ cdom 8916 ≺ csdm 8917 Fincfn 8918 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-om 7843 df-1o 8434 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 |
| This theorem is referenced by: php3 9173 f1finf1o 9216 findcard3 9229 |
| Copyright terms: Public domain | W3C validator |