MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  domsdomtrfi Structured version   Visualization version   GIF version

Theorem domsdomtrfi 9166
Description: Transitivity of dominance and strict dominance when 𝐴 is finite, proved without using the Axiom of Power Sets (unlike domsdomtr 9076). (Contributed by BTernaryTau, 25-Nov-2024.)
Assertion
Ref Expression
domsdomtrfi ((𝐴 ∈ Fin ∧ 𝐴𝐵𝐵𝐶) → 𝐴𝐶)

Proof of Theorem domsdomtrfi
StepHypRef Expression
1 sdomdom 8951 . . 3 (𝐵𝐶𝐵𝐶)
2 domtrfil 9156 . . 3 ((𝐴 ∈ Fin ∧ 𝐴𝐵𝐵𝐶) → 𝐴𝐶)
31, 2syl3an3 1165 . 2 ((𝐴 ∈ Fin ∧ 𝐴𝐵𝐵𝐶) → 𝐴𝐶)
4 ensymfib 9148 . . . . . . . . . 10 (𝐴 ∈ Fin → (𝐴𝐶𝐶𝐴))
54biimpa 476 . . . . . . . . 9 ((𝐴 ∈ Fin ∧ 𝐴𝐶) → 𝐶𝐴)
653adant3 1132 . . . . . . . 8 ((𝐴 ∈ Fin ∧ 𝐴𝐶𝐴𝐵) → 𝐶𝐴)
7 enfii 9150 . . . . . . . . . 10 ((𝐴 ∈ Fin ∧ 𝐶𝐴) → 𝐶 ∈ Fin)
873adant3 1132 . . . . . . . . 9 ((𝐴 ∈ Fin ∧ 𝐶𝐴𝐴𝐵) → 𝐶 ∈ Fin)
9 endom 8950 . . . . . . . . . 10 (𝐶𝐴𝐶𝐴)
10 domtrfi 9157 . . . . . . . . . 10 ((𝐴 ∈ Fin ∧ 𝐶𝐴𝐴𝐵) → 𝐶𝐵)
119, 10syl3an2 1164 . . . . . . . . 9 ((𝐴 ∈ Fin ∧ 𝐶𝐴𝐴𝐵) → 𝐶𝐵)
128, 11jca 511 . . . . . . . 8 ((𝐴 ∈ Fin ∧ 𝐶𝐴𝐴𝐵) → (𝐶 ∈ Fin ∧ 𝐶𝐵))
136, 12syld3an2 1413 . . . . . . 7 ((𝐴 ∈ Fin ∧ 𝐴𝐶𝐴𝐵) → (𝐶 ∈ Fin ∧ 𝐶𝐵))
14 domnsymfi 9164 . . . . . . 7 ((𝐶 ∈ Fin ∧ 𝐶𝐵) → ¬ 𝐵𝐶)
1513, 14syl 17 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐴𝐶𝐴𝐵) → ¬ 𝐵𝐶)
16153com23 1126 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐴𝐵𝐴𝐶) → ¬ 𝐵𝐶)
17163expia 1121 . . . 4 ((𝐴 ∈ Fin ∧ 𝐴𝐵) → (𝐴𝐶 → ¬ 𝐵𝐶))
1817con2d 134 . . 3 ((𝐴 ∈ Fin ∧ 𝐴𝐵) → (𝐵𝐶 → ¬ 𝐴𝐶))
19183impia 1117 . 2 ((𝐴 ∈ Fin ∧ 𝐴𝐵𝐵𝐶) → ¬ 𝐴𝐶)
20 brsdom 8946 . 2 (𝐴𝐶 ↔ (𝐴𝐶 ∧ ¬ 𝐴𝐶))
213, 19, 20sylanbrc 583 1 ((𝐴 ∈ Fin ∧ 𝐴𝐵𝐵𝐶) → 𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086  wcel 2109   class class class wbr 5107  cen 8915  cdom 8916  csdm 8917  Fincfn 8918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-om 7843  df-1o 8434  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922
This theorem is referenced by:  php3  9173  f1finf1o  9216  findcard3  9229
  Copyright terms: Public domain W3C validator