![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > domsdomtrfi | Structured version Visualization version GIF version |
Description: Transitivity of dominance and strict dominance when 𝐴 is finite, proved without using the Axiom of Power Sets (unlike domsdomtr 9108). (Contributed by BTernaryTau, 25-Nov-2024.) |
Ref | Expression |
---|---|
domsdomtrfi | ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝐶) → 𝐴 ≺ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sdomdom 8972 | . . 3 ⊢ (𝐵 ≺ 𝐶 → 𝐵 ≼ 𝐶) | |
2 | domtrfil 9191 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) | |
3 | 1, 2 | syl3an3 1165 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝐶) → 𝐴 ≼ 𝐶) |
4 | ensymfib 9183 | . . . . . . . . . 10 ⊢ (𝐴 ∈ Fin → (𝐴 ≈ 𝐶 ↔ 𝐶 ≈ 𝐴)) | |
5 | 4 | biimpa 477 | . . . . . . . . 9 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≈ 𝐶) → 𝐶 ≈ 𝐴) |
6 | 5 | 3adant3 1132 | . . . . . . . 8 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≈ 𝐶 ∧ 𝐴 ≼ 𝐵) → 𝐶 ≈ 𝐴) |
7 | enfii 9185 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ Fin ∧ 𝐶 ≈ 𝐴) → 𝐶 ∈ Fin) | |
8 | 7 | 3adant3 1132 | . . . . . . . . 9 ⊢ ((𝐴 ∈ Fin ∧ 𝐶 ≈ 𝐴 ∧ 𝐴 ≼ 𝐵) → 𝐶 ∈ Fin) |
9 | endom 8971 | . . . . . . . . . 10 ⊢ (𝐶 ≈ 𝐴 → 𝐶 ≼ 𝐴) | |
10 | domtrfi 9192 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ Fin ∧ 𝐶 ≼ 𝐴 ∧ 𝐴 ≼ 𝐵) → 𝐶 ≼ 𝐵) | |
11 | 9, 10 | syl3an2 1164 | . . . . . . . . 9 ⊢ ((𝐴 ∈ Fin ∧ 𝐶 ≈ 𝐴 ∧ 𝐴 ≼ 𝐵) → 𝐶 ≼ 𝐵) |
12 | 8, 11 | jca 512 | . . . . . . . 8 ⊢ ((𝐴 ∈ Fin ∧ 𝐶 ≈ 𝐴 ∧ 𝐴 ≼ 𝐵) → (𝐶 ∈ Fin ∧ 𝐶 ≼ 𝐵)) |
13 | 6, 12 | syld3an2 1411 | . . . . . . 7 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≈ 𝐶 ∧ 𝐴 ≼ 𝐵) → (𝐶 ∈ Fin ∧ 𝐶 ≼ 𝐵)) |
14 | domnsymfi 9199 | . . . . . . 7 ⊢ ((𝐶 ∈ Fin ∧ 𝐶 ≼ 𝐵) → ¬ 𝐵 ≺ 𝐶) | |
15 | 13, 14 | syl 17 | . . . . . 6 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≈ 𝐶 ∧ 𝐴 ≼ 𝐵) → ¬ 𝐵 ≺ 𝐶) |
16 | 15 | 3com23 1126 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≼ 𝐵 ∧ 𝐴 ≈ 𝐶) → ¬ 𝐵 ≺ 𝐶) |
17 | 16 | 3expia 1121 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≼ 𝐵) → (𝐴 ≈ 𝐶 → ¬ 𝐵 ≺ 𝐶)) |
18 | 17 | con2d 134 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≼ 𝐵) → (𝐵 ≺ 𝐶 → ¬ 𝐴 ≈ 𝐶)) |
19 | 18 | 3impia 1117 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝐶) → ¬ 𝐴 ≈ 𝐶) |
20 | brsdom 8967 | . 2 ⊢ (𝐴 ≺ 𝐶 ↔ (𝐴 ≼ 𝐶 ∧ ¬ 𝐴 ≈ 𝐶)) | |
21 | 3, 19, 20 | sylanbrc 583 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝐶) → 𝐴 ≺ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∧ w3a 1087 ∈ wcel 2106 class class class wbr 5147 ≈ cen 8932 ≼ cdom 8933 ≺ csdm 8934 Fincfn 8935 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-om 7852 df-1o 8462 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 |
This theorem is referenced by: php3 9208 f1finf1o 9267 findcard3 9281 |
Copyright terms: Public domain | W3C validator |