MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frmdplusg Structured version   Visualization version   GIF version

Theorem frmdplusg 18757
Description: The monoid operation of a free monoid. (Contributed by Mario Carneiro, 27-Sep-2015.) (Revised by Mario Carneiro, 27-Feb-2016.) (Proof shortened by AV, 6-Nov-2024.)
Hypotheses
Ref Expression
frmdbas.m 𝑀 = (freeMnd‘𝐼)
frmdbas.b 𝐵 = (Base‘𝑀)
frmdplusg.p + = (+g𝑀)
Assertion
Ref Expression
frmdplusg + = ( ++ ↾ (𝐵 × 𝐵))

Proof of Theorem frmdplusg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frmdplusg.p . . . 4 + = (+g𝑀)
2 frmdbas.m . . . . . 6 𝑀 = (freeMnd‘𝐼)
3 frmdbas.b . . . . . . 7 𝐵 = (Base‘𝑀)
42, 3frmdbas 18755 . . . . . 6 (𝐼 ∈ V → 𝐵 = Word 𝐼)
5 eqid 2729 . . . . . 6 ( ++ ↾ (𝐵 × 𝐵)) = ( ++ ↾ (𝐵 × 𝐵))
62, 4, 5frmdval 18754 . . . . 5 (𝐼 ∈ V → 𝑀 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ( ++ ↾ (𝐵 × 𝐵))⟩})
76fveq2d 6844 . . . 4 (𝐼 ∈ V → (+g𝑀) = (+g‘{⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ( ++ ↾ (𝐵 × 𝐵))⟩}))
81, 7eqtrid 2776 . . 3 (𝐼 ∈ V → + = (+g‘{⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ( ++ ↾ (𝐵 × 𝐵))⟩}))
9 wrdexg 14465 . . . 4 (𝐼 ∈ V → Word 𝐼 ∈ V)
10 ccatfn 14513 . . . . . . 7 ++ Fn (V × V)
11 xpss 5647 . . . . . . 7 (𝐵 × 𝐵) ⊆ (V × V)
12 fnssres 6623 . . . . . . 7 (( ++ Fn (V × V) ∧ (𝐵 × 𝐵) ⊆ (V × V)) → ( ++ ↾ (𝐵 × 𝐵)) Fn (𝐵 × 𝐵))
1310, 11, 12mp2an 692 . . . . . 6 ( ++ ↾ (𝐵 × 𝐵)) Fn (𝐵 × 𝐵)
14 ovres 7535 . . . . . . . 8 ((𝑥𝐵𝑦𝐵) → (𝑥( ++ ↾ (𝐵 × 𝐵))𝑦) = (𝑥 ++ 𝑦))
152, 3frmdelbas 18756 . . . . . . . . 9 (𝑥𝐵𝑥 ∈ Word 𝐼)
162, 3frmdelbas 18756 . . . . . . . . 9 (𝑦𝐵𝑦 ∈ Word 𝐼)
17 ccatcl 14515 . . . . . . . . 9 ((𝑥 ∈ Word 𝐼𝑦 ∈ Word 𝐼) → (𝑥 ++ 𝑦) ∈ Word 𝐼)
1815, 16, 17syl2an 596 . . . . . . . 8 ((𝑥𝐵𝑦𝐵) → (𝑥 ++ 𝑦) ∈ Word 𝐼)
1914, 18eqeltrd 2828 . . . . . . 7 ((𝑥𝐵𝑦𝐵) → (𝑥( ++ ↾ (𝐵 × 𝐵))𝑦) ∈ Word 𝐼)
2019rgen2 3175 . . . . . 6 𝑥𝐵𝑦𝐵 (𝑥( ++ ↾ (𝐵 × 𝐵))𝑦) ∈ Word 𝐼
21 ffnov 7495 . . . . . 6 (( ++ ↾ (𝐵 × 𝐵)):(𝐵 × 𝐵)⟶Word 𝐼 ↔ (( ++ ↾ (𝐵 × 𝐵)) Fn (𝐵 × 𝐵) ∧ ∀𝑥𝐵𝑦𝐵 (𝑥( ++ ↾ (𝐵 × 𝐵))𝑦) ∈ Word 𝐼))
2213, 20, 21mpbir2an 711 . . . . 5 ( ++ ↾ (𝐵 × 𝐵)):(𝐵 × 𝐵)⟶Word 𝐼
233fvexi 6854 . . . . . 6 𝐵 ∈ V
2423, 23xpex 7709 . . . . 5 (𝐵 × 𝐵) ∈ V
25 fex2 7892 . . . . 5 ((( ++ ↾ (𝐵 × 𝐵)):(𝐵 × 𝐵)⟶Word 𝐼 ∧ (𝐵 × 𝐵) ∈ V ∧ Word 𝐼 ∈ V) → ( ++ ↾ (𝐵 × 𝐵)) ∈ V)
2622, 24, 25mp3an12 1453 . . . 4 (Word 𝐼 ∈ V → ( ++ ↾ (𝐵 × 𝐵)) ∈ V)
27 eqid 2729 . . . . 5 {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ( ++ ↾ (𝐵 × 𝐵))⟩} = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ( ++ ↾ (𝐵 × 𝐵))⟩}
2827grpplusg 17229 . . . 4 (( ++ ↾ (𝐵 × 𝐵)) ∈ V → ( ++ ↾ (𝐵 × 𝐵)) = (+g‘{⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ( ++ ↾ (𝐵 × 𝐵))⟩}))
299, 26, 283syl 18 . . 3 (𝐼 ∈ V → ( ++ ↾ (𝐵 × 𝐵)) = (+g‘{⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ( ++ ↾ (𝐵 × 𝐵))⟩}))
308, 29eqtr4d 2767 . 2 (𝐼 ∈ V → + = ( ++ ↾ (𝐵 × 𝐵)))
31 fvprc 6832 . . . . . . 7 𝐼 ∈ V → (freeMnd‘𝐼) = ∅)
322, 31eqtrid 2776 . . . . . 6 𝐼 ∈ V → 𝑀 = ∅)
3332fveq2d 6844 . . . . 5 𝐼 ∈ V → (+g𝑀) = (+g‘∅))
341, 33eqtrid 2776 . . . 4 𝐼 ∈ V → + = (+g‘∅))
35 res0 5943 . . . . 5 ( ++ ↾ ∅) = ∅
36 plusgid 17223 . . . . . 6 +g = Slot (+g‘ndx)
3736str0 17135 . . . . 5 ∅ = (+g‘∅)
3835, 37eqtr2i 2753 . . . 4 (+g‘∅) = ( ++ ↾ ∅)
3934, 38eqtrdi 2780 . . 3 𝐼 ∈ V → + = ( ++ ↾ ∅))
4032fveq2d 6844 . . . . . . 7 𝐼 ∈ V → (Base‘𝑀) = (Base‘∅))
41 base0 17160 . . . . . . 7 ∅ = (Base‘∅)
4240, 3, 413eqtr4g 2789 . . . . . 6 𝐼 ∈ V → 𝐵 = ∅)
4342xpeq2d 5661 . . . . 5 𝐼 ∈ V → (𝐵 × 𝐵) = (𝐵 × ∅))
44 xp0 6119 . . . . 5 (𝐵 × ∅) = ∅
4543, 44eqtrdi 2780 . . . 4 𝐼 ∈ V → (𝐵 × 𝐵) = ∅)
4645reseq2d 5939 . . 3 𝐼 ∈ V → ( ++ ↾ (𝐵 × 𝐵)) = ( ++ ↾ ∅))
4739, 46eqtr4d 2767 . 2 𝐼 ∈ V → + = ( ++ ↾ (𝐵 × 𝐵)))
4830, 47pm2.61i 182 1 + = ( ++ ↾ (𝐵 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1540  wcel 2109  wral 3044  Vcvv 3444  wss 3911  c0 4292  {cpr 4587  cop 4591   × cxp 5629  cres 5633   Fn wfn 6494  wf 6495  cfv 6499  (class class class)co 7369  Word cword 14454   ++ cconcat 14511  ndxcnx 17139  Basecbs 17155  +gcplusg 17196  freeMndcfrmd 18750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445  df-fzo 13592  df-hash 14272  df-word 14455  df-concat 14512  df-struct 17093  df-slot 17128  df-ndx 17140  df-base 17156  df-plusg 17209  df-frmd 18752
This theorem is referenced by:  frmdadd  18758
  Copyright terms: Public domain W3C validator