MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frmdplusg Structured version   Visualization version   GIF version

Theorem frmdplusg 18762
Description: The monoid operation of a free monoid. (Contributed by Mario Carneiro, 27-Sep-2015.) (Revised by Mario Carneiro, 27-Feb-2016.) (Proof shortened by AV, 6-Nov-2024.)
Hypotheses
Ref Expression
frmdbas.m 𝑀 = (freeMnd‘𝐼)
frmdbas.b 𝐵 = (Base‘𝑀)
frmdplusg.p + = (+g𝑀)
Assertion
Ref Expression
frmdplusg + = ( ++ ↾ (𝐵 × 𝐵))

Proof of Theorem frmdplusg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frmdplusg.p . . . 4 + = (+g𝑀)
2 frmdbas.m . . . . . 6 𝑀 = (freeMnd‘𝐼)
3 frmdbas.b . . . . . . 7 𝐵 = (Base‘𝑀)
42, 3frmdbas 18760 . . . . . 6 (𝐼 ∈ V → 𝐵 = Word 𝐼)
5 eqid 2731 . . . . . 6 ( ++ ↾ (𝐵 × 𝐵)) = ( ++ ↾ (𝐵 × 𝐵))
62, 4, 5frmdval 18759 . . . . 5 (𝐼 ∈ V → 𝑀 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ( ++ ↾ (𝐵 × 𝐵))⟩})
76fveq2d 6826 . . . 4 (𝐼 ∈ V → (+g𝑀) = (+g‘{⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ( ++ ↾ (𝐵 × 𝐵))⟩}))
81, 7eqtrid 2778 . . 3 (𝐼 ∈ V → + = (+g‘{⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ( ++ ↾ (𝐵 × 𝐵))⟩}))
9 wrdexg 14431 . . . 4 (𝐼 ∈ V → Word 𝐼 ∈ V)
10 ccatfn 14479 . . . . . . 7 ++ Fn (V × V)
11 xpss 5630 . . . . . . 7 (𝐵 × 𝐵) ⊆ (V × V)
12 fnssres 6604 . . . . . . 7 (( ++ Fn (V × V) ∧ (𝐵 × 𝐵) ⊆ (V × V)) → ( ++ ↾ (𝐵 × 𝐵)) Fn (𝐵 × 𝐵))
1310, 11, 12mp2an 692 . . . . . 6 ( ++ ↾ (𝐵 × 𝐵)) Fn (𝐵 × 𝐵)
14 ovres 7512 . . . . . . . 8 ((𝑥𝐵𝑦𝐵) → (𝑥( ++ ↾ (𝐵 × 𝐵))𝑦) = (𝑥 ++ 𝑦))
152, 3frmdelbas 18761 . . . . . . . . 9 (𝑥𝐵𝑥 ∈ Word 𝐼)
162, 3frmdelbas 18761 . . . . . . . . 9 (𝑦𝐵𝑦 ∈ Word 𝐼)
17 ccatcl 14481 . . . . . . . . 9 ((𝑥 ∈ Word 𝐼𝑦 ∈ Word 𝐼) → (𝑥 ++ 𝑦) ∈ Word 𝐼)
1815, 16, 17syl2an 596 . . . . . . . 8 ((𝑥𝐵𝑦𝐵) → (𝑥 ++ 𝑦) ∈ Word 𝐼)
1914, 18eqeltrd 2831 . . . . . . 7 ((𝑥𝐵𝑦𝐵) → (𝑥( ++ ↾ (𝐵 × 𝐵))𝑦) ∈ Word 𝐼)
2019rgen2 3172 . . . . . 6 𝑥𝐵𝑦𝐵 (𝑥( ++ ↾ (𝐵 × 𝐵))𝑦) ∈ Word 𝐼
21 ffnov 7472 . . . . . 6 (( ++ ↾ (𝐵 × 𝐵)):(𝐵 × 𝐵)⟶Word 𝐼 ↔ (( ++ ↾ (𝐵 × 𝐵)) Fn (𝐵 × 𝐵) ∧ ∀𝑥𝐵𝑦𝐵 (𝑥( ++ ↾ (𝐵 × 𝐵))𝑦) ∈ Word 𝐼))
2213, 20, 21mpbir2an 711 . . . . 5 ( ++ ↾ (𝐵 × 𝐵)):(𝐵 × 𝐵)⟶Word 𝐼
233fvexi 6836 . . . . . 6 𝐵 ∈ V
2423, 23xpex 7686 . . . . 5 (𝐵 × 𝐵) ∈ V
25 fex2 7866 . . . . 5 ((( ++ ↾ (𝐵 × 𝐵)):(𝐵 × 𝐵)⟶Word 𝐼 ∧ (𝐵 × 𝐵) ∈ V ∧ Word 𝐼 ∈ V) → ( ++ ↾ (𝐵 × 𝐵)) ∈ V)
2622, 24, 25mp3an12 1453 . . . 4 (Word 𝐼 ∈ V → ( ++ ↾ (𝐵 × 𝐵)) ∈ V)
27 eqid 2731 . . . . 5 {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ( ++ ↾ (𝐵 × 𝐵))⟩} = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ( ++ ↾ (𝐵 × 𝐵))⟩}
2827grpplusg 17194 . . . 4 (( ++ ↾ (𝐵 × 𝐵)) ∈ V → ( ++ ↾ (𝐵 × 𝐵)) = (+g‘{⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ( ++ ↾ (𝐵 × 𝐵))⟩}))
299, 26, 283syl 18 . . 3 (𝐼 ∈ V → ( ++ ↾ (𝐵 × 𝐵)) = (+g‘{⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ( ++ ↾ (𝐵 × 𝐵))⟩}))
308, 29eqtr4d 2769 . 2 (𝐼 ∈ V → + = ( ++ ↾ (𝐵 × 𝐵)))
31 fvprc 6814 . . . . . . 7 𝐼 ∈ V → (freeMnd‘𝐼) = ∅)
322, 31eqtrid 2778 . . . . . 6 𝐼 ∈ V → 𝑀 = ∅)
3332fveq2d 6826 . . . . 5 𝐼 ∈ V → (+g𝑀) = (+g‘∅))
341, 33eqtrid 2778 . . . 4 𝐼 ∈ V → + = (+g‘∅))
35 res0 5931 . . . . 5 ( ++ ↾ ∅) = ∅
36 plusgid 17188 . . . . . 6 +g = Slot (+g‘ndx)
3736str0 17100 . . . . 5 ∅ = (+g‘∅)
3835, 37eqtr2i 2755 . . . 4 (+g‘∅) = ( ++ ↾ ∅)
3934, 38eqtrdi 2782 . . 3 𝐼 ∈ V → + = ( ++ ↾ ∅))
4032fveq2d 6826 . . . . . . 7 𝐼 ∈ V → (Base‘𝑀) = (Base‘∅))
41 base0 17125 . . . . . . 7 ∅ = (Base‘∅)
4240, 3, 413eqtr4g 2791 . . . . . 6 𝐼 ∈ V → 𝐵 = ∅)
4342xpeq2d 5644 . . . . 5 𝐼 ∈ V → (𝐵 × 𝐵) = (𝐵 × ∅))
44 xp0 5714 . . . . 5 (𝐵 × ∅) = ∅
4543, 44eqtrdi 2782 . . . 4 𝐼 ∈ V → (𝐵 × 𝐵) = ∅)
4645reseq2d 5927 . . 3 𝐼 ∈ V → ( ++ ↾ (𝐵 × 𝐵)) = ( ++ ↾ ∅))
4739, 46eqtr4d 2769 . 2 𝐼 ∈ V → + = ( ++ ↾ (𝐵 × 𝐵)))
4830, 47pm2.61i 182 1 + = ( ++ ↾ (𝐵 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1541  wcel 2111  wral 3047  Vcvv 3436  wss 3897  c0 4280  {cpr 4575  cop 4579   × cxp 5612  cres 5616   Fn wfn 6476  wf 6477  cfv 6481  (class class class)co 7346  Word cword 14420   ++ cconcat 14477  ndxcnx 17104  Basecbs 17120  +gcplusg 17161  freeMndcfrmd 18755
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-fzo 13555  df-hash 14238  df-word 14421  df-concat 14478  df-struct 17058  df-slot 17093  df-ndx 17105  df-base 17121  df-plusg 17174  df-frmd 18757
This theorem is referenced by:  frmdadd  18763
  Copyright terms: Public domain W3C validator