MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frmdplusg Structured version   Visualization version   GIF version

Theorem frmdplusg 18007
Description: The monoid operation of a free monoid. (Contributed by Mario Carneiro, 27-Sep-2015.) (Revised by Mario Carneiro, 27-Feb-2016.)
Hypotheses
Ref Expression
frmdbas.m 𝑀 = (freeMnd‘𝐼)
frmdbas.b 𝐵 = (Base‘𝑀)
frmdplusg.p + = (+g𝑀)
Assertion
Ref Expression
frmdplusg + = ( ++ ↾ (𝐵 × 𝐵))

Proof of Theorem frmdplusg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frmdplusg.p . . . 4 + = (+g𝑀)
2 frmdbas.m . . . . . 6 𝑀 = (freeMnd‘𝐼)
3 frmdbas.b . . . . . . 7 𝐵 = (Base‘𝑀)
42, 3frmdbas 18005 . . . . . 6 (𝐼 ∈ V → 𝐵 = Word 𝐼)
5 eqid 2818 . . . . . 6 ( ++ ↾ (𝐵 × 𝐵)) = ( ++ ↾ (𝐵 × 𝐵))
62, 4, 5frmdval 18004 . . . . 5 (𝐼 ∈ V → 𝑀 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ( ++ ↾ (𝐵 × 𝐵))⟩})
76fveq2d 6667 . . . 4 (𝐼 ∈ V → (+g𝑀) = (+g‘{⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ( ++ ↾ (𝐵 × 𝐵))⟩}))
81, 7syl5eq 2865 . . 3 (𝐼 ∈ V → + = (+g‘{⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ( ++ ↾ (𝐵 × 𝐵))⟩}))
9 wrdexg 13859 . . . 4 (𝐼 ∈ V → Word 𝐼 ∈ V)
10 ccatfn 13912 . . . . . . 7 ++ Fn (V × V)
11 xpss 5564 . . . . . . 7 (𝐵 × 𝐵) ⊆ (V × V)
12 fnssres 6463 . . . . . . 7 (( ++ Fn (V × V) ∧ (𝐵 × 𝐵) ⊆ (V × V)) → ( ++ ↾ (𝐵 × 𝐵)) Fn (𝐵 × 𝐵))
1310, 11, 12mp2an 688 . . . . . 6 ( ++ ↾ (𝐵 × 𝐵)) Fn (𝐵 × 𝐵)
14 ovres 7303 . . . . . . . 8 ((𝑥𝐵𝑦𝐵) → (𝑥( ++ ↾ (𝐵 × 𝐵))𝑦) = (𝑥 ++ 𝑦))
152, 3frmdelbas 18006 . . . . . . . . 9 (𝑥𝐵𝑥 ∈ Word 𝐼)
162, 3frmdelbas 18006 . . . . . . . . 9 (𝑦𝐵𝑦 ∈ Word 𝐼)
17 ccatcl 13914 . . . . . . . . 9 ((𝑥 ∈ Word 𝐼𝑦 ∈ Word 𝐼) → (𝑥 ++ 𝑦) ∈ Word 𝐼)
1815, 16, 17syl2an 595 . . . . . . . 8 ((𝑥𝐵𝑦𝐵) → (𝑥 ++ 𝑦) ∈ Word 𝐼)
1914, 18eqeltrd 2910 . . . . . . 7 ((𝑥𝐵𝑦𝐵) → (𝑥( ++ ↾ (𝐵 × 𝐵))𝑦) ∈ Word 𝐼)
2019rgen2 3200 . . . . . 6 𝑥𝐵𝑦𝐵 (𝑥( ++ ↾ (𝐵 × 𝐵))𝑦) ∈ Word 𝐼
21 ffnov 7267 . . . . . 6 (( ++ ↾ (𝐵 × 𝐵)):(𝐵 × 𝐵)⟶Word 𝐼 ↔ (( ++ ↾ (𝐵 × 𝐵)) Fn (𝐵 × 𝐵) ∧ ∀𝑥𝐵𝑦𝐵 (𝑥( ++ ↾ (𝐵 × 𝐵))𝑦) ∈ Word 𝐼))
2213, 20, 21mpbir2an 707 . . . . 5 ( ++ ↾ (𝐵 × 𝐵)):(𝐵 × 𝐵)⟶Word 𝐼
233fvexi 6677 . . . . . 6 𝐵 ∈ V
2423, 23xpex 7465 . . . . 5 (𝐵 × 𝐵) ∈ V
25 fex2 7627 . . . . 5 ((( ++ ↾ (𝐵 × 𝐵)):(𝐵 × 𝐵)⟶Word 𝐼 ∧ (𝐵 × 𝐵) ∈ V ∧ Word 𝐼 ∈ V) → ( ++ ↾ (𝐵 × 𝐵)) ∈ V)
2622, 24, 25mp3an12 1442 . . . 4 (Word 𝐼 ∈ V → ( ++ ↾ (𝐵 × 𝐵)) ∈ V)
27 eqid 2818 . . . . 5 {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ( ++ ↾ (𝐵 × 𝐵))⟩} = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ( ++ ↾ (𝐵 × 𝐵))⟩}
2827grpplusg 16599 . . . 4 (( ++ ↾ (𝐵 × 𝐵)) ∈ V → ( ++ ↾ (𝐵 × 𝐵)) = (+g‘{⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ( ++ ↾ (𝐵 × 𝐵))⟩}))
299, 26, 283syl 18 . . 3 (𝐼 ∈ V → ( ++ ↾ (𝐵 × 𝐵)) = (+g‘{⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ( ++ ↾ (𝐵 × 𝐵))⟩}))
308, 29eqtr4d 2856 . 2 (𝐼 ∈ V → + = ( ++ ↾ (𝐵 × 𝐵)))
31 fvprc 6656 . . . . . . 7 𝐼 ∈ V → (freeMnd‘𝐼) = ∅)
322, 31syl5eq 2865 . . . . . 6 𝐼 ∈ V → 𝑀 = ∅)
3332fveq2d 6667 . . . . 5 𝐼 ∈ V → (+g𝑀) = (+g‘∅))
341, 33syl5eq 2865 . . . 4 𝐼 ∈ V → + = (+g‘∅))
35 res0 5850 . . . . 5 ( ++ ↾ ∅) = ∅
36 df-plusg 16566 . . . . . 6 +g = Slot 2
3736str0 16523 . . . . 5 ∅ = (+g‘∅)
3835, 37eqtr2i 2842 . . . 4 (+g‘∅) = ( ++ ↾ ∅)
3934, 38syl6eq 2869 . . 3 𝐼 ∈ V → + = ( ++ ↾ ∅))
4032fveq2d 6667 . . . . . . 7 𝐼 ∈ V → (Base‘𝑀) = (Base‘∅))
41 base0 16524 . . . . . . 7 ∅ = (Base‘∅)
4240, 3, 413eqtr4g 2878 . . . . . 6 𝐼 ∈ V → 𝐵 = ∅)
4342xpeq2d 5578 . . . . 5 𝐼 ∈ V → (𝐵 × 𝐵) = (𝐵 × ∅))
44 xp0 6008 . . . . 5 (𝐵 × ∅) = ∅
4543, 44syl6eq 2869 . . . 4 𝐼 ∈ V → (𝐵 × 𝐵) = ∅)
4645reseq2d 5846 . . 3 𝐼 ∈ V → ( ++ ↾ (𝐵 × 𝐵)) = ( ++ ↾ ∅))
4739, 46eqtr4d 2856 . 2 𝐼 ∈ V → + = ( ++ ↾ (𝐵 × 𝐵)))
4830, 47pm2.61i 183 1 + = ( ++ ↾ (𝐵 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 396   = wceq 1528  wcel 2105  wral 3135  Vcvv 3492  wss 3933  c0 4288  {cpr 4559  cop 4563   × cxp 5546  cres 5550   Fn wfn 6343  wf 6344  cfv 6348  (class class class)co 7145  2c2 11680  Word cword 13849   ++ cconcat 13910  ndxcnx 16468  Basecbs 16471  +gcplusg 16553  freeMndcfrmd 18000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-oadd 8095  df-er 8278  df-map 8397  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-2 11688  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12881  df-fzo 13022  df-hash 13679  df-word 13850  df-concat 13911  df-struct 16473  df-ndx 16474  df-slot 16475  df-base 16477  df-plusg 16566  df-frmd 18002
This theorem is referenced by:  frmdadd  18008
  Copyright terms: Public domain W3C validator