Step | Hyp | Ref
| Expression |
1 | | frmdplusg.p |
. . . 4
⊢ + =
(+g‘𝑀) |
2 | | frmdbas.m |
. . . . . 6
⊢ 𝑀 = (freeMnd‘𝐼) |
3 | | frmdbas.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝑀) |
4 | 2, 3 | frmdbas 18491 |
. . . . . 6
⊢ (𝐼 ∈ V → 𝐵 = Word 𝐼) |
5 | | eqid 2738 |
. . . . . 6
⊢ ( ++
↾ (𝐵 × 𝐵)) = ( ++ ↾ (𝐵 × 𝐵)) |
6 | 2, 4, 5 | frmdval 18490 |
. . . . 5
⊢ (𝐼 ∈ V → 𝑀 = {〈(Base‘ndx),
𝐵〉,
〈(+g‘ndx), ( ++ ↾ (𝐵 × 𝐵))〉}) |
7 | 6 | fveq2d 6778 |
. . . 4
⊢ (𝐼 ∈ V →
(+g‘𝑀) =
(+g‘{〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), (
++ ↾ (𝐵 × 𝐵))〉})) |
8 | 1, 7 | eqtrid 2790 |
. . 3
⊢ (𝐼 ∈ V → + =
(+g‘{〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), (
++ ↾ (𝐵 × 𝐵))〉})) |
9 | | wrdexg 14227 |
. . . 4
⊢ (𝐼 ∈ V → Word 𝐼 ∈ V) |
10 | | ccatfn 14275 |
. . . . . . 7
⊢ ++ Fn (V
× V) |
11 | | xpss 5605 |
. . . . . . 7
⊢ (𝐵 × 𝐵) ⊆ (V × V) |
12 | | fnssres 6555 |
. . . . . . 7
⊢ (( ++ Fn
(V × V) ∧ (𝐵
× 𝐵) ⊆ (V
× V)) → ( ++ ↾ (𝐵 × 𝐵)) Fn (𝐵 × 𝐵)) |
13 | 10, 11, 12 | mp2an 689 |
. . . . . 6
⊢ ( ++
↾ (𝐵 × 𝐵)) Fn (𝐵 × 𝐵) |
14 | | ovres 7438 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥( ++ ↾ (𝐵 × 𝐵))𝑦) = (𝑥 ++ 𝑦)) |
15 | 2, 3 | frmdelbas 18492 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝐵 → 𝑥 ∈ Word 𝐼) |
16 | 2, 3 | frmdelbas 18492 |
. . . . . . . . 9
⊢ (𝑦 ∈ 𝐵 → 𝑦 ∈ Word 𝐼) |
17 | | ccatcl 14277 |
. . . . . . . . 9
⊢ ((𝑥 ∈ Word 𝐼 ∧ 𝑦 ∈ Word 𝐼) → (𝑥 ++ 𝑦) ∈ Word 𝐼) |
18 | 15, 16, 17 | syl2an 596 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 ++ 𝑦) ∈ Word 𝐼) |
19 | 14, 18 | eqeltrd 2839 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥( ++ ↾ (𝐵 × 𝐵))𝑦) ∈ Word 𝐼) |
20 | 19 | rgen2 3120 |
. . . . . 6
⊢
∀𝑥 ∈
𝐵 ∀𝑦 ∈ 𝐵 (𝑥( ++ ↾ (𝐵 × 𝐵))𝑦) ∈ Word 𝐼 |
21 | | ffnov 7401 |
. . . . . 6
⊢ (( ++
↾ (𝐵 × 𝐵)):(𝐵 × 𝐵)⟶Word 𝐼 ↔ (( ++ ↾ (𝐵 × 𝐵)) Fn (𝐵 × 𝐵) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥( ++ ↾ (𝐵 × 𝐵))𝑦) ∈ Word 𝐼)) |
22 | 13, 20, 21 | mpbir2an 708 |
. . . . 5
⊢ ( ++
↾ (𝐵 × 𝐵)):(𝐵 × 𝐵)⟶Word 𝐼 |
23 | 3 | fvexi 6788 |
. . . . . 6
⊢ 𝐵 ∈ V |
24 | 23, 23 | xpex 7603 |
. . . . 5
⊢ (𝐵 × 𝐵) ∈ V |
25 | | fex2 7780 |
. . . . 5
⊢ ((( ++
↾ (𝐵 × 𝐵)):(𝐵 × 𝐵)⟶Word 𝐼 ∧ (𝐵 × 𝐵) ∈ V ∧ Word 𝐼 ∈ V) → ( ++ ↾ (𝐵 × 𝐵)) ∈ V) |
26 | 22, 24, 25 | mp3an12 1450 |
. . . 4
⊢ (Word
𝐼 ∈ V → ( ++
↾ (𝐵 × 𝐵)) ∈ V) |
27 | | eqid 2738 |
. . . . 5
⊢
{〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), (
++ ↾ (𝐵 × 𝐵))〉} =
{〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), (
++ ↾ (𝐵 × 𝐵))〉} |
28 | 27 | grpplusg 16998 |
. . . 4
⊢ (( ++
↾ (𝐵 × 𝐵)) ∈ V → ( ++ ↾
(𝐵 × 𝐵)) =
(+g‘{〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), (
++ ↾ (𝐵 × 𝐵))〉})) |
29 | 9, 26, 28 | 3syl 18 |
. . 3
⊢ (𝐼 ∈ V → ( ++ ↾
(𝐵 × 𝐵)) =
(+g‘{〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), (
++ ↾ (𝐵 × 𝐵))〉})) |
30 | 8, 29 | eqtr4d 2781 |
. 2
⊢ (𝐼 ∈ V → + = ( ++
↾ (𝐵 × 𝐵))) |
31 | | fvprc 6766 |
. . . . . . 7
⊢ (¬
𝐼 ∈ V →
(freeMnd‘𝐼) =
∅) |
32 | 2, 31 | eqtrid 2790 |
. . . . . 6
⊢ (¬
𝐼 ∈ V → 𝑀 = ∅) |
33 | 32 | fveq2d 6778 |
. . . . 5
⊢ (¬
𝐼 ∈ V →
(+g‘𝑀) =
(+g‘∅)) |
34 | 1, 33 | eqtrid 2790 |
. . . 4
⊢ (¬
𝐼 ∈ V → + =
(+g‘∅)) |
35 | | res0 5895 |
. . . . 5
⊢ ( ++
↾ ∅) = ∅ |
36 | | plusgid 16989 |
. . . . . 6
⊢
+g = Slot (+g‘ndx) |
37 | 36 | str0 16890 |
. . . . 5
⊢ ∅ =
(+g‘∅) |
38 | 35, 37 | eqtr2i 2767 |
. . . 4
⊢
(+g‘∅) = ( ++ ↾ ∅) |
39 | 34, 38 | eqtrdi 2794 |
. . 3
⊢ (¬
𝐼 ∈ V → + = ( ++
↾ ∅)) |
40 | 32 | fveq2d 6778 |
. . . . . . 7
⊢ (¬
𝐼 ∈ V →
(Base‘𝑀) =
(Base‘∅)) |
41 | | base0 16917 |
. . . . . . 7
⊢ ∅ =
(Base‘∅) |
42 | 40, 3, 41 | 3eqtr4g 2803 |
. . . . . 6
⊢ (¬
𝐼 ∈ V → 𝐵 = ∅) |
43 | 42 | xpeq2d 5619 |
. . . . 5
⊢ (¬
𝐼 ∈ V → (𝐵 × 𝐵) = (𝐵 × ∅)) |
44 | | xp0 6061 |
. . . . 5
⊢ (𝐵 × ∅) =
∅ |
45 | 43, 44 | eqtrdi 2794 |
. . . 4
⊢ (¬
𝐼 ∈ V → (𝐵 × 𝐵) = ∅) |
46 | 45 | reseq2d 5891 |
. . 3
⊢ (¬
𝐼 ∈ V → ( ++
↾ (𝐵 × 𝐵)) = ( ++ ↾
∅)) |
47 | 39, 46 | eqtr4d 2781 |
. 2
⊢ (¬
𝐼 ∈ V → + = ( ++
↾ (𝐵 × 𝐵))) |
48 | 30, 47 | pm2.61i 182 |
1
⊢ + = ( ++
↾ (𝐵 × 𝐵)) |