MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frmdplusg Structured version   Visualization version   GIF version

Theorem frmdplusg 18788
Description: The monoid operation of a free monoid. (Contributed by Mario Carneiro, 27-Sep-2015.) (Revised by Mario Carneiro, 27-Feb-2016.) (Proof shortened by AV, 6-Nov-2024.)
Hypotheses
Ref Expression
frmdbas.m 𝑀 = (freeMnd‘𝐼)
frmdbas.b 𝐵 = (Base‘𝑀)
frmdplusg.p + = (+g𝑀)
Assertion
Ref Expression
frmdplusg + = ( ++ ↾ (𝐵 × 𝐵))

Proof of Theorem frmdplusg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frmdplusg.p . . . 4 + = (+g𝑀)
2 frmdbas.m . . . . . 6 𝑀 = (freeMnd‘𝐼)
3 frmdbas.b . . . . . . 7 𝐵 = (Base‘𝑀)
42, 3frmdbas 18786 . . . . . 6 (𝐼 ∈ V → 𝐵 = Word 𝐼)
5 eqid 2730 . . . . . 6 ( ++ ↾ (𝐵 × 𝐵)) = ( ++ ↾ (𝐵 × 𝐵))
62, 4, 5frmdval 18785 . . . . 5 (𝐼 ∈ V → 𝑀 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ( ++ ↾ (𝐵 × 𝐵))⟩})
76fveq2d 6865 . . . 4 (𝐼 ∈ V → (+g𝑀) = (+g‘{⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ( ++ ↾ (𝐵 × 𝐵))⟩}))
81, 7eqtrid 2777 . . 3 (𝐼 ∈ V → + = (+g‘{⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ( ++ ↾ (𝐵 × 𝐵))⟩}))
9 wrdexg 14496 . . . 4 (𝐼 ∈ V → Word 𝐼 ∈ V)
10 ccatfn 14544 . . . . . . 7 ++ Fn (V × V)
11 xpss 5657 . . . . . . 7 (𝐵 × 𝐵) ⊆ (V × V)
12 fnssres 6644 . . . . . . 7 (( ++ Fn (V × V) ∧ (𝐵 × 𝐵) ⊆ (V × V)) → ( ++ ↾ (𝐵 × 𝐵)) Fn (𝐵 × 𝐵))
1310, 11, 12mp2an 692 . . . . . 6 ( ++ ↾ (𝐵 × 𝐵)) Fn (𝐵 × 𝐵)
14 ovres 7558 . . . . . . . 8 ((𝑥𝐵𝑦𝐵) → (𝑥( ++ ↾ (𝐵 × 𝐵))𝑦) = (𝑥 ++ 𝑦))
152, 3frmdelbas 18787 . . . . . . . . 9 (𝑥𝐵𝑥 ∈ Word 𝐼)
162, 3frmdelbas 18787 . . . . . . . . 9 (𝑦𝐵𝑦 ∈ Word 𝐼)
17 ccatcl 14546 . . . . . . . . 9 ((𝑥 ∈ Word 𝐼𝑦 ∈ Word 𝐼) → (𝑥 ++ 𝑦) ∈ Word 𝐼)
1815, 16, 17syl2an 596 . . . . . . . 8 ((𝑥𝐵𝑦𝐵) → (𝑥 ++ 𝑦) ∈ Word 𝐼)
1914, 18eqeltrd 2829 . . . . . . 7 ((𝑥𝐵𝑦𝐵) → (𝑥( ++ ↾ (𝐵 × 𝐵))𝑦) ∈ Word 𝐼)
2019rgen2 3178 . . . . . 6 𝑥𝐵𝑦𝐵 (𝑥( ++ ↾ (𝐵 × 𝐵))𝑦) ∈ Word 𝐼
21 ffnov 7518 . . . . . 6 (( ++ ↾ (𝐵 × 𝐵)):(𝐵 × 𝐵)⟶Word 𝐼 ↔ (( ++ ↾ (𝐵 × 𝐵)) Fn (𝐵 × 𝐵) ∧ ∀𝑥𝐵𝑦𝐵 (𝑥( ++ ↾ (𝐵 × 𝐵))𝑦) ∈ Word 𝐼))
2213, 20, 21mpbir2an 711 . . . . 5 ( ++ ↾ (𝐵 × 𝐵)):(𝐵 × 𝐵)⟶Word 𝐼
233fvexi 6875 . . . . . 6 𝐵 ∈ V
2423, 23xpex 7732 . . . . 5 (𝐵 × 𝐵) ∈ V
25 fex2 7915 . . . . 5 ((( ++ ↾ (𝐵 × 𝐵)):(𝐵 × 𝐵)⟶Word 𝐼 ∧ (𝐵 × 𝐵) ∈ V ∧ Word 𝐼 ∈ V) → ( ++ ↾ (𝐵 × 𝐵)) ∈ V)
2622, 24, 25mp3an12 1453 . . . 4 (Word 𝐼 ∈ V → ( ++ ↾ (𝐵 × 𝐵)) ∈ V)
27 eqid 2730 . . . . 5 {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ( ++ ↾ (𝐵 × 𝐵))⟩} = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ( ++ ↾ (𝐵 × 𝐵))⟩}
2827grpplusg 17260 . . . 4 (( ++ ↾ (𝐵 × 𝐵)) ∈ V → ( ++ ↾ (𝐵 × 𝐵)) = (+g‘{⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ( ++ ↾ (𝐵 × 𝐵))⟩}))
299, 26, 283syl 18 . . 3 (𝐼 ∈ V → ( ++ ↾ (𝐵 × 𝐵)) = (+g‘{⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ( ++ ↾ (𝐵 × 𝐵))⟩}))
308, 29eqtr4d 2768 . 2 (𝐼 ∈ V → + = ( ++ ↾ (𝐵 × 𝐵)))
31 fvprc 6853 . . . . . . 7 𝐼 ∈ V → (freeMnd‘𝐼) = ∅)
322, 31eqtrid 2777 . . . . . 6 𝐼 ∈ V → 𝑀 = ∅)
3332fveq2d 6865 . . . . 5 𝐼 ∈ V → (+g𝑀) = (+g‘∅))
341, 33eqtrid 2777 . . . 4 𝐼 ∈ V → + = (+g‘∅))
35 res0 5957 . . . . 5 ( ++ ↾ ∅) = ∅
36 plusgid 17254 . . . . . 6 +g = Slot (+g‘ndx)
3736str0 17166 . . . . 5 ∅ = (+g‘∅)
3835, 37eqtr2i 2754 . . . 4 (+g‘∅) = ( ++ ↾ ∅)
3934, 38eqtrdi 2781 . . 3 𝐼 ∈ V → + = ( ++ ↾ ∅))
4032fveq2d 6865 . . . . . . 7 𝐼 ∈ V → (Base‘𝑀) = (Base‘∅))
41 base0 17191 . . . . . . 7 ∅ = (Base‘∅)
4240, 3, 413eqtr4g 2790 . . . . . 6 𝐼 ∈ V → 𝐵 = ∅)
4342xpeq2d 5671 . . . . 5 𝐼 ∈ V → (𝐵 × 𝐵) = (𝐵 × ∅))
44 xp0 6134 . . . . 5 (𝐵 × ∅) = ∅
4543, 44eqtrdi 2781 . . . 4 𝐼 ∈ V → (𝐵 × 𝐵) = ∅)
4645reseq2d 5953 . . 3 𝐼 ∈ V → ( ++ ↾ (𝐵 × 𝐵)) = ( ++ ↾ ∅))
4739, 46eqtr4d 2768 . 2 𝐼 ∈ V → + = ( ++ ↾ (𝐵 × 𝐵)))
4830, 47pm2.61i 182 1 + = ( ++ ↾ (𝐵 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1540  wcel 2109  wral 3045  Vcvv 3450  wss 3917  c0 4299  {cpr 4594  cop 4598   × cxp 5639  cres 5643   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  Word cword 14485   ++ cconcat 14542  ndxcnx 17170  Basecbs 17186  +gcplusg 17227  freeMndcfrmd 18781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623  df-hash 14303  df-word 14486  df-concat 14543  df-struct 17124  df-slot 17159  df-ndx 17171  df-base 17187  df-plusg 17240  df-frmd 18783
This theorem is referenced by:  frmdadd  18789
  Copyright terms: Public domain W3C validator