![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemkuv2-3N | Structured version Visualization version GIF version |
Description: Part of proof of Lemma K of [Crawley] p. 118. Line 16 on p. 119 for i = 1, where sigma2 (p) is 𝑌, f1 is 𝐷, and k1 is 𝑂. (Contributed by NM, 6-Jul-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cdlemk3.b | ⊢ 𝐵 = (Base‘𝐾) |
cdlemk3.l | ⊢ ≤ = (le‘𝐾) |
cdlemk3.j | ⊢ ∨ = (join‘𝐾) |
cdlemk3.m | ⊢ ∧ = (meet‘𝐾) |
cdlemk3.a | ⊢ 𝐴 = (Atoms‘𝐾) |
cdlemk3.h | ⊢ 𝐻 = (LHyp‘𝐾) |
cdlemk3.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
cdlemk3.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
cdlemk3.s | ⊢ 𝑆 = (𝑓 ∈ 𝑇 ↦ (℩𝑖 ∈ 𝑇 (𝑖‘𝑃) = ((𝑃 ∨ (𝑅‘𝑓)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝑓 ∘ ◡𝐹)))))) |
cdlemk3.u1 | ⊢ 𝑌 = (𝑑 ∈ 𝑇, 𝑒 ∈ 𝑇 ↦ (℩𝑗 ∈ 𝑇 (𝑗‘𝑃) = ((𝑃 ∨ (𝑅‘𝑒)) ∧ (((𝑆‘𝑑)‘𝑃) ∨ (𝑅‘(𝑒 ∘ ◡𝑑)))))) |
Ref | Expression |
---|---|
cdlemkuv2-3N | ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅‘𝐹) = (𝑅‘𝑁) ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (((𝑅‘𝐷) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → ((𝐷𝑌𝐺)‘𝑃) = ((𝑃 ∨ (𝑅‘𝐺)) ∧ (((𝑆‘𝐷)‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝐷))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp22 1204 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅‘𝐹) = (𝑅‘𝑁) ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (((𝑅‘𝐷) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → 𝐷 ∈ 𝑇) | |
2 | simp13 1202 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅‘𝐹) = (𝑅‘𝑁) ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (((𝑅‘𝐷) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → 𝐺 ∈ 𝑇) | |
3 | cdlemk3.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
4 | cdlemk3.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
5 | cdlemk3.j | . . . . 5 ⊢ ∨ = (join‘𝐾) | |
6 | cdlemk3.m | . . . . 5 ⊢ ∧ = (meet‘𝐾) | |
7 | cdlemk3.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
8 | cdlemk3.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
9 | cdlemk3.t | . . . . 5 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
10 | cdlemk3.r | . . . . 5 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
11 | cdlemk3.s | . . . . 5 ⊢ 𝑆 = (𝑓 ∈ 𝑇 ↦ (℩𝑖 ∈ 𝑇 (𝑖‘𝑃) = ((𝑃 ∨ (𝑅‘𝑓)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝑓 ∘ ◡𝐹)))))) | |
12 | cdlemk3.u1 | . . . . 5 ⊢ 𝑌 = (𝑑 ∈ 𝑇, 𝑒 ∈ 𝑇 ↦ (℩𝑗 ∈ 𝑇 (𝑗‘𝑃) = ((𝑃 ∨ (𝑅‘𝑒)) ∧ (((𝑆‘𝑑)‘𝑃) ∨ (𝑅‘(𝑒 ∘ ◡𝑑)))))) | |
13 | eqid 2726 | . . . . 5 ⊢ (𝑆‘𝐷) = (𝑆‘𝐷) | |
14 | eqid 2726 | . . . . 5 ⊢ (𝑒 ∈ 𝑇 ↦ (℩𝑗 ∈ 𝑇 (𝑗‘𝑃) = ((𝑃 ∨ (𝑅‘𝑒)) ∧ (((𝑆‘𝐷)‘𝑃) ∨ (𝑅‘(𝑒 ∘ ◡𝐷)))))) = (𝑒 ∈ 𝑇 ↦ (℩𝑗 ∈ 𝑇 (𝑗‘𝑃) = ((𝑃 ∨ (𝑅‘𝑒)) ∧ (((𝑆‘𝐷)‘𝑃) ∨ (𝑅‘(𝑒 ∘ ◡𝐷)))))) | |
15 | 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 | cdlemkuu 40594 | . . . 4 ⊢ ((𝐷 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (𝐷𝑌𝐺) = ((𝑒 ∈ 𝑇 ↦ (℩𝑗 ∈ 𝑇 (𝑗‘𝑃) = ((𝑃 ∨ (𝑅‘𝑒)) ∧ (((𝑆‘𝐷)‘𝑃) ∨ (𝑅‘(𝑒 ∘ ◡𝐷))))))‘𝐺)) |
16 | 1, 2, 15 | syl2anc 582 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅‘𝐹) = (𝑅‘𝑁) ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (((𝑅‘𝐷) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → (𝐷𝑌𝐺) = ((𝑒 ∈ 𝑇 ↦ (℩𝑗 ∈ 𝑇 (𝑗‘𝑃) = ((𝑃 ∨ (𝑅‘𝑒)) ∧ (((𝑆‘𝐷)‘𝑃) ∨ (𝑅‘(𝑒 ∘ ◡𝐷))))))‘𝐺)) |
17 | 16 | fveq1d 6903 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅‘𝐹) = (𝑅‘𝑁) ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (((𝑅‘𝐷) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → ((𝐷𝑌𝐺)‘𝑃) = (((𝑒 ∈ 𝑇 ↦ (℩𝑗 ∈ 𝑇 (𝑗‘𝑃) = ((𝑃 ∨ (𝑅‘𝑒)) ∧ (((𝑆‘𝐷)‘𝑃) ∨ (𝑅‘(𝑒 ∘ ◡𝐷))))))‘𝐺)‘𝑃)) |
18 | 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14 | cdlemkuv2 40566 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅‘𝐹) = (𝑅‘𝑁) ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (((𝑅‘𝐷) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → (((𝑒 ∈ 𝑇 ↦ (℩𝑗 ∈ 𝑇 (𝑗‘𝑃) = ((𝑃 ∨ (𝑅‘𝑒)) ∧ (((𝑆‘𝐷)‘𝑃) ∨ (𝑅‘(𝑒 ∘ ◡𝐷))))))‘𝐺)‘𝑃) = ((𝑃 ∨ (𝑅‘𝐺)) ∧ (((𝑆‘𝐷)‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝐷))))) |
19 | 17, 18 | eqtrd 2766 | 1 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅‘𝐹) = (𝑅‘𝑁) ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (((𝑅‘𝐷) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → ((𝐷𝑌𝐺)‘𝑃) = ((𝑃 ∨ (𝑅‘𝐺)) ∧ (((𝑆‘𝐷)‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝐷))))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1534 ∈ wcel 2099 ≠ wne 2930 class class class wbr 5153 ↦ cmpt 5236 I cid 5579 ◡ccnv 5681 ↾ cres 5684 ∘ ccom 5686 ‘cfv 6554 ℩crio 7379 (class class class)co 7424 ∈ cmpo 7426 Basecbs 17213 lecple 17273 joincjn 18336 meetcmee 18337 Atomscatm 38961 HLchlt 39048 LHypclh 39683 LTrncltrn 39800 trLctrl 39857 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-riotaBAD 38651 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-iun 5003 df-iin 5004 df-br 5154 df-opab 5216 df-mpt 5237 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-1st 8003 df-2nd 8004 df-undef 8288 df-map 8857 df-proset 18320 df-poset 18338 df-plt 18355 df-lub 18371 df-glb 18372 df-join 18373 df-meet 18374 df-p0 18450 df-p1 18451 df-lat 18457 df-clat 18524 df-oposet 38874 df-ol 38876 df-oml 38877 df-covers 38964 df-ats 38965 df-atl 38996 df-cvlat 39020 df-hlat 39049 df-llines 39197 df-lplanes 39198 df-lvols 39199 df-lines 39200 df-psubsp 39202 df-pmap 39203 df-padd 39495 df-lhyp 39687 df-laut 39688 df-ldil 39803 df-ltrn 39804 df-trl 39858 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |