![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemk18-3N | Structured version Visualization version GIF version |
Description: Part of proof of Lemma K of [Crawley] p. 118. Line 22 on p. 119. 𝑁, 𝑌, 𝑂, 𝐷 are k, sigma2 (p), k1, f1. (Contributed by NM, 7-Jul-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cdlemk3.b | ⊢ 𝐵 = (Base‘𝐾) |
cdlemk3.l | ⊢ ≤ = (le‘𝐾) |
cdlemk3.j | ⊢ ∨ = (join‘𝐾) |
cdlemk3.m | ⊢ ∧ = (meet‘𝐾) |
cdlemk3.a | ⊢ 𝐴 = (Atoms‘𝐾) |
cdlemk3.h | ⊢ 𝐻 = (LHyp‘𝐾) |
cdlemk3.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
cdlemk3.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
cdlemk3.s | ⊢ 𝑆 = (𝑓 ∈ 𝑇 ↦ (℩𝑖 ∈ 𝑇 (𝑖‘𝑃) = ((𝑃 ∨ (𝑅‘𝑓)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝑓 ∘ ◡𝐹)))))) |
cdlemk3.u1 | ⊢ 𝑌 = (𝑑 ∈ 𝑇, 𝑒 ∈ 𝑇 ↦ (℩𝑗 ∈ 𝑇 (𝑗‘𝑃) = ((𝑃 ∨ (𝑅‘𝑒)) ∧ (((𝑆‘𝑑)‘𝑃) ∨ (𝑅‘(𝑒 ∘ ◡𝑑)))))) |
Ref | Expression |
---|---|
cdlemk18-3N | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ ((𝑅‘𝐷) ≠ (𝑅‘𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → ((𝐷𝑌𝐹)‘𝑃) = (𝑁‘𝑃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp22 1207 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ ((𝑅‘𝐷) ≠ (𝑅‘𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → 𝐷 ∈ 𝑇) | |
2 | simp21 1206 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ ((𝑅‘𝐷) ≠ (𝑅‘𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → 𝐹 ∈ 𝑇) | |
3 | cdlemk3.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
4 | cdlemk3.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
5 | cdlemk3.j | . . . . 5 ⊢ ∨ = (join‘𝐾) | |
6 | cdlemk3.m | . . . . 5 ⊢ ∧ = (meet‘𝐾) | |
7 | cdlemk3.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
8 | cdlemk3.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
9 | cdlemk3.t | . . . . 5 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
10 | cdlemk3.r | . . . . 5 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
11 | cdlemk3.s | . . . . 5 ⊢ 𝑆 = (𝑓 ∈ 𝑇 ↦ (℩𝑖 ∈ 𝑇 (𝑖‘𝑃) = ((𝑃 ∨ (𝑅‘𝑓)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝑓 ∘ ◡𝐹)))))) | |
12 | cdlemk3.u1 | . . . . 5 ⊢ 𝑌 = (𝑑 ∈ 𝑇, 𝑒 ∈ 𝑇 ↦ (℩𝑗 ∈ 𝑇 (𝑗‘𝑃) = ((𝑃 ∨ (𝑅‘𝑒)) ∧ (((𝑆‘𝑑)‘𝑃) ∨ (𝑅‘(𝑒 ∘ ◡𝑑)))))) | |
13 | eqid 2736 | . . . . 5 ⊢ (𝑆‘𝐷) = (𝑆‘𝐷) | |
14 | eqid 2736 | . . . . 5 ⊢ (𝑒 ∈ 𝑇 ↦ (℩𝑗 ∈ 𝑇 (𝑗‘𝑃) = ((𝑃 ∨ (𝑅‘𝑒)) ∧ (((𝑆‘𝐷)‘𝑃) ∨ (𝑅‘(𝑒 ∘ ◡𝐷)))))) = (𝑒 ∈ 𝑇 ↦ (℩𝑗 ∈ 𝑇 (𝑗‘𝑃) = ((𝑃 ∨ (𝑅‘𝑒)) ∧ (((𝑆‘𝐷)‘𝑃) ∨ (𝑅‘(𝑒 ∘ ◡𝐷)))))) | |
15 | 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 | cdlemkuu 39358 | . . . 4 ⊢ ((𝐷 ∈ 𝑇 ∧ 𝐹 ∈ 𝑇) → (𝐷𝑌𝐹) = ((𝑒 ∈ 𝑇 ↦ (℩𝑗 ∈ 𝑇 (𝑗‘𝑃) = ((𝑃 ∨ (𝑅‘𝑒)) ∧ (((𝑆‘𝐷)‘𝑃) ∨ (𝑅‘(𝑒 ∘ ◡𝐷))))))‘𝐹)) |
16 | 1, 2, 15 | syl2anc 584 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ ((𝑅‘𝐷) ≠ (𝑅‘𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → (𝐷𝑌𝐹) = ((𝑒 ∈ 𝑇 ↦ (℩𝑗 ∈ 𝑇 (𝑗‘𝑃) = ((𝑃 ∨ (𝑅‘𝑒)) ∧ (((𝑆‘𝐷)‘𝑃) ∨ (𝑅‘(𝑒 ∘ ◡𝐷))))))‘𝐹)) |
17 | 16 | fveq1d 6844 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ ((𝑅‘𝐷) ≠ (𝑅‘𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → ((𝐷𝑌𝐹)‘𝑃) = (((𝑒 ∈ 𝑇 ↦ (℩𝑗 ∈ 𝑇 (𝑗‘𝑃) = ((𝑃 ∨ (𝑅‘𝑒)) ∧ (((𝑆‘𝐷)‘𝑃) ∨ (𝑅‘(𝑒 ∘ ◡𝐷))))))‘𝐹)‘𝑃)) |
18 | 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14 | cdlemk18-2N 39349 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ ((𝑅‘𝐷) ≠ (𝑅‘𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → (𝑁‘𝑃) = (((𝑒 ∈ 𝑇 ↦ (℩𝑗 ∈ 𝑇 (𝑗‘𝑃) = ((𝑃 ∨ (𝑅‘𝑒)) ∧ (((𝑆‘𝐷)‘𝑃) ∨ (𝑅‘(𝑒 ∘ ◡𝐷))))))‘𝐹)‘𝑃)) |
19 | 17, 18 | eqtr4d 2779 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ ((𝑅‘𝐷) ≠ (𝑅‘𝐹) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → ((𝐷𝑌𝐹)‘𝑃) = (𝑁‘𝑃)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ≠ wne 2943 class class class wbr 5105 ↦ cmpt 5188 I cid 5530 ◡ccnv 5632 ↾ cres 5635 ∘ ccom 5637 ‘cfv 6496 ℩crio 7312 (class class class)co 7357 ∈ cmpo 7359 Basecbs 17083 lecple 17140 joincjn 18200 meetcmee 18201 Atomscatm 37725 HLchlt 37812 LHypclh 38447 LTrncltrn 38564 trLctrl 38621 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-riotaBAD 37415 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-iun 4956 df-iin 4957 df-br 5106 df-opab 5168 df-mpt 5189 df-id 5531 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-1st 7921 df-2nd 7922 df-undef 8204 df-map 8767 df-proset 18184 df-poset 18202 df-plt 18219 df-lub 18235 df-glb 18236 df-join 18237 df-meet 18238 df-p0 18314 df-p1 18315 df-lat 18321 df-clat 18388 df-oposet 37638 df-ol 37640 df-oml 37641 df-covers 37728 df-ats 37729 df-atl 37760 df-cvlat 37784 df-hlat 37813 df-llines 37961 df-lplanes 37962 df-lvols 37963 df-lines 37964 df-psubsp 37966 df-pmap 37967 df-padd 38259 df-lhyp 38451 df-laut 38452 df-ldil 38567 df-ltrn 38568 df-trl 38622 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |