Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemkuel-3 | Structured version Visualization version GIF version |
Description: Part of proof of Lemma K of [Crawley] p. 118. Conditions for the sigma2 (p) function to be a translation. TODO: combine cdlemkj 38440? (Contributed by NM, 11-Jul-2013.) |
Ref | Expression |
---|---|
cdlemk3.b | ⊢ 𝐵 = (Base‘𝐾) |
cdlemk3.l | ⊢ ≤ = (le‘𝐾) |
cdlemk3.j | ⊢ ∨ = (join‘𝐾) |
cdlemk3.m | ⊢ ∧ = (meet‘𝐾) |
cdlemk3.a | ⊢ 𝐴 = (Atoms‘𝐾) |
cdlemk3.h | ⊢ 𝐻 = (LHyp‘𝐾) |
cdlemk3.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
cdlemk3.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
cdlemk3.s | ⊢ 𝑆 = (𝑓 ∈ 𝑇 ↦ (℩𝑖 ∈ 𝑇 (𝑖‘𝑃) = ((𝑃 ∨ (𝑅‘𝑓)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝑓 ∘ ◡𝐹)))))) |
cdlemk3.u1 | ⊢ 𝑌 = (𝑑 ∈ 𝑇, 𝑒 ∈ 𝑇 ↦ (℩𝑗 ∈ 𝑇 (𝑗‘𝑃) = ((𝑃 ∨ (𝑅‘𝑒)) ∧ (((𝑆‘𝑑)‘𝑃) ∨ (𝑅‘(𝑒 ∘ ◡𝑑)))))) |
Ref | Expression |
---|---|
cdlemkuel-3 | ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅‘𝐹) = (𝑅‘𝑁) ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (((𝑅‘𝐷) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → (𝐷𝑌𝐺) ∈ 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp22 1205 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅‘𝐹) = (𝑅‘𝑁) ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (((𝑅‘𝐷) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → 𝐷 ∈ 𝑇) | |
2 | simp13 1203 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅‘𝐹) = (𝑅‘𝑁) ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (((𝑅‘𝐷) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → 𝐺 ∈ 𝑇) | |
3 | cdlemk3.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
4 | cdlemk3.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
5 | cdlemk3.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
6 | cdlemk3.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
7 | cdlemk3.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
8 | cdlemk3.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
9 | cdlemk3.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
10 | cdlemk3.r | . . . 4 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
11 | cdlemk3.s | . . . 4 ⊢ 𝑆 = (𝑓 ∈ 𝑇 ↦ (℩𝑖 ∈ 𝑇 (𝑖‘𝑃) = ((𝑃 ∨ (𝑅‘𝑓)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝑓 ∘ ◡𝐹)))))) | |
12 | cdlemk3.u1 | . . . 4 ⊢ 𝑌 = (𝑑 ∈ 𝑇, 𝑒 ∈ 𝑇 ↦ (℩𝑗 ∈ 𝑇 (𝑗‘𝑃) = ((𝑃 ∨ (𝑅‘𝑒)) ∧ (((𝑆‘𝑑)‘𝑃) ∨ (𝑅‘(𝑒 ∘ ◡𝑑)))))) | |
13 | eqid 2759 | . . . 4 ⊢ (𝑆‘𝐷) = (𝑆‘𝐷) | |
14 | eqid 2759 | . . . 4 ⊢ (𝑒 ∈ 𝑇 ↦ (℩𝑗 ∈ 𝑇 (𝑗‘𝑃) = ((𝑃 ∨ (𝑅‘𝑒)) ∧ (((𝑆‘𝐷)‘𝑃) ∨ (𝑅‘(𝑒 ∘ ◡𝐷)))))) = (𝑒 ∈ 𝑇 ↦ (℩𝑗 ∈ 𝑇 (𝑗‘𝑃) = ((𝑃 ∨ (𝑅‘𝑒)) ∧ (((𝑆‘𝐷)‘𝑃) ∨ (𝑅‘(𝑒 ∘ ◡𝐷)))))) | |
15 | 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 | cdlemkuu 38472 | . . 3 ⊢ ((𝐷 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (𝐷𝑌𝐺) = ((𝑒 ∈ 𝑇 ↦ (℩𝑗 ∈ 𝑇 (𝑗‘𝑃) = ((𝑃 ∨ (𝑅‘𝑒)) ∧ (((𝑆‘𝐷)‘𝑃) ∨ (𝑅‘(𝑒 ∘ ◡𝐷))))))‘𝐺)) |
16 | 1, 2, 15 | syl2anc 588 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅‘𝐹) = (𝑅‘𝑁) ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (((𝑅‘𝐷) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → (𝐷𝑌𝐺) = ((𝑒 ∈ 𝑇 ↦ (℩𝑗 ∈ 𝑇 (𝑗‘𝑃) = ((𝑃 ∨ (𝑅‘𝑒)) ∧ (((𝑆‘𝐷)‘𝑃) ∨ (𝑅‘(𝑒 ∘ ◡𝐷))))))‘𝐺)) |
17 | 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14 | cdlemkuel 38442 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅‘𝐹) = (𝑅‘𝑁) ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (((𝑅‘𝐷) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → ((𝑒 ∈ 𝑇 ↦ (℩𝑗 ∈ 𝑇 (𝑗‘𝑃) = ((𝑃 ∨ (𝑅‘𝑒)) ∧ (((𝑆‘𝐷)‘𝑃) ∨ (𝑅‘(𝑒 ∘ ◡𝐷))))))‘𝐺) ∈ 𝑇) |
18 | 16, 17 | eqeltrd 2853 | 1 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅‘𝐹) = (𝑅‘𝑁) ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (((𝑅‘𝐷) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → (𝐷𝑌𝐺) ∈ 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 400 ∧ w3a 1085 = wceq 1539 ∈ wcel 2112 ≠ wne 2952 class class class wbr 5033 ↦ cmpt 5113 I cid 5430 ◡ccnv 5524 ↾ cres 5527 ∘ ccom 5529 ‘cfv 6336 ℩crio 7108 (class class class)co 7151 ∈ cmpo 7153 Basecbs 16542 lecple 16631 joincjn 17621 meetcmee 17622 Atomscatm 36840 HLchlt 36927 LHypclh 37561 LTrncltrn 37678 trLctrl 37735 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5157 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 ax-riotaBAD 36530 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-ral 3076 df-rex 3077 df-reu 3078 df-rmo 3079 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-op 4530 df-uni 4800 df-iun 4886 df-iin 4887 df-br 5034 df-opab 5096 df-mpt 5114 df-id 5431 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-riota 7109 df-ov 7154 df-oprab 7155 df-mpo 7156 df-1st 7694 df-2nd 7695 df-undef 7950 df-map 8419 df-proset 17605 df-poset 17623 df-plt 17635 df-lub 17651 df-glb 17652 df-join 17653 df-meet 17654 df-p0 17716 df-p1 17717 df-lat 17723 df-clat 17785 df-oposet 36753 df-ol 36755 df-oml 36756 df-covers 36843 df-ats 36844 df-atl 36875 df-cvlat 36899 df-hlat 36928 df-llines 37075 df-lplanes 37076 df-lvols 37077 df-lines 37078 df-psubsp 37080 df-pmap 37081 df-padd 37373 df-lhyp 37565 df-laut 37566 df-ldil 37681 df-ltrn 37682 df-trl 37736 |
This theorem is referenced by: cdlemk26b-3 38482 cdlemk27-3 38484 cdlemk33N 38486 cdlemk34 38487 |
Copyright terms: Public domain | W3C validator |