| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cfilss | Structured version Visualization version GIF version | ||
| Description: A filter finer than a Cauchy filter is Cauchy. (Contributed by Mario Carneiro, 13-Oct-2015.) |
| Ref | Expression |
|---|---|
| cfilss | ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷)) ∧ (𝐺 ∈ (Fil‘𝑋) ∧ 𝐹 ⊆ 𝐺)) → 𝐺 ∈ (CauFil‘𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprl 770 | . 2 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷)) ∧ (𝐺 ∈ (Fil‘𝑋) ∧ 𝐹 ⊆ 𝐺)) → 𝐺 ∈ (Fil‘𝑋)) | |
| 2 | simprr 772 | . . 3 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷)) ∧ (𝐺 ∈ (Fil‘𝑋) ∧ 𝐹 ⊆ 𝐺)) → 𝐹 ⊆ 𝐺) | |
| 3 | iscfil 25192 | . . . . 5 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ (CauFil‘𝐷) ↔ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝐹 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)))) | |
| 4 | 3 | simplbda 499 | . . . 4 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷)) → ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝐹 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)) |
| 5 | 4 | adantr 480 | . . 3 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷)) ∧ (𝐺 ∈ (Fil‘𝑋) ∧ 𝐹 ⊆ 𝐺)) → ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝐹 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)) |
| 6 | ssrexv 3999 | . . . 4 ⊢ (𝐹 ⊆ 𝐺 → (∃𝑦 ∈ 𝐹 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥) → ∃𝑦 ∈ 𝐺 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) | |
| 7 | 6 | ralimdv 3146 | . . 3 ⊢ (𝐹 ⊆ 𝐺 → (∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝐹 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥) → ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝐺 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) |
| 8 | 2, 5, 7 | sylc 65 | . 2 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷)) ∧ (𝐺 ∈ (Fil‘𝑋) ∧ 𝐹 ⊆ 𝐺)) → ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝐺 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)) |
| 9 | iscfil 25192 | . . 3 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐺 ∈ (CauFil‘𝐷) ↔ (𝐺 ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝐺 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)))) | |
| 10 | 9 | ad2antrr 726 | . 2 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷)) ∧ (𝐺 ∈ (Fil‘𝑋) ∧ 𝐹 ⊆ 𝐺)) → (𝐺 ∈ (CauFil‘𝐷) ↔ (𝐺 ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝐺 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)))) |
| 11 | 1, 8, 10 | mpbir2and 713 | 1 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷)) ∧ (𝐺 ∈ (Fil‘𝑋) ∧ 𝐹 ⊆ 𝐺)) → 𝐺 ∈ (CauFil‘𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 ⊆ wss 3897 × cxp 5612 “ cima 5617 ‘cfv 6481 (class class class)co 7346 0cc0 11006 ℝ+crp 12890 [,)cico 13247 ∞Metcxmet 21276 Filcfil 23760 CauFilccfil 25179 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-map 8752 df-xr 11150 df-xmet 21284 df-cfil 25182 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |