Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cfilss | Structured version Visualization version GIF version |
Description: A filter finer than a Cauchy filter is Cauchy. (Contributed by Mario Carneiro, 13-Oct-2015.) |
Ref | Expression |
---|---|
cfilss | ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷)) ∧ (𝐺 ∈ (Fil‘𝑋) ∧ 𝐹 ⊆ 𝐺)) → 𝐺 ∈ (CauFil‘𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprl 767 | . 2 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷)) ∧ (𝐺 ∈ (Fil‘𝑋) ∧ 𝐹 ⊆ 𝐺)) → 𝐺 ∈ (Fil‘𝑋)) | |
2 | simprr 769 | . . 3 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷)) ∧ (𝐺 ∈ (Fil‘𝑋) ∧ 𝐹 ⊆ 𝐺)) → 𝐹 ⊆ 𝐺) | |
3 | iscfil 24334 | . . . . 5 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ (CauFil‘𝐷) ↔ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝐹 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)))) | |
4 | 3 | simplbda 499 | . . . 4 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷)) → ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝐹 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)) |
5 | 4 | adantr 480 | . . 3 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷)) ∧ (𝐺 ∈ (Fil‘𝑋) ∧ 𝐹 ⊆ 𝐺)) → ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝐹 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)) |
6 | ssrexv 3984 | . . . 4 ⊢ (𝐹 ⊆ 𝐺 → (∃𝑦 ∈ 𝐹 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥) → ∃𝑦 ∈ 𝐺 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) | |
7 | 6 | ralimdv 3103 | . . 3 ⊢ (𝐹 ⊆ 𝐺 → (∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝐹 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥) → ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝐺 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))) |
8 | 2, 5, 7 | sylc 65 | . 2 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷)) ∧ (𝐺 ∈ (Fil‘𝑋) ∧ 𝐹 ⊆ 𝐺)) → ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝐺 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)) |
9 | iscfil 24334 | . . 3 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐺 ∈ (CauFil‘𝐷) ↔ (𝐺 ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝐺 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)))) | |
10 | 9 | ad2antrr 722 | . 2 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷)) ∧ (𝐺 ∈ (Fil‘𝑋) ∧ 𝐹 ⊆ 𝐺)) → (𝐺 ∈ (CauFil‘𝐷) ↔ (𝐺 ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝐺 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)))) |
11 | 1, 8, 10 | mpbir2and 709 | 1 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷)) ∧ (𝐺 ∈ (Fil‘𝑋) ∧ 𝐹 ⊆ 𝐺)) → 𝐺 ∈ (CauFil‘𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2108 ∀wral 3063 ∃wrex 3064 ⊆ wss 3883 × cxp 5578 “ cima 5583 ‘cfv 6418 (class class class)co 7255 0cc0 10802 ℝ+crp 12659 [,)cico 13010 ∞Metcxmet 20495 Filcfil 22904 CauFilccfil 24321 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-map 8575 df-xr 10944 df-xmet 20503 df-cfil 24324 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |