MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfilss Structured version   Visualization version   GIF version

Theorem cfilss 25318
Description: A filter finer than a Cauchy filter is Cauchy. (Contributed by Mario Carneiro, 13-Oct-2015.)
Assertion
Ref Expression
cfilss (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷)) ∧ (𝐺 ∈ (Fil‘𝑋) ∧ 𝐹𝐺)) → 𝐺 ∈ (CauFil‘𝐷))

Proof of Theorem cfilss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 771 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷)) ∧ (𝐺 ∈ (Fil‘𝑋) ∧ 𝐹𝐺)) → 𝐺 ∈ (Fil‘𝑋))
2 simprr 773 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷)) ∧ (𝐺 ∈ (Fil‘𝑋) ∧ 𝐹𝐺)) → 𝐹𝐺)
3 iscfil 25313 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ (CauFil‘𝐷) ↔ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐹 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))))
43simplbda 499 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷)) → ∀𝑥 ∈ ℝ+𝑦𝐹 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))
54adantr 480 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷)) ∧ (𝐺 ∈ (Fil‘𝑋) ∧ 𝐹𝐺)) → ∀𝑥 ∈ ℝ+𝑦𝐹 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))
6 ssrexv 4065 . . . 4 (𝐹𝐺 → (∃𝑦𝐹 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥) → ∃𝑦𝐺 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)))
76ralimdv 3167 . . 3 (𝐹𝐺 → (∀𝑥 ∈ ℝ+𝑦𝐹 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥) → ∀𝑥 ∈ ℝ+𝑦𝐺 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)))
82, 5, 7sylc 65 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷)) ∧ (𝐺 ∈ (Fil‘𝑋) ∧ 𝐹𝐺)) → ∀𝑥 ∈ ℝ+𝑦𝐺 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))
9 iscfil 25313 . . 3 (𝐷 ∈ (∞Met‘𝑋) → (𝐺 ∈ (CauFil‘𝐷) ↔ (𝐺 ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐺 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))))
109ad2antrr 726 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷)) ∧ (𝐺 ∈ (Fil‘𝑋) ∧ 𝐹𝐺)) → (𝐺 ∈ (CauFil‘𝐷) ↔ (𝐺 ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐺 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))))
111, 8, 10mpbir2and 713 1 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷)) ∧ (𝐺 ∈ (Fil‘𝑋) ∧ 𝐹𝐺)) → 𝐺 ∈ (CauFil‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2106  wral 3059  wrex 3068  wss 3963   × cxp 5687  cima 5692  cfv 6563  (class class class)co 7431  0cc0 11153  +crp 13032  [,)cico 13386  ∞Metcxmet 21367  Filcfil 23869  CauFilccfil 25300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-map 8867  df-xr 11297  df-xmet 21375  df-cfil 25303
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator