MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfilss Structured version   Visualization version   GIF version

Theorem cfilss 25146
Description: A filter finer than a Cauchy filter is Cauchy. (Contributed by Mario Carneiro, 13-Oct-2015.)
Assertion
Ref Expression
cfilss (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷)) ∧ (𝐺 ∈ (Fil‘𝑋) ∧ 𝐹𝐺)) → 𝐺 ∈ (CauFil‘𝐷))

Proof of Theorem cfilss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 770 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷)) ∧ (𝐺 ∈ (Fil‘𝑋) ∧ 𝐹𝐺)) → 𝐺 ∈ (Fil‘𝑋))
2 simprr 772 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷)) ∧ (𝐺 ∈ (Fil‘𝑋) ∧ 𝐹𝐺)) → 𝐹𝐺)
3 iscfil 25141 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ (CauFil‘𝐷) ↔ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐹 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))))
43simplbda 499 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷)) → ∀𝑥 ∈ ℝ+𝑦𝐹 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))
54adantr 480 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷)) ∧ (𝐺 ∈ (Fil‘𝑋) ∧ 𝐹𝐺)) → ∀𝑥 ∈ ℝ+𝑦𝐹 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))
6 ssrexv 4013 . . . 4 (𝐹𝐺 → (∃𝑦𝐹 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥) → ∃𝑦𝐺 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)))
76ralimdv 3147 . . 3 (𝐹𝐺 → (∀𝑥 ∈ ℝ+𝑦𝐹 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥) → ∀𝑥 ∈ ℝ+𝑦𝐺 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)))
82, 5, 7sylc 65 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷)) ∧ (𝐺 ∈ (Fil‘𝑋) ∧ 𝐹𝐺)) → ∀𝑥 ∈ ℝ+𝑦𝐺 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))
9 iscfil 25141 . . 3 (𝐷 ∈ (∞Met‘𝑋) → (𝐺 ∈ (CauFil‘𝐷) ↔ (𝐺 ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐺 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))))
109ad2antrr 726 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷)) ∧ (𝐺 ∈ (Fil‘𝑋) ∧ 𝐹𝐺)) → (𝐺 ∈ (CauFil‘𝐷) ↔ (𝐺 ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐺 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))))
111, 8, 10mpbir2and 713 1 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷)) ∧ (𝐺 ∈ (Fil‘𝑋) ∧ 𝐹𝐺)) → 𝐺 ∈ (CauFil‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  wral 3044  wrex 3053  wss 3911   × cxp 5629  cima 5634  cfv 6499  (class class class)co 7369  0cc0 11044  +crp 12927  [,)cico 13284  ∞Metcxmet 21225  Filcfil 23708  CauFilccfil 25128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-map 8778  df-xr 11188  df-xmet 21233  df-cfil 25131
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator