MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfilss Structured version   Visualization version   GIF version

Theorem cfilss 25211
Description: A filter finer than a Cauchy filter is Cauchy. (Contributed by Mario Carneiro, 13-Oct-2015.)
Assertion
Ref Expression
cfilss (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷)) ∧ (𝐺 ∈ (Fil‘𝑋) ∧ 𝐹𝐺)) → 𝐺 ∈ (CauFil‘𝐷))

Proof of Theorem cfilss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 770 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷)) ∧ (𝐺 ∈ (Fil‘𝑋) ∧ 𝐹𝐺)) → 𝐺 ∈ (Fil‘𝑋))
2 simprr 772 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷)) ∧ (𝐺 ∈ (Fil‘𝑋) ∧ 𝐹𝐺)) → 𝐹𝐺)
3 iscfil 25206 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ (CauFil‘𝐷) ↔ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐹 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))))
43simplbda 499 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷)) → ∀𝑥 ∈ ℝ+𝑦𝐹 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))
54adantr 480 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷)) ∧ (𝐺 ∈ (Fil‘𝑋) ∧ 𝐹𝐺)) → ∀𝑥 ∈ ℝ+𝑦𝐹 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))
6 ssrexv 4049 . . . 4 (𝐹𝐺 → (∃𝑦𝐹 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥) → ∃𝑦𝐺 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)))
76ralimdv 3166 . . 3 (𝐹𝐺 → (∀𝑥 ∈ ℝ+𝑦𝐹 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥) → ∀𝑥 ∈ ℝ+𝑦𝐺 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)))
82, 5, 7sylc 65 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷)) ∧ (𝐺 ∈ (Fil‘𝑋) ∧ 𝐹𝐺)) → ∀𝑥 ∈ ℝ+𝑦𝐺 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))
9 iscfil 25206 . . 3 (𝐷 ∈ (∞Met‘𝑋) → (𝐺 ∈ (CauFil‘𝐷) ↔ (𝐺 ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐺 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))))
109ad2antrr 725 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷)) ∧ (𝐺 ∈ (Fil‘𝑋) ∧ 𝐹𝐺)) → (𝐺 ∈ (CauFil‘𝐷) ↔ (𝐺 ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝐺 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥))))
111, 8, 10mpbir2and 712 1 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷)) ∧ (𝐺 ∈ (Fil‘𝑋) ∧ 𝐹𝐺)) → 𝐺 ∈ (CauFil‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wcel 2099  wral 3058  wrex 3067  wss 3947   × cxp 5676  cima 5681  cfv 6548  (class class class)co 7420  0cc0 11139  +crp 13007  [,)cico 13359  ∞Metcxmet 21264  Filcfil 23762  CauFilccfil 25193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11195  ax-resscn 11196
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3430  df-v 3473  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-fv 6556  df-ov 7423  df-oprab 7424  df-mpo 7425  df-map 8847  df-xr 11283  df-xmet 21272  df-cfil 25196
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator