![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iscfil | Structured version Visualization version GIF version |
Description: The property of being a Cauchy filter. (Contributed by Mario Carneiro, 13-Oct-2015.) |
Ref | Expression |
---|---|
iscfil | β’ (π· β (βMetβπ) β (πΉ β (CauFilβπ·) β (πΉ β (Filβπ) β§ βπ₯ β β+ βπ¦ β πΉ (π· β (π¦ Γ π¦)) β (0[,)π₯)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cfilfval 24781 | . . 3 β’ (π· β (βMetβπ) β (CauFilβπ·) = {π β (Filβπ) β£ βπ₯ β β+ βπ¦ β π (π· β (π¦ Γ π¦)) β (0[,)π₯)}) | |
2 | 1 | eleq2d 2820 | . 2 β’ (π· β (βMetβπ) β (πΉ β (CauFilβπ·) β πΉ β {π β (Filβπ) β£ βπ₯ β β+ βπ¦ β π (π· β (π¦ Γ π¦)) β (0[,)π₯)})) |
3 | rexeq 3322 | . . . 4 β’ (π = πΉ β (βπ¦ β π (π· β (π¦ Γ π¦)) β (0[,)π₯) β βπ¦ β πΉ (π· β (π¦ Γ π¦)) β (0[,)π₯))) | |
4 | 3 | ralbidv 3178 | . . 3 β’ (π = πΉ β (βπ₯ β β+ βπ¦ β π (π· β (π¦ Γ π¦)) β (0[,)π₯) β βπ₯ β β+ βπ¦ β πΉ (π· β (π¦ Γ π¦)) β (0[,)π₯))) |
5 | 4 | elrab 3684 | . 2 β’ (πΉ β {π β (Filβπ) β£ βπ₯ β β+ βπ¦ β π (π· β (π¦ Γ π¦)) β (0[,)π₯)} β (πΉ β (Filβπ) β§ βπ₯ β β+ βπ¦ β πΉ (π· β (π¦ Γ π¦)) β (0[,)π₯))) |
6 | 2, 5 | bitrdi 287 | 1 β’ (π· β (βMetβπ) β (πΉ β (CauFilβπ·) β (πΉ β (Filβπ) β§ βπ₯ β β+ βπ¦ β πΉ (π· β (π¦ Γ π¦)) β (0[,)π₯)))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 397 = wceq 1542 β wcel 2107 βwral 3062 βwrex 3071 {crab 3433 β wss 3949 Γ cxp 5675 β cima 5680 βcfv 6544 (class class class)co 7409 0cc0 11110 β+crp 12974 [,)cico 13326 βMetcxmet 20929 Filcfil 23349 CauFilccfil 24769 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-map 8822 df-xr 11252 df-xmet 20937 df-cfil 24772 |
This theorem is referenced by: iscfil2 24783 cfilfil 24784 cfilss 24787 cfilucfil3 24837 cmetcusp 24871 |
Copyright terms: Public domain | W3C validator |