| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > clnbgrssedg | Structured version Visualization version GIF version | ||
| Description: The vertices connected by an edge are a subset of the neighborhood of each of these vertices. (Contributed by AV, 26-May-2025.) (Proof shortened by AV, 24-Aug-2025.) |
| Ref | Expression |
|---|---|
| clnbgrssedg.e | ⊢ 𝐸 = (Edg‘𝐺) |
| clnbgrssedg.n | ⊢ 𝑁 = (𝐺 ClNeighbVtx 𝑋) |
| Ref | Expression |
|---|---|
| clnbgrssedg | ⊢ ((𝐺 ∈ UHGraph ∧ 𝐾 ∈ 𝐸 ∧ 𝑋 ∈ 𝐾) → 𝐾 ⊆ 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clnbgrssedg.e | . . . . 5 ⊢ 𝐸 = (Edg‘𝐺) | |
| 2 | clnbgrssedg.n | . . . . 5 ⊢ 𝑁 = (𝐺 ClNeighbVtx 𝑋) | |
| 3 | 1, 2 | clnbgredg 47830 | . . . 4 ⊢ ((𝐺 ∈ UHGraph ∧ (𝐾 ∈ 𝐸 ∧ 𝑋 ∈ 𝐾 ∧ 𝑣 ∈ 𝐾)) → 𝑣 ∈ 𝑁) |
| 4 | 3 | 3exp2 1355 | . . 3 ⊢ (𝐺 ∈ UHGraph → (𝐾 ∈ 𝐸 → (𝑋 ∈ 𝐾 → (𝑣 ∈ 𝐾 → 𝑣 ∈ 𝑁)))) |
| 5 | 4 | 3imp 1110 | . 2 ⊢ ((𝐺 ∈ UHGraph ∧ 𝐾 ∈ 𝐸 ∧ 𝑋 ∈ 𝐾) → (𝑣 ∈ 𝐾 → 𝑣 ∈ 𝑁)) |
| 6 | 5 | ssrdv 3954 | 1 ⊢ ((𝐺 ∈ UHGraph ∧ 𝐾 ∈ 𝐸 ∧ 𝑋 ∈ 𝐾) → 𝐾 ⊆ 𝑁) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ⊆ wss 3916 ‘cfv 6513 (class class class)co 7389 Edgcedg 28980 UHGraphcuhgr 28989 ClNeighbVtx cclnbgr 47809 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-fv 6521 df-ov 7392 df-oprab 7393 df-mpo 7394 df-1st 7970 df-2nd 7971 df-edg 28981 df-uhgr 28991 df-clnbgr 47810 |
| This theorem is referenced by: grlimgrtrilem1 47983 |
| Copyright terms: Public domain | W3C validator |