Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clnbgrssedg Structured version   Visualization version   GIF version

Theorem clnbgrssedg 47800
Description: The vertices connected by an edge are a subset of the neighborhood of each of these vertices. (Contributed by AV, 26-May-2025.) (Proof shortened by AV, 24-Aug-2025.)
Hypotheses
Ref Expression
clnbgrssedg.e 𝐸 = (Edg‘𝐺)
clnbgrssedg.n 𝑁 = (𝐺 ClNeighbVtx 𝑋)
Assertion
Ref Expression
clnbgrssedg ((𝐺 ∈ UHGraph ∧ 𝐾𝐸𝑋𝐾) → 𝐾𝑁)

Proof of Theorem clnbgrssedg
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 clnbgrssedg.e . . . . 5 𝐸 = (Edg‘𝐺)
2 clnbgrssedg.n . . . . 5 𝑁 = (𝐺 ClNeighbVtx 𝑋)
31, 2clnbgredg 47799 . . . 4 ((𝐺 ∈ UHGraph ∧ (𝐾𝐸𝑋𝐾𝑣𝐾)) → 𝑣𝑁)
433exp2 1354 . . 3 (𝐺 ∈ UHGraph → (𝐾𝐸 → (𝑋𝐾 → (𝑣𝐾𝑣𝑁))))
543imp 1110 . 2 ((𝐺 ∈ UHGraph ∧ 𝐾𝐸𝑋𝐾) → (𝑣𝐾𝑣𝑁))
65ssrdv 3969 1 ((𝐺 ∈ UHGraph ∧ 𝐾𝐸𝑋𝐾) → 𝐾𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1539  wcel 2107  wss 3931  cfv 6541  (class class class)co 7413  Edgcedg 28993  UHGraphcuhgr 29002   ClNeighbVtx cclnbgr 47778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-fv 6549  df-ov 7416  df-oprab 7417  df-mpo 7418  df-1st 7996  df-2nd 7997  df-edg 28994  df-uhgr 29004  df-clnbgr 47779
This theorem is referenced by:  grlimgrtrilem1  47934
  Copyright terms: Public domain W3C validator