Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clnbgrssedg Structured version   Visualization version   GIF version

Theorem clnbgrssedg 47845
Description: The vertices connected by an edge are a subset of the neighborhood of each of these vertices. (Contributed by AV, 26-May-2025.) (Proof shortened by AV, 24-Aug-2025.)
Hypotheses
Ref Expression
clnbgrssedg.e 𝐸 = (Edg‘𝐺)
clnbgrssedg.n 𝑁 = (𝐺 ClNeighbVtx 𝑋)
Assertion
Ref Expression
clnbgrssedg ((𝐺 ∈ UHGraph ∧ 𝐾𝐸𝑋𝐾) → 𝐾𝑁)

Proof of Theorem clnbgrssedg
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 clnbgrssedg.e . . . . 5 𝐸 = (Edg‘𝐺)
2 clnbgrssedg.n . . . . 5 𝑁 = (𝐺 ClNeighbVtx 𝑋)
31, 2clnbgredg 47844 . . . 4 ((𝐺 ∈ UHGraph ∧ (𝐾𝐸𝑋𝐾𝑣𝐾)) → 𝑣𝑁)
433exp2 1355 . . 3 (𝐺 ∈ UHGraph → (𝐾𝐸 → (𝑋𝐾 → (𝑣𝐾𝑣𝑁))))
543imp 1110 . 2 ((𝐺 ∈ UHGraph ∧ 𝐾𝐸𝑋𝐾) → (𝑣𝐾𝑣𝑁))
65ssrdv 3943 1 ((𝐺 ∈ UHGraph ∧ 𝐾𝐸𝑋𝐾) → 𝐾𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  wss 3905  cfv 6486  (class class class)co 7353  Edgcedg 29011  UHGraphcuhgr 29020   ClNeighbVtx cclnbgr 47822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-edg 29012  df-uhgr 29022  df-clnbgr 47823
This theorem is referenced by:  clnbgrvtxedg  47998
  Copyright terms: Public domain W3C validator