![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > clnbgrssedg | Structured version Visualization version GIF version |
Description: The vertices connected by an edge are a subset of the neigborhood of each of these vertices. (Contributed by AV, 26-May-2025.) (Proof shortened by AV, 24-Aug-2025.) |
Ref | Expression |
---|---|
clnbgrssedg.e | ⊢ 𝐸 = (Edg‘𝐺) |
clnbgrssedg.n | ⊢ 𝑁 = (𝐺 ClNeighbVtx 𝑋) |
Ref | Expression |
---|---|
clnbgrssedg | ⊢ ((𝐺 ∈ UHGraph ∧ 𝐾 ∈ 𝐸 ∧ 𝑋 ∈ 𝐾) → 𝐾 ⊆ 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clnbgrssedg.e | . . . . 5 ⊢ 𝐸 = (Edg‘𝐺) | |
2 | clnbgrssedg.n | . . . . 5 ⊢ 𝑁 = (𝐺 ClNeighbVtx 𝑋) | |
3 | 1, 2 | clnbgredg 47702 | . . . 4 ⊢ ((𝐺 ∈ UHGraph ∧ (𝐾 ∈ 𝐸 ∧ 𝑋 ∈ 𝐾 ∧ 𝑣 ∈ 𝐾)) → 𝑣 ∈ 𝑁) |
4 | 3 | 3exp2 1354 | . . 3 ⊢ (𝐺 ∈ UHGraph → (𝐾 ∈ 𝐸 → (𝑋 ∈ 𝐾 → (𝑣 ∈ 𝐾 → 𝑣 ∈ 𝑁)))) |
5 | 4 | 3imp 1111 | . 2 ⊢ ((𝐺 ∈ UHGraph ∧ 𝐾 ∈ 𝐸 ∧ 𝑋 ∈ 𝐾) → (𝑣 ∈ 𝐾 → 𝑣 ∈ 𝑁)) |
6 | 5 | ssrdv 4014 | 1 ⊢ ((𝐺 ∈ UHGraph ∧ 𝐾 ∈ 𝐸 ∧ 𝑋 ∈ 𝐾) → 𝐾 ⊆ 𝑁) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ⊆ wss 3976 ‘cfv 6568 (class class class)co 7443 Edgcedg 29074 UHGraphcuhgr 29083 ClNeighbVtx cclnbgr 47682 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7764 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5701 df-rel 5702 df-cnv 5703 df-co 5704 df-dm 5705 df-rn 5706 df-res 5707 df-ima 5708 df-iota 6520 df-fun 6570 df-fn 6571 df-f 6572 df-fv 6576 df-ov 7446 df-oprab 7447 df-mpo 7448 df-1st 8024 df-2nd 8025 df-edg 29075 df-uhgr 29085 df-clnbgr 47683 |
This theorem is referenced by: grlimgrtrilem1 47808 |
Copyright terms: Public domain | W3C validator |