| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cofu1st2nd | Structured version Visualization version GIF version | ||
| Description: Rewrite the functor composition with separated functor parts. (Contributed by Zhi Wang, 15-Nov-2025.) |
| Ref | Expression |
|---|---|
| cofu1st2nd.f | ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
| cofu1st2nd.g | ⊢ (𝜑 → 𝐺 ∈ (𝐷 Func 𝐸)) |
| Ref | Expression |
|---|---|
| cofu1st2nd | ⊢ (𝜑 → (𝐺 ∘func 𝐹) = (〈(1st ‘𝐺), (2nd ‘𝐺)〉 ∘func 〈(1st ‘𝐹), (2nd ‘𝐹)〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relfunc 17766 | . . 3 ⊢ Rel (𝐷 Func 𝐸) | |
| 2 | cofu1st2nd.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ (𝐷 Func 𝐸)) | |
| 3 | 1st2nd 7971 | . . 3 ⊢ ((Rel (𝐷 Func 𝐸) ∧ 𝐺 ∈ (𝐷 Func 𝐸)) → 𝐺 = 〈(1st ‘𝐺), (2nd ‘𝐺)〉) | |
| 4 | 1, 2, 3 | sylancr 587 | . 2 ⊢ (𝜑 → 𝐺 = 〈(1st ‘𝐺), (2nd ‘𝐺)〉) |
| 5 | relfunc 17766 | . . 3 ⊢ Rel (𝐶 Func 𝐷) | |
| 6 | cofu1st2nd.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) | |
| 7 | 1st2nd 7971 | . . 3 ⊢ ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → 𝐹 = 〈(1st ‘𝐹), (2nd ‘𝐹)〉) | |
| 8 | 5, 6, 7 | sylancr 587 | . 2 ⊢ (𝜑 → 𝐹 = 〈(1st ‘𝐹), (2nd ‘𝐹)〉) |
| 9 | 4, 8 | oveq12d 7364 | 1 ⊢ (𝜑 → (𝐺 ∘func 𝐹) = (〈(1st ‘𝐺), (2nd ‘𝐺)〉 ∘func 〈(1st ‘𝐹), (2nd ‘𝐹)〉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 〈cop 4582 Rel wrel 5621 ‘cfv 6481 (class class class)co 7346 1st c1st 7919 2nd c2nd 7920 Func cfunc 17758 ∘func ccofu 17760 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-func 17762 |
| This theorem is referenced by: uptrlem2 49242 uptra 49246 uobeqw 49250 uobeq 49251 uptr2a 49253 |
| Copyright terms: Public domain | W3C validator |