Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cofu1st2nd Structured version   Visualization version   GIF version

Theorem cofu1st2nd 49217
Description: Rewrite the functor composition with separated functor parts. (Contributed by Zhi Wang, 15-Nov-2025.)
Hypotheses
Ref Expression
cofu1st2nd.f (𝜑𝐹 ∈ (𝐶 Func 𝐷))
cofu1st2nd.g (𝜑𝐺 ∈ (𝐷 Func 𝐸))
Assertion
Ref Expression
cofu1st2nd (𝜑 → (𝐺func 𝐹) = (⟨(1st𝐺), (2nd𝐺)⟩ ∘func ⟨(1st𝐹), (2nd𝐹)⟩))

Proof of Theorem cofu1st2nd
StepHypRef Expression
1 relfunc 17771 . . 3 Rel (𝐷 Func 𝐸)
2 cofu1st2nd.g . . 3 (𝜑𝐺 ∈ (𝐷 Func 𝐸))
3 1st2nd 7977 . . 3 ((Rel (𝐷 Func 𝐸) ∧ 𝐺 ∈ (𝐷 Func 𝐸)) → 𝐺 = ⟨(1st𝐺), (2nd𝐺)⟩)
41, 2, 3sylancr 587 . 2 (𝜑𝐺 = ⟨(1st𝐺), (2nd𝐺)⟩)
5 relfunc 17771 . . 3 Rel (𝐶 Func 𝐷)
6 cofu1st2nd.f . . 3 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
7 1st2nd 7977 . . 3 ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → 𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
85, 6, 7sylancr 587 . 2 (𝜑𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
94, 8oveq12d 7370 1 (𝜑 → (𝐺func 𝐹) = (⟨(1st𝐺), (2nd𝐺)⟩ ∘func ⟨(1st𝐹), (2nd𝐹)⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  cop 4581  Rel wrel 5624  cfv 6486  (class class class)co 7352  1st c1st 7925  2nd c2nd 7926   Func cfunc 17763  func ccofu 17765
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928  df-func 17767
This theorem is referenced by:  uptrlem2  49336  uptra  49340  uobeqw  49344  uobeq  49345  uptr2a  49347
  Copyright terms: Public domain W3C validator