Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cofu1st2nd Structured version   Visualization version   GIF version

Theorem cofu1st2nd 49009
Description: Rewrite the functor composition with separated functor parts. (Contributed by Zhi Wang, 15-Nov-2025.)
Hypotheses
Ref Expression
cofu1st2nd.f (𝜑𝐹 ∈ (𝐶 Func 𝐷))
cofu1st2nd.g (𝜑𝐺 ∈ (𝐷 Func 𝐸))
Assertion
Ref Expression
cofu1st2nd (𝜑 → (𝐺func 𝐹) = (⟨(1st𝐺), (2nd𝐺)⟩ ∘func ⟨(1st𝐹), (2nd𝐹)⟩))

Proof of Theorem cofu1st2nd
StepHypRef Expression
1 relfunc 17830 . . 3 Rel (𝐷 Func 𝐸)
2 cofu1st2nd.g . . 3 (𝜑𝐺 ∈ (𝐷 Func 𝐸))
3 1st2nd 8027 . . 3 ((Rel (𝐷 Func 𝐸) ∧ 𝐺 ∈ (𝐷 Func 𝐸)) → 𝐺 = ⟨(1st𝐺), (2nd𝐺)⟩)
41, 2, 3sylancr 587 . 2 (𝜑𝐺 = ⟨(1st𝐺), (2nd𝐺)⟩)
5 relfunc 17830 . . 3 Rel (𝐶 Func 𝐷)
6 cofu1st2nd.f . . 3 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
7 1st2nd 8027 . . 3 ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → 𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
85, 6, 7sylancr 587 . 2 (𝜑𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
94, 8oveq12d 7412 1 (𝜑 → (𝐺func 𝐹) = (⟨(1st𝐺), (2nd𝐺)⟩ ∘func ⟨(1st𝐹), (2nd𝐹)⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cop 4603  Rel wrel 5651  cfv 6519  (class class class)co 7394  1st c1st 7975  2nd c2nd 7976   Func cfunc 17822  func ccofu 17824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5259  ax-nul 5269  ax-pr 5395  ax-un 7718
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ral 3047  df-rex 3056  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-iun 4965  df-br 5116  df-opab 5178  df-mpt 5197  df-id 5541  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-iota 6472  df-fun 6521  df-fv 6527  df-ov 7397  df-oprab 7398  df-mpo 7399  df-1st 7977  df-2nd 7978  df-func 17826
This theorem is referenced by:  uptrlem2  49118  uptra  49122  uobeqw  49125  uobeq  49126
  Copyright terms: Public domain W3C validator