| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cofu1st2nd | Structured version Visualization version GIF version | ||
| Description: Rewrite the functor composition with separated functor parts. (Contributed by Zhi Wang, 15-Nov-2025.) |
| Ref | Expression |
|---|---|
| cofu1st2nd.f | ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
| cofu1st2nd.g | ⊢ (𝜑 → 𝐺 ∈ (𝐷 Func 𝐸)) |
| Ref | Expression |
|---|---|
| cofu1st2nd | ⊢ (𝜑 → (𝐺 ∘func 𝐹) = (〈(1st ‘𝐺), (2nd ‘𝐺)〉 ∘func 〈(1st ‘𝐹), (2nd ‘𝐹)〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relfunc 17771 | . . 3 ⊢ Rel (𝐷 Func 𝐸) | |
| 2 | cofu1st2nd.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ (𝐷 Func 𝐸)) | |
| 3 | 1st2nd 7977 | . . 3 ⊢ ((Rel (𝐷 Func 𝐸) ∧ 𝐺 ∈ (𝐷 Func 𝐸)) → 𝐺 = 〈(1st ‘𝐺), (2nd ‘𝐺)〉) | |
| 4 | 1, 2, 3 | sylancr 587 | . 2 ⊢ (𝜑 → 𝐺 = 〈(1st ‘𝐺), (2nd ‘𝐺)〉) |
| 5 | relfunc 17771 | . . 3 ⊢ Rel (𝐶 Func 𝐷) | |
| 6 | cofu1st2nd.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) | |
| 7 | 1st2nd 7977 | . . 3 ⊢ ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → 𝐹 = 〈(1st ‘𝐹), (2nd ‘𝐹)〉) | |
| 8 | 5, 6, 7 | sylancr 587 | . 2 ⊢ (𝜑 → 𝐹 = 〈(1st ‘𝐹), (2nd ‘𝐹)〉) |
| 9 | 4, 8 | oveq12d 7370 | 1 ⊢ (𝜑 → (𝐺 ∘func 𝐹) = (〈(1st ‘𝐺), (2nd ‘𝐺)〉 ∘func 〈(1st ‘𝐹), (2nd ‘𝐹)〉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 〈cop 4581 Rel wrel 5624 ‘cfv 6486 (class class class)co 7352 1st c1st 7925 2nd c2nd 7926 Func cfunc 17763 ∘func ccofu 17765 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 df-func 17767 |
| This theorem is referenced by: uptrlem2 49336 uptra 49340 uobeqw 49344 uobeq 49345 uptr2a 49347 |
| Copyright terms: Public domain | W3C validator |