| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > uobeq | Structured version Visualization version GIF version | ||
| Description: If a full functor (in fact, a full embedding) is a section of a functor (surjective on objects), then the sets of universal objects are equal. (Contributed by Zhi Wang, 17-Nov-2025.) |
| Ref | Expression |
|---|---|
| uobffth.b | ⊢ 𝐵 = (Base‘𝐷) |
| uobffth.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| uobffth.f | ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
| uobffth.g | ⊢ (𝜑 → (𝐾 ∘func 𝐹) = 𝐺) |
| uobffth.y | ⊢ (𝜑 → ((1st ‘𝐾)‘𝑋) = 𝑌) |
| uobeq.i | ⊢ 𝐼 = (idfunc‘𝐷) |
| uobeq.k | ⊢ (𝜑 → 𝐾 ∈ (𝐷 Full 𝐸)) |
| uobeq.n | ⊢ (𝜑 → (𝐿 ∘func 𝐾) = 𝐼) |
| uobeq.l | ⊢ (𝜑 → 𝐿 ∈ (𝐸 Func 𝐷)) |
| Ref | Expression |
|---|---|
| uobeq | ⊢ (𝜑 → dom (𝐹(𝐶 UP 𝐷)𝑋) = dom (𝐺(𝐶 UP 𝐸)𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uobffth.b | . 2 ⊢ 𝐵 = (Base‘𝐷) | |
| 2 | uobffth.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 3 | uobffth.f | . 2 ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) | |
| 4 | uobffth.g | . 2 ⊢ (𝜑 → (𝐾 ∘func 𝐹) = 𝐺) | |
| 5 | uobffth.y | . 2 ⊢ (𝜑 → ((1st ‘𝐾)‘𝑋) = 𝑌) | |
| 6 | uobeq.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ (𝐷 Full 𝐸)) | |
| 7 | relfunc 17766 | . . . . 5 ⊢ Rel (𝐷 Func 𝐸) | |
| 8 | fullfunc 17812 | . . . . . 6 ⊢ (𝐷 Full 𝐸) ⊆ (𝐷 Func 𝐸) | |
| 9 | 8, 6 | sselid 3932 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ (𝐷 Func 𝐸)) |
| 10 | 1st2nd 7971 | . . . . 5 ⊢ ((Rel (𝐷 Func 𝐸) ∧ 𝐾 ∈ (𝐷 Func 𝐸)) → 𝐾 = 〈(1st ‘𝐾), (2nd ‘𝐾)〉) | |
| 11 | 7, 9, 10 | sylancr 587 | . . . 4 ⊢ (𝜑 → 𝐾 = 〈(1st ‘𝐾), (2nd ‘𝐾)〉) |
| 12 | uobeq.i | . . . . . 6 ⊢ 𝐼 = (idfunc‘𝐷) | |
| 13 | 9 | func1st2nd 49107 | . . . . . 6 ⊢ (𝜑 → (1st ‘𝐾)(𝐷 Func 𝐸)(2nd ‘𝐾)) |
| 14 | uobeq.l | . . . . . . 7 ⊢ (𝜑 → 𝐿 ∈ (𝐸 Func 𝐷)) | |
| 15 | 14 | func1st2nd 49107 | . . . . . 6 ⊢ (𝜑 → (1st ‘𝐿)(𝐸 Func 𝐷)(2nd ‘𝐿)) |
| 16 | 9, 14 | cofu1st2nd 49123 | . . . . . . 7 ⊢ (𝜑 → (𝐿 ∘func 𝐾) = (〈(1st ‘𝐿), (2nd ‘𝐿)〉 ∘func 〈(1st ‘𝐾), (2nd ‘𝐾)〉)) |
| 17 | uobeq.n | . . . . . . 7 ⊢ (𝜑 → (𝐿 ∘func 𝐾) = 𝐼) | |
| 18 | 16, 17 | eqtr3d 2768 | . . . . . 6 ⊢ (𝜑 → (〈(1st ‘𝐿), (2nd ‘𝐿)〉 ∘func 〈(1st ‘𝐾), (2nd ‘𝐾)〉) = 𝐼) |
| 19 | 12, 13, 15, 18 | cofidfth 49193 | . . . . 5 ⊢ (𝜑 → (1st ‘𝐾)(𝐷 Faith 𝐸)(2nd ‘𝐾)) |
| 20 | df-br 5092 | . . . . 5 ⊢ ((1st ‘𝐾)(𝐷 Faith 𝐸)(2nd ‘𝐾) ↔ 〈(1st ‘𝐾), (2nd ‘𝐾)〉 ∈ (𝐷 Faith 𝐸)) | |
| 21 | 19, 20 | sylib 218 | . . . 4 ⊢ (𝜑 → 〈(1st ‘𝐾), (2nd ‘𝐾)〉 ∈ (𝐷 Faith 𝐸)) |
| 22 | 11, 21 | eqeltrd 2831 | . . 3 ⊢ (𝜑 → 𝐾 ∈ (𝐷 Faith 𝐸)) |
| 23 | 6, 22 | elind 4150 | . 2 ⊢ (𝜑 → 𝐾 ∈ ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))) |
| 24 | 1, 2, 3, 4, 5, 23 | uobffth 49249 | 1 ⊢ (𝜑 → dom (𝐹(𝐶 UP 𝐷)𝑋) = dom (𝐺(𝐶 UP 𝐸)𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 〈cop 4582 class class class wbr 5091 dom cdm 5616 Rel wrel 5621 ‘cfv 6481 (class class class)co 7346 1st c1st 7919 2nd c2nd 7920 Basecbs 17117 Func cfunc 17758 idfunccidfu 17759 ∘func ccofu 17760 Full cful 17808 Faith cfth 17809 UP cup 49204 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-map 8752 df-ixp 8822 df-cat 17571 df-cid 17572 df-func 17762 df-idfu 17763 df-cofu 17764 df-full 17810 df-fth 17811 df-up 49205 |
| This theorem is referenced by: uobeq2 49432 |
| Copyright terms: Public domain | W3C validator |