| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > uobeq | Structured version Visualization version GIF version | ||
| Description: If a full functor (in fact, a full embedding) is a section of a functor (surjective on objects), then the sets of universal objects are equal. (Contributed by Zhi Wang, 17-Nov-2025.) |
| Ref | Expression |
|---|---|
| uobffth.b | ⊢ 𝐵 = (Base‘𝐷) |
| uobffth.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| uobffth.f | ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
| uobffth.g | ⊢ (𝜑 → (𝐾 ∘func 𝐹) = 𝐺) |
| uobffth.y | ⊢ (𝜑 → ((1st ‘𝐾)‘𝑋) = 𝑌) |
| uobeq.i | ⊢ 𝐼 = (idfunc‘𝐷) |
| uobeq.k | ⊢ (𝜑 → 𝐾 ∈ (𝐷 Full 𝐸)) |
| uobeq.n | ⊢ (𝜑 → (𝐿 ∘func 𝐾) = 𝐼) |
| uobeq.l | ⊢ (𝜑 → 𝐿 ∈ (𝐸 Func 𝐷)) |
| Ref | Expression |
|---|---|
| uobeq | ⊢ (𝜑 → dom (𝐹(𝐶 UP 𝐷)𝑋) = dom (𝐺(𝐶 UP 𝐸)𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uobffth.b | . 2 ⊢ 𝐵 = (Base‘𝐷) | |
| 2 | uobffth.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 3 | uobffth.f | . 2 ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) | |
| 4 | uobffth.g | . 2 ⊢ (𝜑 → (𝐾 ∘func 𝐹) = 𝐺) | |
| 5 | uobffth.y | . 2 ⊢ (𝜑 → ((1st ‘𝐾)‘𝑋) = 𝑌) | |
| 6 | uobeq.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ (𝐷 Full 𝐸)) | |
| 7 | relfunc 17771 | . . . . 5 ⊢ Rel (𝐷 Func 𝐸) | |
| 8 | fullfunc 17817 | . . . . . 6 ⊢ (𝐷 Full 𝐸) ⊆ (𝐷 Func 𝐸) | |
| 9 | 8, 6 | sselid 3928 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ (𝐷 Func 𝐸)) |
| 10 | 1st2nd 7977 | . . . . 5 ⊢ ((Rel (𝐷 Func 𝐸) ∧ 𝐾 ∈ (𝐷 Func 𝐸)) → 𝐾 = 〈(1st ‘𝐾), (2nd ‘𝐾)〉) | |
| 11 | 7, 9, 10 | sylancr 587 | . . . 4 ⊢ (𝜑 → 𝐾 = 〈(1st ‘𝐾), (2nd ‘𝐾)〉) |
| 12 | uobeq.i | . . . . . 6 ⊢ 𝐼 = (idfunc‘𝐷) | |
| 13 | 9 | func1st2nd 49201 | . . . . . 6 ⊢ (𝜑 → (1st ‘𝐾)(𝐷 Func 𝐸)(2nd ‘𝐾)) |
| 14 | uobeq.l | . . . . . . 7 ⊢ (𝜑 → 𝐿 ∈ (𝐸 Func 𝐷)) | |
| 15 | 14 | func1st2nd 49201 | . . . . . 6 ⊢ (𝜑 → (1st ‘𝐿)(𝐸 Func 𝐷)(2nd ‘𝐿)) |
| 16 | 9, 14 | cofu1st2nd 49217 | . . . . . . 7 ⊢ (𝜑 → (𝐿 ∘func 𝐾) = (〈(1st ‘𝐿), (2nd ‘𝐿)〉 ∘func 〈(1st ‘𝐾), (2nd ‘𝐾)〉)) |
| 17 | uobeq.n | . . . . . . 7 ⊢ (𝜑 → (𝐿 ∘func 𝐾) = 𝐼) | |
| 18 | 16, 17 | eqtr3d 2770 | . . . . . 6 ⊢ (𝜑 → (〈(1st ‘𝐿), (2nd ‘𝐿)〉 ∘func 〈(1st ‘𝐾), (2nd ‘𝐾)〉) = 𝐼) |
| 19 | 12, 13, 15, 18 | cofidfth 49287 | . . . . 5 ⊢ (𝜑 → (1st ‘𝐾)(𝐷 Faith 𝐸)(2nd ‘𝐾)) |
| 20 | df-br 5094 | . . . . 5 ⊢ ((1st ‘𝐾)(𝐷 Faith 𝐸)(2nd ‘𝐾) ↔ 〈(1st ‘𝐾), (2nd ‘𝐾)〉 ∈ (𝐷 Faith 𝐸)) | |
| 21 | 19, 20 | sylib 218 | . . . 4 ⊢ (𝜑 → 〈(1st ‘𝐾), (2nd ‘𝐾)〉 ∈ (𝐷 Faith 𝐸)) |
| 22 | 11, 21 | eqeltrd 2833 | . . 3 ⊢ (𝜑 → 𝐾 ∈ (𝐷 Faith 𝐸)) |
| 23 | 6, 22 | elind 4149 | . 2 ⊢ (𝜑 → 𝐾 ∈ ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))) |
| 24 | 1, 2, 3, 4, 5, 23 | uobffth 49343 | 1 ⊢ (𝜑 → dom (𝐹(𝐶 UP 𝐷)𝑋) = dom (𝐺(𝐶 UP 𝐸)𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 〈cop 4581 class class class wbr 5093 dom cdm 5619 Rel wrel 5624 ‘cfv 6486 (class class class)co 7352 1st c1st 7925 2nd c2nd 7926 Basecbs 17122 Func cfunc 17763 idfunccidfu 17764 ∘func ccofu 17765 Full cful 17813 Faith cfth 17814 UP cup 49298 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 df-map 8758 df-ixp 8828 df-cat 17576 df-cid 17577 df-func 17767 df-idfu 17768 df-cofu 17769 df-full 17815 df-fth 17816 df-up 49299 |
| This theorem is referenced by: uobeq2 49526 |
| Copyright terms: Public domain | W3C validator |