| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > uobeq | Structured version Visualization version GIF version | ||
| Description: If a full functor (in fact, a full embedding) is a section of a functor (surjective on objects), then the sets of universal objects are equal. (Contributed by Zhi Wang, 17-Nov-2025.) |
| Ref | Expression |
|---|---|
| uobffth.b | ⊢ 𝐵 = (Base‘𝐷) |
| uobffth.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| uobffth.f | ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
| uobffth.g | ⊢ (𝜑 → (𝐾 ∘func 𝐹) = 𝐺) |
| uobffth.y | ⊢ (𝜑 → ((1st ‘𝐾)‘𝑋) = 𝑌) |
| uobeq.i | ⊢ 𝐼 = (idfunc‘𝐷) |
| uobeq.k | ⊢ (𝜑 → 𝐾 ∈ (𝐷 Full 𝐸)) |
| uobeq.n | ⊢ (𝜑 → (𝐿 ∘func 𝐾) = 𝐼) |
| uobeq.l | ⊢ (𝜑 → 𝐿 ∈ (𝐸 Func 𝐷)) |
| Ref | Expression |
|---|---|
| uobeq | ⊢ (𝜑 → dom (𝐹(𝐶 UP 𝐷)𝑋) = dom (𝐺(𝐶 UP 𝐸)𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uobffth.b | . 2 ⊢ 𝐵 = (Base‘𝐷) | |
| 2 | uobffth.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 3 | uobffth.f | . 2 ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) | |
| 4 | uobffth.g | . 2 ⊢ (𝜑 → (𝐾 ∘func 𝐹) = 𝐺) | |
| 5 | uobffth.y | . 2 ⊢ (𝜑 → ((1st ‘𝐾)‘𝑋) = 𝑌) | |
| 6 | uobeq.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ (𝐷 Full 𝐸)) | |
| 7 | relfunc 17787 | . . . . 5 ⊢ Rel (𝐷 Func 𝐸) | |
| 8 | fullfunc 17833 | . . . . . 6 ⊢ (𝐷 Full 𝐸) ⊆ (𝐷 Func 𝐸) | |
| 9 | 8, 6 | sselid 3935 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ (𝐷 Func 𝐸)) |
| 10 | 1st2nd 7981 | . . . . 5 ⊢ ((Rel (𝐷 Func 𝐸) ∧ 𝐾 ∈ (𝐷 Func 𝐸)) → 𝐾 = 〈(1st ‘𝐾), (2nd ‘𝐾)〉) | |
| 11 | 7, 9, 10 | sylancr 587 | . . . 4 ⊢ (𝜑 → 𝐾 = 〈(1st ‘𝐾), (2nd ‘𝐾)〉) |
| 12 | uobeq.i | . . . . . 6 ⊢ 𝐼 = (idfunc‘𝐷) | |
| 13 | 9 | func1st2nd 49062 | . . . . . 6 ⊢ (𝜑 → (1st ‘𝐾)(𝐷 Func 𝐸)(2nd ‘𝐾)) |
| 14 | uobeq.l | . . . . . . 7 ⊢ (𝜑 → 𝐿 ∈ (𝐸 Func 𝐷)) | |
| 15 | 14 | func1st2nd 49062 | . . . . . 6 ⊢ (𝜑 → (1st ‘𝐿)(𝐸 Func 𝐷)(2nd ‘𝐿)) |
| 16 | 9, 14 | cofu1st2nd 49078 | . . . . . . 7 ⊢ (𝜑 → (𝐿 ∘func 𝐾) = (〈(1st ‘𝐿), (2nd ‘𝐿)〉 ∘func 〈(1st ‘𝐾), (2nd ‘𝐾)〉)) |
| 17 | uobeq.n | . . . . . . 7 ⊢ (𝜑 → (𝐿 ∘func 𝐾) = 𝐼) | |
| 18 | 16, 17 | eqtr3d 2766 | . . . . . 6 ⊢ (𝜑 → (〈(1st ‘𝐿), (2nd ‘𝐿)〉 ∘func 〈(1st ‘𝐾), (2nd ‘𝐾)〉) = 𝐼) |
| 19 | 12, 13, 15, 18 | cofidfth 49148 | . . . . 5 ⊢ (𝜑 → (1st ‘𝐾)(𝐷 Faith 𝐸)(2nd ‘𝐾)) |
| 20 | df-br 5096 | . . . . 5 ⊢ ((1st ‘𝐾)(𝐷 Faith 𝐸)(2nd ‘𝐾) ↔ 〈(1st ‘𝐾), (2nd ‘𝐾)〉 ∈ (𝐷 Faith 𝐸)) | |
| 21 | 19, 20 | sylib 218 | . . . 4 ⊢ (𝜑 → 〈(1st ‘𝐾), (2nd ‘𝐾)〉 ∈ (𝐷 Faith 𝐸)) |
| 22 | 11, 21 | eqeltrd 2828 | . . 3 ⊢ (𝜑 → 𝐾 ∈ (𝐷 Faith 𝐸)) |
| 23 | 6, 22 | elind 4153 | . 2 ⊢ (𝜑 → 𝐾 ∈ ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))) |
| 24 | 1, 2, 3, 4, 5, 23 | uobffth 49204 | 1 ⊢ (𝜑 → dom (𝐹(𝐶 UP 𝐷)𝑋) = dom (𝐺(𝐶 UP 𝐸)𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 〈cop 4585 class class class wbr 5095 dom cdm 5623 Rel wrel 5628 ‘cfv 6486 (class class class)co 7353 1st c1st 7929 2nd c2nd 7930 Basecbs 17138 Func cfunc 17779 idfunccidfu 17780 ∘func ccofu 17781 Full cful 17829 Faith cfth 17830 UP cup 49159 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-map 8762 df-ixp 8832 df-cat 17592 df-cid 17593 df-func 17783 df-idfu 17784 df-cofu 17785 df-full 17831 df-fth 17832 df-up 49160 |
| This theorem is referenced by: uobeq2 49387 |
| Copyright terms: Public domain | W3C validator |