| Step | Hyp | Ref
| Expression |
| 1 | | 19.42v 1953 |
. . . . 5
⊢
(∃𝑚(𝜑 ∧ 𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) ↔ (𝜑 ∧ ∃𝑚 𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚)) |
| 2 | | fvexd 6880 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) → ((𝑋(2nd ‘𝐾)((1st ‘𝐹)‘𝑧))‘𝑚) ∈ V) |
| 3 | | uobeq.y |
. . . . . . . . 9
⊢ (𝜑 → ((1st
‘𝐾)‘𝑋) = 𝑌) |
| 4 | 3 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) → ((1st ‘𝐾)‘𝑋) = 𝑌) |
| 5 | | uobeq.k |
. . . . . . . . . 10
⊢ (𝜑 → 𝐾 ∈ (𝐷 Full 𝐸)) |
| 6 | | relfunc 17830 |
. . . . . . . . . . . 12
⊢ Rel
(𝐷 Func 𝐸) |
| 7 | | fullfunc 17876 |
. . . . . . . . . . . . 13
⊢ (𝐷 Full 𝐸) ⊆ (𝐷 Func 𝐸) |
| 8 | 7, 5 | sselid 3952 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐾 ∈ (𝐷 Func 𝐸)) |
| 9 | | 1st2nd 8027 |
. . . . . . . . . . . 12
⊢ ((Rel
(𝐷 Func 𝐸) ∧ 𝐾 ∈ (𝐷 Func 𝐸)) → 𝐾 = 〈(1st ‘𝐾), (2nd ‘𝐾)〉) |
| 10 | 6, 8, 9 | sylancr 587 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐾 = 〈(1st ‘𝐾), (2nd ‘𝐾)〉) |
| 11 | | uobeq.i |
. . . . . . . . . . . . 13
⊢ 𝐼 =
(idfunc‘𝐷) |
| 12 | 8 | func1st2nd 48993 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (1st
‘𝐾)(𝐷 Func 𝐸)(2nd ‘𝐾)) |
| 13 | | uobeq.l |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐿 ∈ (𝐸 Func 𝐷)) |
| 14 | 13 | func1st2nd 48993 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (1st
‘𝐿)(𝐸 Func 𝐷)(2nd ‘𝐿)) |
| 15 | 8, 13 | cofu1st2nd 49009 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐿 ∘func 𝐾) = (〈(1st
‘𝐿), (2nd
‘𝐿)〉
∘func 〈(1st ‘𝐾), (2nd ‘𝐾)〉)) |
| 16 | | uobeq.n |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐿 ∘func 𝐾) = 𝐼) |
| 17 | 15, 16 | eqtr3d 2767 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (〈(1st
‘𝐿), (2nd
‘𝐿)〉
∘func 〈(1st ‘𝐾), (2nd ‘𝐾)〉) = 𝐼) |
| 18 | 11, 12, 14, 17 | cofidfth 49073 |
. . . . . . . . . . . 12
⊢ (𝜑 → (1st
‘𝐾)(𝐷 Faith 𝐸)(2nd ‘𝐾)) |
| 19 | | df-br 5116 |
. . . . . . . . . . . 12
⊢
((1st ‘𝐾)(𝐷 Faith 𝐸)(2nd ‘𝐾) ↔ 〈(1st ‘𝐾), (2nd ‘𝐾)〉 ∈ (𝐷 Faith 𝐸)) |
| 20 | 18, 19 | sylib 218 |
. . . . . . . . . . 11
⊢ (𝜑 → 〈(1st
‘𝐾), (2nd
‘𝐾)〉 ∈
(𝐷 Faith 𝐸)) |
| 21 | 10, 20 | eqeltrd 2829 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐾 ∈ (𝐷 Faith 𝐸)) |
| 22 | 5, 21 | elind 4171 |
. . . . . . . . 9
⊢ (𝜑 → 𝐾 ∈ ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))) |
| 23 | 22 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) → 𝐾 ∈ ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))) |
| 24 | | uobeq.g |
. . . . . . . . 9
⊢ (𝜑 → (𝐾 ∘func 𝐹) = 𝐺) |
| 25 | 24 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) → (𝐾 ∘func 𝐹) = 𝐺) |
| 26 | | eqidd 2731 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) → ((𝑋(2nd ‘𝐾)((1st ‘𝐹)‘𝑧))‘𝑚) = ((𝑋(2nd ‘𝐾)((1st ‘𝐹)‘𝑧))‘𝑚)) |
| 27 | | simpr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) → 𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) |
| 28 | 4, 23, 25, 26, 27 | uptrai 49124 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) → 𝑧(𝐺(𝐶 UP 𝐸)𝑌)((𝑋(2nd ‘𝐾)((1st ‘𝐹)‘𝑧))‘𝑚)) |
| 29 | | breq2 5119 |
. . . . . . 7
⊢ (𝑛 = ((𝑋(2nd ‘𝐾)((1st ‘𝐹)‘𝑧))‘𝑚) → (𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛 ↔ 𝑧(𝐺(𝐶 UP 𝐸)𝑌)((𝑋(2nd ‘𝐾)((1st ‘𝐹)‘𝑧))‘𝑚))) |
| 30 | 2, 28, 29 | spcedv 3573 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) → ∃𝑛 𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) |
| 31 | 30 | exlimiv 1930 |
. . . . 5
⊢
(∃𝑚(𝜑 ∧ 𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) → ∃𝑛 𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) |
| 32 | 1, 31 | sylbir 235 |
. . . 4
⊢ ((𝜑 ∧ ∃𝑚 𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) → ∃𝑛 𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) |
| 33 | | 19.42v 1953 |
. . . . 5
⊢
(∃𝑛(𝜑 ∧ 𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) ↔ (𝜑 ∧ ∃𝑛 𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛)) |
| 34 | | fvexd 6880 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) → (◡(𝑋(2nd ‘𝐾)((1st ‘𝐹)‘𝑧))‘𝑛) ∈ V) |
| 35 | 3 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) → ((1st ‘𝐾)‘𝑋) = 𝑌) |
| 36 | 22 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) → 𝐾 ∈ ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))) |
| 37 | 24 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) → (𝐾 ∘func 𝐹) = 𝐺) |
| 38 | | uobeq.b |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝐷) |
| 39 | | uobeq.x |
. . . . . . . . 9
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| 40 | 39 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) → 𝑋 ∈ 𝐵) |
| 41 | | uobeq.f |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
| 42 | 41 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) → 𝐹 ∈ (𝐶 Func 𝐷)) |
| 43 | | eqidd 2731 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) → (◡(𝑋(2nd ‘𝐾)((1st ‘𝐹)‘𝑧))‘𝑛) = (◡(𝑋(2nd ‘𝐾)((1st ‘𝐹)‘𝑧))‘𝑛)) |
| 44 | | simpr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) → 𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) |
| 45 | 35, 36, 37, 38, 40, 42, 43, 44 | uptrar 49123 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) → 𝑧(𝐹(𝐶 UP 𝐷)𝑋)(◡(𝑋(2nd ‘𝐾)((1st ‘𝐹)‘𝑧))‘𝑛)) |
| 46 | | breq2 5119 |
. . . . . . 7
⊢ (𝑚 = (◡(𝑋(2nd ‘𝐾)((1st ‘𝐹)‘𝑧))‘𝑛) → (𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚 ↔ 𝑧(𝐹(𝐶 UP 𝐷)𝑋)(◡(𝑋(2nd ‘𝐾)((1st ‘𝐹)‘𝑧))‘𝑛))) |
| 47 | 34, 45, 46 | spcedv 3573 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) → ∃𝑚 𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) |
| 48 | 47 | exlimiv 1930 |
. . . . 5
⊢
(∃𝑛(𝜑 ∧ 𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) → ∃𝑚 𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) |
| 49 | 33, 48 | sylbir 235 |
. . . 4
⊢ ((𝜑 ∧ ∃𝑛 𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) → ∃𝑚 𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) |
| 50 | 32, 49 | impbida 800 |
. . 3
⊢ (𝜑 → (∃𝑚 𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚 ↔ ∃𝑛 𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛)) |
| 51 | | relup 49090 |
. . . 4
⊢ Rel
(𝐹(𝐶 UP 𝐷)𝑋) |
| 52 | | releldmb 5918 |
. . . 4
⊢ (Rel
(𝐹(𝐶 UP 𝐷)𝑋) → (𝑧 ∈ dom (𝐹(𝐶 UP 𝐷)𝑋) ↔ ∃𝑚 𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚)) |
| 53 | 51, 52 | ax-mp 5 |
. . 3
⊢ (𝑧 ∈ dom (𝐹(𝐶 UP 𝐷)𝑋) ↔ ∃𝑚 𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) |
| 54 | | relup 49090 |
. . . 4
⊢ Rel
(𝐺(𝐶 UP 𝐸)𝑌) |
| 55 | | releldmb 5918 |
. . . 4
⊢ (Rel
(𝐺(𝐶 UP 𝐸)𝑌) → (𝑧 ∈ dom (𝐺(𝐶 UP 𝐸)𝑌) ↔ ∃𝑛 𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛)) |
| 56 | 54, 55 | ax-mp 5 |
. . 3
⊢ (𝑧 ∈ dom (𝐺(𝐶 UP 𝐸)𝑌) ↔ ∃𝑛 𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) |
| 57 | 50, 53, 56 | 3bitr4g 314 |
. 2
⊢ (𝜑 → (𝑧 ∈ dom (𝐹(𝐶 UP 𝐷)𝑋) ↔ 𝑧 ∈ dom (𝐺(𝐶 UP 𝐸)𝑌))) |
| 58 | 57 | eqrdv 2728 |
1
⊢ (𝜑 → dom (𝐹(𝐶 UP 𝐷)𝑋) = dom (𝐺(𝐶 UP 𝐸)𝑌)) |