| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > uobeq | Structured version Visualization version GIF version | ||
| Description: If a full functor (in fact, a full embedding) is a section of a functor (surjective on objects), then the sets of universal objects are equal. (Contributed by Zhi Wang, 17-Nov-2025.) |
| Ref | Expression |
|---|---|
| uobffth.b | ⊢ 𝐵 = (Base‘𝐷) |
| uobffth.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| uobffth.f | ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
| uobffth.g | ⊢ (𝜑 → (𝐾 ∘func 𝐹) = 𝐺) |
| uobffth.y | ⊢ (𝜑 → ((1st ‘𝐾)‘𝑋) = 𝑌) |
| uobeq.i | ⊢ 𝐼 = (idfunc‘𝐷) |
| uobeq.k | ⊢ (𝜑 → 𝐾 ∈ (𝐷 Full 𝐸)) |
| uobeq.n | ⊢ (𝜑 → (𝐿 ∘func 𝐾) = 𝐼) |
| uobeq.l | ⊢ (𝜑 → 𝐿 ∈ (𝐸 Func 𝐷)) |
| Ref | Expression |
|---|---|
| uobeq | ⊢ (𝜑 → dom (𝐹(𝐶 UP 𝐷)𝑋) = dom (𝐺(𝐶 UP 𝐸)𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uobffth.b | . 2 ⊢ 𝐵 = (Base‘𝐷) | |
| 2 | uobffth.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 3 | uobffth.f | . 2 ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) | |
| 4 | uobffth.g | . 2 ⊢ (𝜑 → (𝐾 ∘func 𝐹) = 𝐺) | |
| 5 | uobffth.y | . 2 ⊢ (𝜑 → ((1st ‘𝐾)‘𝑋) = 𝑌) | |
| 6 | uobeq.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ (𝐷 Full 𝐸)) | |
| 7 | relfunc 17824 | . . . . 5 ⊢ Rel (𝐷 Func 𝐸) | |
| 8 | fullfunc 17870 | . . . . . 6 ⊢ (𝐷 Full 𝐸) ⊆ (𝐷 Func 𝐸) | |
| 9 | 8, 6 | sselid 3944 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ (𝐷 Func 𝐸)) |
| 10 | 1st2nd 8018 | . . . . 5 ⊢ ((Rel (𝐷 Func 𝐸) ∧ 𝐾 ∈ (𝐷 Func 𝐸)) → 𝐾 = 〈(1st ‘𝐾), (2nd ‘𝐾)〉) | |
| 11 | 7, 9, 10 | sylancr 587 | . . . 4 ⊢ (𝜑 → 𝐾 = 〈(1st ‘𝐾), (2nd ‘𝐾)〉) |
| 12 | uobeq.i | . . . . . 6 ⊢ 𝐼 = (idfunc‘𝐷) | |
| 13 | 9 | func1st2nd 49065 | . . . . . 6 ⊢ (𝜑 → (1st ‘𝐾)(𝐷 Func 𝐸)(2nd ‘𝐾)) |
| 14 | uobeq.l | . . . . . . 7 ⊢ (𝜑 → 𝐿 ∈ (𝐸 Func 𝐷)) | |
| 15 | 14 | func1st2nd 49065 | . . . . . 6 ⊢ (𝜑 → (1st ‘𝐿)(𝐸 Func 𝐷)(2nd ‘𝐿)) |
| 16 | 9, 14 | cofu1st2nd 49081 | . . . . . . 7 ⊢ (𝜑 → (𝐿 ∘func 𝐾) = (〈(1st ‘𝐿), (2nd ‘𝐿)〉 ∘func 〈(1st ‘𝐾), (2nd ‘𝐾)〉)) |
| 17 | uobeq.n | . . . . . . 7 ⊢ (𝜑 → (𝐿 ∘func 𝐾) = 𝐼) | |
| 18 | 16, 17 | eqtr3d 2766 | . . . . . 6 ⊢ (𝜑 → (〈(1st ‘𝐿), (2nd ‘𝐿)〉 ∘func 〈(1st ‘𝐾), (2nd ‘𝐾)〉) = 𝐼) |
| 19 | 12, 13, 15, 18 | cofidfth 49151 | . . . . 5 ⊢ (𝜑 → (1st ‘𝐾)(𝐷 Faith 𝐸)(2nd ‘𝐾)) |
| 20 | df-br 5108 | . . . . 5 ⊢ ((1st ‘𝐾)(𝐷 Faith 𝐸)(2nd ‘𝐾) ↔ 〈(1st ‘𝐾), (2nd ‘𝐾)〉 ∈ (𝐷 Faith 𝐸)) | |
| 21 | 19, 20 | sylib 218 | . . . 4 ⊢ (𝜑 → 〈(1st ‘𝐾), (2nd ‘𝐾)〉 ∈ (𝐷 Faith 𝐸)) |
| 22 | 11, 21 | eqeltrd 2828 | . . 3 ⊢ (𝜑 → 𝐾 ∈ (𝐷 Faith 𝐸)) |
| 23 | 6, 22 | elind 4163 | . 2 ⊢ (𝜑 → 𝐾 ∈ ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))) |
| 24 | 1, 2, 3, 4, 5, 23 | uobffth 49207 | 1 ⊢ (𝜑 → dom (𝐹(𝐶 UP 𝐷)𝑋) = dom (𝐺(𝐶 UP 𝐸)𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 〈cop 4595 class class class wbr 5107 dom cdm 5638 Rel wrel 5643 ‘cfv 6511 (class class class)co 7387 1st c1st 7966 2nd c2nd 7967 Basecbs 17179 Func cfunc 17816 idfunccidfu 17817 ∘func ccofu 17818 Full cful 17866 Faith cfth 17867 UP cup 49162 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-map 8801 df-ixp 8871 df-cat 17629 df-cid 17630 df-func 17820 df-idfu 17821 df-cofu 17822 df-full 17868 df-fth 17869 df-up 49163 |
| This theorem is referenced by: uobeq2 49390 |
| Copyright terms: Public domain | W3C validator |