Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uobeq Structured version   Visualization version   GIF version

Theorem uobeq 49126
Description: If a full functor (in fact, a full embedding) is a section of a functor (surjective on objects), then the sets of universal objects are equal. (Contributed by Zhi Wang, 17-Nov-2025.)
Hypotheses
Ref Expression
uobeq.b 𝐵 = (Base‘𝐷)
uobeq.i 𝐼 = (idfunc𝐷)
uobeq.x (𝜑𝑋𝐵)
uobeq.f (𝜑𝐹 ∈ (𝐶 Func 𝐷))
uobeq.k (𝜑𝐾 ∈ (𝐷 Full 𝐸))
uobeq.g (𝜑 → (𝐾func 𝐹) = 𝐺)
uobeq.y (𝜑 → ((1st𝐾)‘𝑋) = 𝑌)
uobeq.n (𝜑 → (𝐿func 𝐾) = 𝐼)
uobeq.l (𝜑𝐿 ∈ (𝐸 Func 𝐷))
Assertion
Ref Expression
uobeq (𝜑 → dom (𝐹(𝐶 UP 𝐷)𝑋) = dom (𝐺(𝐶 UP 𝐸)𝑌))

Proof of Theorem uobeq
Dummy variables 𝑚 𝑛 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 19.42v 1953 . . . . 5 (∃𝑚(𝜑𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) ↔ (𝜑 ∧ ∃𝑚 𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚))
2 fvexd 6880 . . . . . . 7 ((𝜑𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) → ((𝑋(2nd𝐾)((1st𝐹)‘𝑧))‘𝑚) ∈ V)
3 uobeq.y . . . . . . . . 9 (𝜑 → ((1st𝐾)‘𝑋) = 𝑌)
43adantr 480 . . . . . . . 8 ((𝜑𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) → ((1st𝐾)‘𝑋) = 𝑌)
5 uobeq.k . . . . . . . . . 10 (𝜑𝐾 ∈ (𝐷 Full 𝐸))
6 relfunc 17830 . . . . . . . . . . . 12 Rel (𝐷 Func 𝐸)
7 fullfunc 17876 . . . . . . . . . . . . 13 (𝐷 Full 𝐸) ⊆ (𝐷 Func 𝐸)
87, 5sselid 3952 . . . . . . . . . . . 12 (𝜑𝐾 ∈ (𝐷 Func 𝐸))
9 1st2nd 8027 . . . . . . . . . . . 12 ((Rel (𝐷 Func 𝐸) ∧ 𝐾 ∈ (𝐷 Func 𝐸)) → 𝐾 = ⟨(1st𝐾), (2nd𝐾)⟩)
106, 8, 9sylancr 587 . . . . . . . . . . 11 (𝜑𝐾 = ⟨(1st𝐾), (2nd𝐾)⟩)
11 uobeq.i . . . . . . . . . . . . 13 𝐼 = (idfunc𝐷)
128func1st2nd 48993 . . . . . . . . . . . . 13 (𝜑 → (1st𝐾)(𝐷 Func 𝐸)(2nd𝐾))
13 uobeq.l . . . . . . . . . . . . . 14 (𝜑𝐿 ∈ (𝐸 Func 𝐷))
1413func1st2nd 48993 . . . . . . . . . . . . 13 (𝜑 → (1st𝐿)(𝐸 Func 𝐷)(2nd𝐿))
158, 13cofu1st2nd 49009 . . . . . . . . . . . . . 14 (𝜑 → (𝐿func 𝐾) = (⟨(1st𝐿), (2nd𝐿)⟩ ∘func ⟨(1st𝐾), (2nd𝐾)⟩))
16 uobeq.n . . . . . . . . . . . . . 14 (𝜑 → (𝐿func 𝐾) = 𝐼)
1715, 16eqtr3d 2767 . . . . . . . . . . . . 13 (𝜑 → (⟨(1st𝐿), (2nd𝐿)⟩ ∘func ⟨(1st𝐾), (2nd𝐾)⟩) = 𝐼)
1811, 12, 14, 17cofidfth 49073 . . . . . . . . . . . 12 (𝜑 → (1st𝐾)(𝐷 Faith 𝐸)(2nd𝐾))
19 df-br 5116 . . . . . . . . . . . 12 ((1st𝐾)(𝐷 Faith 𝐸)(2nd𝐾) ↔ ⟨(1st𝐾), (2nd𝐾)⟩ ∈ (𝐷 Faith 𝐸))
2018, 19sylib 218 . . . . . . . . . . 11 (𝜑 → ⟨(1st𝐾), (2nd𝐾)⟩ ∈ (𝐷 Faith 𝐸))
2110, 20eqeltrd 2829 . . . . . . . . . 10 (𝜑𝐾 ∈ (𝐷 Faith 𝐸))
225, 21elind 4171 . . . . . . . . 9 (𝜑𝐾 ∈ ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)))
2322adantr 480 . . . . . . . 8 ((𝜑𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) → 𝐾 ∈ ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)))
24 uobeq.g . . . . . . . . 9 (𝜑 → (𝐾func 𝐹) = 𝐺)
2524adantr 480 . . . . . . . 8 ((𝜑𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) → (𝐾func 𝐹) = 𝐺)
26 eqidd 2731 . . . . . . . 8 ((𝜑𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) → ((𝑋(2nd𝐾)((1st𝐹)‘𝑧))‘𝑚) = ((𝑋(2nd𝐾)((1st𝐹)‘𝑧))‘𝑚))
27 simpr 484 . . . . . . . 8 ((𝜑𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) → 𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚)
284, 23, 25, 26, 27uptrai 49124 . . . . . . 7 ((𝜑𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) → 𝑧(𝐺(𝐶 UP 𝐸)𝑌)((𝑋(2nd𝐾)((1st𝐹)‘𝑧))‘𝑚))
29 breq2 5119 . . . . . . 7 (𝑛 = ((𝑋(2nd𝐾)((1st𝐹)‘𝑧))‘𝑚) → (𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛𝑧(𝐺(𝐶 UP 𝐸)𝑌)((𝑋(2nd𝐾)((1st𝐹)‘𝑧))‘𝑚)))
302, 28, 29spcedv 3573 . . . . . 6 ((𝜑𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) → ∃𝑛 𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛)
3130exlimiv 1930 . . . . 5 (∃𝑚(𝜑𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) → ∃𝑛 𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛)
321, 31sylbir 235 . . . 4 ((𝜑 ∧ ∃𝑚 𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) → ∃𝑛 𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛)
33 19.42v 1953 . . . . 5 (∃𝑛(𝜑𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) ↔ (𝜑 ∧ ∃𝑛 𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛))
34 fvexd 6880 . . . . . . 7 ((𝜑𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) → ((𝑋(2nd𝐾)((1st𝐹)‘𝑧))‘𝑛) ∈ V)
353adantr 480 . . . . . . . 8 ((𝜑𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) → ((1st𝐾)‘𝑋) = 𝑌)
3622adantr 480 . . . . . . . 8 ((𝜑𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) → 𝐾 ∈ ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)))
3724adantr 480 . . . . . . . 8 ((𝜑𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) → (𝐾func 𝐹) = 𝐺)
38 uobeq.b . . . . . . . 8 𝐵 = (Base‘𝐷)
39 uobeq.x . . . . . . . . 9 (𝜑𝑋𝐵)
4039adantr 480 . . . . . . . 8 ((𝜑𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) → 𝑋𝐵)
41 uobeq.f . . . . . . . . 9 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
4241adantr 480 . . . . . . . 8 ((𝜑𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) → 𝐹 ∈ (𝐶 Func 𝐷))
43 eqidd 2731 . . . . . . . 8 ((𝜑𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) → ((𝑋(2nd𝐾)((1st𝐹)‘𝑧))‘𝑛) = ((𝑋(2nd𝐾)((1st𝐹)‘𝑧))‘𝑛))
44 simpr 484 . . . . . . . 8 ((𝜑𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) → 𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛)
4535, 36, 37, 38, 40, 42, 43, 44uptrar 49123 . . . . . . 7 ((𝜑𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) → 𝑧(𝐹(𝐶 UP 𝐷)𝑋)((𝑋(2nd𝐾)((1st𝐹)‘𝑧))‘𝑛))
46 breq2 5119 . . . . . . 7 (𝑚 = ((𝑋(2nd𝐾)((1st𝐹)‘𝑧))‘𝑛) → (𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚𝑧(𝐹(𝐶 UP 𝐷)𝑋)((𝑋(2nd𝐾)((1st𝐹)‘𝑧))‘𝑛)))
4734, 45, 46spcedv 3573 . . . . . 6 ((𝜑𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) → ∃𝑚 𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚)
4847exlimiv 1930 . . . . 5 (∃𝑛(𝜑𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) → ∃𝑚 𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚)
4933, 48sylbir 235 . . . 4 ((𝜑 ∧ ∃𝑛 𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) → ∃𝑚 𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚)
5032, 49impbida 800 . . 3 (𝜑 → (∃𝑚 𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚 ↔ ∃𝑛 𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛))
51 relup 49090 . . . 4 Rel (𝐹(𝐶 UP 𝐷)𝑋)
52 releldmb 5918 . . . 4 (Rel (𝐹(𝐶 UP 𝐷)𝑋) → (𝑧 ∈ dom (𝐹(𝐶 UP 𝐷)𝑋) ↔ ∃𝑚 𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚))
5351, 52ax-mp 5 . . 3 (𝑧 ∈ dom (𝐹(𝐶 UP 𝐷)𝑋) ↔ ∃𝑚 𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚)
54 relup 49090 . . . 4 Rel (𝐺(𝐶 UP 𝐸)𝑌)
55 releldmb 5918 . . . 4 (Rel (𝐺(𝐶 UP 𝐸)𝑌) → (𝑧 ∈ dom (𝐺(𝐶 UP 𝐸)𝑌) ↔ ∃𝑛 𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛))
5654, 55ax-mp 5 . . 3 (𝑧 ∈ dom (𝐺(𝐶 UP 𝐸)𝑌) ↔ ∃𝑛 𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛)
5750, 53, 563bitr4g 314 . 2 (𝜑 → (𝑧 ∈ dom (𝐹(𝐶 UP 𝐷)𝑋) ↔ 𝑧 ∈ dom (𝐺(𝐶 UP 𝐸)𝑌)))
5857eqrdv 2728 1 (𝜑 → dom (𝐹(𝐶 UP 𝐷)𝑋) = dom (𝐺(𝐶 UP 𝐸)𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  Vcvv 3455  cin 3921  cop 4603   class class class wbr 5115  ccnv 5645  dom cdm 5646  Rel wrel 5651  cfv 6519  (class class class)co 7394  1st c1st 7975  2nd c2nd 7976  Basecbs 17185   Func cfunc 17822  idfunccidfu 17823  func ccofu 17824   Full cful 17872   Faith cfth 17873   UP cup 49081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5242  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-ral 3047  df-rex 3056  df-rmo 3357  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-iun 4965  df-br 5116  df-opab 5178  df-mpt 5197  df-id 5541  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-riota 7351  df-ov 7397  df-oprab 7398  df-mpo 7399  df-1st 7977  df-2nd 7978  df-map 8805  df-ixp 8875  df-cat 17635  df-cid 17636  df-func 17826  df-idfu 17827  df-cofu 17828  df-full 17874  df-fth 17875  df-up 49082
This theorem is referenced by:  uobeq2  49293
  Copyright terms: Public domain W3C validator