| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > uptrlem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for uptr 49120. (Contributed by Zhi Wang, 16-Nov-2025.) |
| Ref | Expression |
|---|---|
| uptrlem1.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| uptrlem1.i | ⊢ 𝐼 = (Hom ‘𝐷) |
| uptrlem1.j | ⊢ 𝐽 = (Hom ‘𝐸) |
| uptrlem1.d | ⊢ ∙ = (comp‘𝐷) |
| uptrlem1.e | ⊢ ⚬ = (comp‘𝐸) |
| uptrlem2.a | ⊢ 𝐴 = (Base‘𝐶) |
| uptrlem2.b | ⊢ 𝐵 = (Base‘𝐷) |
| uptrlem2.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| uptrlem2.y | ⊢ (𝜑 → ((1st ‘𝐾)‘𝑋) = 𝑌) |
| uptrlem2.z | ⊢ (𝜑 → 𝑍 ∈ 𝐴) |
| uptrlem2.w | ⊢ (𝜑 → 𝑊 ∈ 𝐴) |
| uptrlem2.m | ⊢ (𝜑 → 𝑀 ∈ (𝑋𝐼((1st ‘𝐹)‘𝑍))) |
| uptrlem2.n | ⊢ (𝜑 → ((𝑋(2nd ‘𝐾)((1st ‘𝐹)‘𝑍))‘𝑀) = 𝑁) |
| uptrlem2.f | ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
| uptrlem2.k | ⊢ (𝜑 → 𝐾 ∈ ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))) |
| uptrlem2.g | ⊢ (𝜑 → (𝐾 ∘func 𝐹) = 𝐺) |
| Ref | Expression |
|---|---|
| uptrlem2 | ⊢ (𝜑 → (∀ℎ ∈ (𝑌𝐽((1st ‘𝐺)‘𝑊))∃!𝑘 ∈ (𝑍𝐻𝑊)ℎ = (((𝑍(2nd ‘𝐺)𝑊)‘𝑘)(〈𝑌, ((1st ‘𝐺)‘𝑍)〉 ⚬ ((1st ‘𝐺)‘𝑊))𝑁) ↔ ∀𝑔 ∈ (𝑋𝐼((1st ‘𝐹)‘𝑊))∃!𝑘 ∈ (𝑍𝐻𝑊)𝑔 = (((𝑍(2nd ‘𝐹)𝑊)‘𝑘)(〈𝑋, ((1st ‘𝐹)‘𝑍)〉 ∙ ((1st ‘𝐹)‘𝑊))𝑀))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uptrlem1.h | . 2 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 2 | uptrlem1.i | . 2 ⊢ 𝐼 = (Hom ‘𝐷) | |
| 3 | uptrlem1.j | . 2 ⊢ 𝐽 = (Hom ‘𝐸) | |
| 4 | uptrlem1.d | . 2 ⊢ ∙ = (comp‘𝐷) | |
| 5 | uptrlem1.e | . 2 ⊢ ⚬ = (comp‘𝐸) | |
| 6 | uptrlem2.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 7 | uptrlem2.b | . . 3 ⊢ 𝐵 = (Base‘𝐷) | |
| 8 | 6, 7 | eleqtrdi 2839 | . 2 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐷)) |
| 9 | uptrlem2.y | . 2 ⊢ (𝜑 → ((1st ‘𝐾)‘𝑋) = 𝑌) | |
| 10 | uptrlem2.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝐴) | |
| 11 | uptrlem2.a | . . 3 ⊢ 𝐴 = (Base‘𝐶) | |
| 12 | 10, 11 | eleqtrdi 2839 | . 2 ⊢ (𝜑 → 𝑍 ∈ (Base‘𝐶)) |
| 13 | uptrlem2.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ 𝐴) | |
| 14 | 13, 11 | eleqtrdi 2839 | . 2 ⊢ (𝜑 → 𝑊 ∈ (Base‘𝐶)) |
| 15 | uptrlem2.m | . 2 ⊢ (𝜑 → 𝑀 ∈ (𝑋𝐼((1st ‘𝐹)‘𝑍))) | |
| 16 | uptrlem2.n | . 2 ⊢ (𝜑 → ((𝑋(2nd ‘𝐾)((1st ‘𝐹)‘𝑍))‘𝑀) = 𝑁) | |
| 17 | uptrlem2.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) | |
| 18 | 17 | func1st2nd 48993 | . 2 ⊢ (𝜑 → (1st ‘𝐹)(𝐶 Func 𝐷)(2nd ‘𝐹)) |
| 19 | relfull 17878 | . . . . . 6 ⊢ Rel (𝐷 Full 𝐸) | |
| 20 | relin1 5783 | . . . . . 6 ⊢ (Rel (𝐷 Full 𝐸) → Rel ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))) | |
| 21 | 19, 20 | ax-mp 5 | . . . . 5 ⊢ Rel ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)) |
| 22 | uptrlem2.k | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))) | |
| 23 | 1st2nd 8027 | . . . . 5 ⊢ ((Rel ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)) ∧ 𝐾 ∈ ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))) → 𝐾 = 〈(1st ‘𝐾), (2nd ‘𝐾)〉) | |
| 24 | 21, 22, 23 | sylancr 587 | . . . 4 ⊢ (𝜑 → 𝐾 = 〈(1st ‘𝐾), (2nd ‘𝐾)〉) |
| 25 | 24, 22 | eqeltrrd 2830 | . . 3 ⊢ (𝜑 → 〈(1st ‘𝐾), (2nd ‘𝐾)〉 ∈ ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))) |
| 26 | df-br 5116 | . . 3 ⊢ ((1st ‘𝐾)((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))(2nd ‘𝐾) ↔ 〈(1st ‘𝐾), (2nd ‘𝐾)〉 ∈ ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))) | |
| 27 | 25, 26 | sylibr 234 | . 2 ⊢ (𝜑 → (1st ‘𝐾)((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))(2nd ‘𝐾)) |
| 28 | uptrlem2.g | . . 3 ⊢ (𝜑 → (𝐾 ∘func 𝐹) = 𝐺) | |
| 29 | inss1 4208 | . . . . . 6 ⊢ ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)) ⊆ (𝐷 Full 𝐸) | |
| 30 | fullfunc 17876 | . . . . . 6 ⊢ (𝐷 Full 𝐸) ⊆ (𝐷 Func 𝐸) | |
| 31 | 29, 30 | sstri 3964 | . . . . 5 ⊢ ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)) ⊆ (𝐷 Func 𝐸) |
| 32 | 31, 22 | sselid 3952 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ (𝐷 Func 𝐸)) |
| 33 | 17, 32 | cofu1st2nd 49009 | . . 3 ⊢ (𝜑 → (𝐾 ∘func 𝐹) = (〈(1st ‘𝐾), (2nd ‘𝐾)〉 ∘func 〈(1st ‘𝐹), (2nd ‘𝐹)〉)) |
| 34 | relfunc 17830 | . . . 4 ⊢ Rel (𝐶 Func 𝐸) | |
| 35 | 17, 32 | cofucl 17856 | . . . . 5 ⊢ (𝜑 → (𝐾 ∘func 𝐹) ∈ (𝐶 Func 𝐸)) |
| 36 | 28, 35 | eqeltrrd 2830 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (𝐶 Func 𝐸)) |
| 37 | 1st2nd 8027 | . . . 4 ⊢ ((Rel (𝐶 Func 𝐸) ∧ 𝐺 ∈ (𝐶 Func 𝐸)) → 𝐺 = 〈(1st ‘𝐺), (2nd ‘𝐺)〉) | |
| 38 | 34, 36, 37 | sylancr 587 | . . 3 ⊢ (𝜑 → 𝐺 = 〈(1st ‘𝐺), (2nd ‘𝐺)〉) |
| 39 | 28, 33, 38 | 3eqtr3d 2773 | . 2 ⊢ (𝜑 → (〈(1st ‘𝐾), (2nd ‘𝐾)〉 ∘func 〈(1st ‘𝐹), (2nd ‘𝐹)〉) = 〈(1st ‘𝐺), (2nd ‘𝐺)〉) |
| 40 | 1, 2, 3, 4, 5, 8, 9, 12, 14, 15, 16, 18, 27, 39 | uptrlem1 49117 | 1 ⊢ (𝜑 → (∀ℎ ∈ (𝑌𝐽((1st ‘𝐺)‘𝑊))∃!𝑘 ∈ (𝑍𝐻𝑊)ℎ = (((𝑍(2nd ‘𝐺)𝑊)‘𝑘)(〈𝑌, ((1st ‘𝐺)‘𝑍)〉 ⚬ ((1st ‘𝐺)‘𝑊))𝑁) ↔ ∀𝑔 ∈ (𝑋𝐼((1st ‘𝐹)‘𝑊))∃!𝑘 ∈ (𝑍𝐻𝑊)𝑔 = (((𝑍(2nd ‘𝐹)𝑊)‘𝑘)(〈𝑋, ((1st ‘𝐹)‘𝑍)〉 ∙ ((1st ‘𝐹)‘𝑊))𝑀))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∀wral 3046 ∃!wreu 3355 ∩ cin 3921 〈cop 4603 class class class wbr 5115 Rel wrel 5651 ‘cfv 6519 (class class class)co 7394 1st c1st 7975 2nd c2nd 7976 Basecbs 17185 Hom chom 17237 compcco 17238 Func cfunc 17822 ∘func ccofu 17824 Full cful 17872 Faith cfth 17873 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-ral 3047 df-rex 3056 df-rmo 3357 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-id 5541 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-1st 7977 df-2nd 7978 df-map 8805 df-ixp 8875 df-cat 17635 df-cid 17636 df-func 17826 df-cofu 17828 df-full 17874 df-fth 17875 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |