Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uobeqw Structured version   Visualization version   GIF version

Theorem uobeqw 49250
Description: If a full functor (in fact, a full embedding) is a section of a fully faithful functor (surjective on objects), then the sets of universal objects are equal. (Contributed by Zhi Wang, 17-Nov-2025.)
Hypotheses
Ref Expression
uobffth.b 𝐵 = (Base‘𝐷)
uobffth.x (𝜑𝑋𝐵)
uobffth.f (𝜑𝐹 ∈ (𝐶 Func 𝐷))
uobffth.g (𝜑 → (𝐾func 𝐹) = 𝐺)
uobffth.y (𝜑 → ((1st𝐾)‘𝑋) = 𝑌)
uobeq.i 𝐼 = (idfunc𝐷)
uobeq.k (𝜑𝐾 ∈ (𝐷 Full 𝐸))
uobeq.n (𝜑 → (𝐿func 𝐾) = 𝐼)
uobeqw.l (𝜑𝐿 ∈ ((𝐸 Full 𝐷) ∩ (𝐸 Faith 𝐷)))
Assertion
Ref Expression
uobeqw (𝜑 → dom (𝐹(𝐶 UP 𝐷)𝑋) = dom (𝐺(𝐶 UP 𝐸)𝑌))

Proof of Theorem uobeqw
Dummy variables 𝑚 𝑛 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 19.42v 1954 . . . . 5 (∃𝑚(𝜑𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) ↔ (𝜑 ∧ ∃𝑚 𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚))
2 fvexd 6837 . . . . . . 7 ((𝜑𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) → ((𝑋(2nd𝐾)((1st𝐹)‘𝑧))‘𝑚) ∈ V)
3 uobffth.y . . . . . . . . 9 (𝜑 → ((1st𝐾)‘𝑋) = 𝑌)
43adantr 480 . . . . . . . 8 ((𝜑𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) → ((1st𝐾)‘𝑋) = 𝑌)
5 uobeq.k . . . . . . . . . 10 (𝜑𝐾 ∈ (𝐷 Full 𝐸))
6 relfunc 17766 . . . . . . . . . . . 12 Rel (𝐷 Func 𝐸)
7 fullfunc 17812 . . . . . . . . . . . . 13 (𝐷 Full 𝐸) ⊆ (𝐷 Func 𝐸)
87, 5sselid 3932 . . . . . . . . . . . 12 (𝜑𝐾 ∈ (𝐷 Func 𝐸))
9 1st2nd 7971 . . . . . . . . . . . 12 ((Rel (𝐷 Func 𝐸) ∧ 𝐾 ∈ (𝐷 Func 𝐸)) → 𝐾 = ⟨(1st𝐾), (2nd𝐾)⟩)
106, 8, 9sylancr 587 . . . . . . . . . . 11 (𝜑𝐾 = ⟨(1st𝐾), (2nd𝐾)⟩)
11 uobeq.i . . . . . . . . . . . . 13 𝐼 = (idfunc𝐷)
128func1st2nd 49107 . . . . . . . . . . . . 13 (𝜑 → (1st𝐾)(𝐷 Func 𝐸)(2nd𝐾))
13 inss1 4187 . . . . . . . . . . . . . . . 16 ((𝐸 Full 𝐷) ∩ (𝐸 Faith 𝐷)) ⊆ (𝐸 Full 𝐷)
14 fullfunc 17812 . . . . . . . . . . . . . . . 16 (𝐸 Full 𝐷) ⊆ (𝐸 Func 𝐷)
1513, 14sstri 3944 . . . . . . . . . . . . . . 15 ((𝐸 Full 𝐷) ∩ (𝐸 Faith 𝐷)) ⊆ (𝐸 Func 𝐷)
16 uobeqw.l . . . . . . . . . . . . . . 15 (𝜑𝐿 ∈ ((𝐸 Full 𝐷) ∩ (𝐸 Faith 𝐷)))
1715, 16sselid 3932 . . . . . . . . . . . . . 14 (𝜑𝐿 ∈ (𝐸 Func 𝐷))
1817func1st2nd 49107 . . . . . . . . . . . . 13 (𝜑 → (1st𝐿)(𝐸 Func 𝐷)(2nd𝐿))
198, 17cofu1st2nd 49123 . . . . . . . . . . . . . 14 (𝜑 → (𝐿func 𝐾) = (⟨(1st𝐿), (2nd𝐿)⟩ ∘func ⟨(1st𝐾), (2nd𝐾)⟩))
20 uobeq.n . . . . . . . . . . . . . 14 (𝜑 → (𝐿func 𝐾) = 𝐼)
2119, 20eqtr3d 2768 . . . . . . . . . . . . 13 (𝜑 → (⟨(1st𝐿), (2nd𝐿)⟩ ∘func ⟨(1st𝐾), (2nd𝐾)⟩) = 𝐼)
2211, 12, 18, 21cofidfth 49193 . . . . . . . . . . . 12 (𝜑 → (1st𝐾)(𝐷 Faith 𝐸)(2nd𝐾))
23 df-br 5092 . . . . . . . . . . . 12 ((1st𝐾)(𝐷 Faith 𝐸)(2nd𝐾) ↔ ⟨(1st𝐾), (2nd𝐾)⟩ ∈ (𝐷 Faith 𝐸))
2422, 23sylib 218 . . . . . . . . . . 11 (𝜑 → ⟨(1st𝐾), (2nd𝐾)⟩ ∈ (𝐷 Faith 𝐸))
2510, 24eqeltrd 2831 . . . . . . . . . 10 (𝜑𝐾 ∈ (𝐷 Faith 𝐸))
265, 25elind 4150 . . . . . . . . 9 (𝜑𝐾 ∈ ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)))
2726adantr 480 . . . . . . . 8 ((𝜑𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) → 𝐾 ∈ ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)))
28 uobffth.g . . . . . . . . 9 (𝜑 → (𝐾func 𝐹) = 𝐺)
2928adantr 480 . . . . . . . 8 ((𝜑𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) → (𝐾func 𝐹) = 𝐺)
30 eqidd 2732 . . . . . . . 8 ((𝜑𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) → ((𝑋(2nd𝐾)((1st𝐹)‘𝑧))‘𝑚) = ((𝑋(2nd𝐾)((1st𝐹)‘𝑧))‘𝑚))
31 simpr 484 . . . . . . . 8 ((𝜑𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) → 𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚)
324, 27, 29, 30, 31uptrai 49248 . . . . . . 7 ((𝜑𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) → 𝑧(𝐺(𝐶 UP 𝐸)𝑌)((𝑋(2nd𝐾)((1st𝐹)‘𝑧))‘𝑚))
33 breq2 5095 . . . . . . 7 (𝑛 = ((𝑋(2nd𝐾)((1st𝐹)‘𝑧))‘𝑚) → (𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛𝑧(𝐺(𝐶 UP 𝐸)𝑌)((𝑋(2nd𝐾)((1st𝐹)‘𝑧))‘𝑚)))
342, 32, 33spcedv 3553 . . . . . 6 ((𝜑𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) → ∃𝑛 𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛)
3534exlimiv 1931 . . . . 5 (∃𝑚(𝜑𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) → ∃𝑛 𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛)
361, 35sylbir 235 . . . 4 ((𝜑 ∧ ∃𝑚 𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) → ∃𝑛 𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛)
37 19.42v 1954 . . . . 5 (∃𝑛(𝜑𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) ↔ (𝜑 ∧ ∃𝑛 𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛))
38 fvexd 6837 . . . . . . 7 ((𝜑𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) → ((𝑌(2nd𝐿)((1st𝐺)‘𝑧))‘𝑛) ∈ V)
393fveq2d 6826 . . . . . . . . . 10 (𝜑 → ((1st𝐿)‘((1st𝐾)‘𝑋)) = ((1st𝐿)‘𝑌))
40 uobffth.b . . . . . . . . . . 11 𝐵 = (Base‘𝐷)
41 uobffth.x . . . . . . . . . . 11 (𝜑𝑋𝐵)
4211, 40, 41, 8, 17, 20cofid1a 49143 . . . . . . . . . 10 (𝜑 → ((1st𝐿)‘((1st𝐾)‘𝑋)) = 𝑋)
4339, 42eqtr3d 2768 . . . . . . . . 9 (𝜑 → ((1st𝐿)‘𝑌) = 𝑋)
4443adantr 480 . . . . . . . 8 ((𝜑𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) → ((1st𝐿)‘𝑌) = 𝑋)
4516adantr 480 . . . . . . . 8 ((𝜑𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) → 𝐿 ∈ ((𝐸 Full 𝐷) ∩ (𝐸 Faith 𝐷)))
46 uobffth.f . . . . . . . . . . 11 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
4746, 8, 17cofuass 17793 . . . . . . . . . 10 (𝜑 → ((𝐿func 𝐾) ∘func 𝐹) = (𝐿func (𝐾func 𝐹)))
4820oveq1d 7361 . . . . . . . . . . 11 (𝜑 → ((𝐿func 𝐾) ∘func 𝐹) = (𝐼func 𝐹))
4946, 11cofulid 17794 . . . . . . . . . . 11 (𝜑 → (𝐼func 𝐹) = 𝐹)
5048, 49eqtrd 2766 . . . . . . . . . 10 (𝜑 → ((𝐿func 𝐾) ∘func 𝐹) = 𝐹)
5128oveq2d 7362 . . . . . . . . . 10 (𝜑 → (𝐿func (𝐾func 𝐹)) = (𝐿func 𝐺))
5247, 50, 513eqtr3rd 2775 . . . . . . . . 9 (𝜑 → (𝐿func 𝐺) = 𝐹)
5352adantr 480 . . . . . . . 8 ((𝜑𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) → (𝐿func 𝐺) = 𝐹)
54 eqidd 2732 . . . . . . . 8 ((𝜑𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) → ((𝑌(2nd𝐿)((1st𝐺)‘𝑧))‘𝑛) = ((𝑌(2nd𝐿)((1st𝐺)‘𝑧))‘𝑛))
55 simpr 484 . . . . . . . 8 ((𝜑𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) → 𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛)
5644, 45, 53, 54, 55uptrai 49248 . . . . . . 7 ((𝜑𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) → 𝑧(𝐹(𝐶 UP 𝐷)𝑋)((𝑌(2nd𝐿)((1st𝐺)‘𝑧))‘𝑛))
57 breq2 5095 . . . . . . 7 (𝑚 = ((𝑌(2nd𝐿)((1st𝐺)‘𝑧))‘𝑛) → (𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚𝑧(𝐹(𝐶 UP 𝐷)𝑋)((𝑌(2nd𝐿)((1st𝐺)‘𝑧))‘𝑛)))
5838, 56, 57spcedv 3553 . . . . . 6 ((𝜑𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) → ∃𝑚 𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚)
5958exlimiv 1931 . . . . 5 (∃𝑛(𝜑𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) → ∃𝑚 𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚)
6037, 59sylbir 235 . . . 4 ((𝜑 ∧ ∃𝑛 𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) → ∃𝑚 𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚)
6136, 60impbida 800 . . 3 (𝜑 → (∃𝑚 𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚 ↔ ∃𝑛 𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛))
62 relup 49214 . . . 4 Rel (𝐹(𝐶 UP 𝐷)𝑋)
63 releldmb 5886 . . . 4 (Rel (𝐹(𝐶 UP 𝐷)𝑋) → (𝑧 ∈ dom (𝐹(𝐶 UP 𝐷)𝑋) ↔ ∃𝑚 𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚))
6462, 63ax-mp 5 . . 3 (𝑧 ∈ dom (𝐹(𝐶 UP 𝐷)𝑋) ↔ ∃𝑚 𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚)
65 relup 49214 . . . 4 Rel (𝐺(𝐶 UP 𝐸)𝑌)
66 releldmb 5886 . . . 4 (Rel (𝐺(𝐶 UP 𝐸)𝑌) → (𝑧 ∈ dom (𝐺(𝐶 UP 𝐸)𝑌) ↔ ∃𝑛 𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛))
6765, 66ax-mp 5 . . 3 (𝑧 ∈ dom (𝐺(𝐶 UP 𝐸)𝑌) ↔ ∃𝑛 𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛)
6861, 64, 673bitr4g 314 . 2 (𝜑 → (𝑧 ∈ dom (𝐹(𝐶 UP 𝐷)𝑋) ↔ 𝑧 ∈ dom (𝐺(𝐶 UP 𝐸)𝑌)))
6968eqrdv 2729 1 (𝜑 → dom (𝐹(𝐶 UP 𝐷)𝑋) = dom (𝐺(𝐶 UP 𝐸)𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2111  Vcvv 3436  cin 3901  cop 4582   class class class wbr 5091  dom cdm 5616  Rel wrel 5621  cfv 6481  (class class class)co 7346  1st c1st 7919  2nd c2nd 7920  Basecbs 17117   Func cfunc 17758  idfunccidfu 17759  func ccofu 17760   Full cful 17808   Faith cfth 17809   UP cup 49204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-map 8752  df-ixp 8822  df-cat 17571  df-cid 17572  df-func 17762  df-idfu 17763  df-cofu 17764  df-full 17810  df-fth 17811  df-up 49205
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator