Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uobeqw Structured version   Visualization version   GIF version

Theorem uobeqw 49205
Description: If a full functor (in fact, a full embedding) is a section of a fully faithful functor (surjective on objects), then the sets of universal objects are equal. (Contributed by Zhi Wang, 17-Nov-2025.)
Hypotheses
Ref Expression
uobffth.b 𝐵 = (Base‘𝐷)
uobffth.x (𝜑𝑋𝐵)
uobffth.f (𝜑𝐹 ∈ (𝐶 Func 𝐷))
uobffth.g (𝜑 → (𝐾func 𝐹) = 𝐺)
uobffth.y (𝜑 → ((1st𝐾)‘𝑋) = 𝑌)
uobeq.i 𝐼 = (idfunc𝐷)
uobeq.k (𝜑𝐾 ∈ (𝐷 Full 𝐸))
uobeq.n (𝜑 → (𝐿func 𝐾) = 𝐼)
uobeqw.l (𝜑𝐿 ∈ ((𝐸 Full 𝐷) ∩ (𝐸 Faith 𝐷)))
Assertion
Ref Expression
uobeqw (𝜑 → dom (𝐹(𝐶 UP 𝐷)𝑋) = dom (𝐺(𝐶 UP 𝐸)𝑌))

Proof of Theorem uobeqw
Dummy variables 𝑚 𝑛 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 19.42v 1953 . . . . 5 (∃𝑚(𝜑𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) ↔ (𝜑 ∧ ∃𝑚 𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚))
2 fvexd 6841 . . . . . . 7 ((𝜑𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) → ((𝑋(2nd𝐾)((1st𝐹)‘𝑧))‘𝑚) ∈ V)
3 uobffth.y . . . . . . . . 9 (𝜑 → ((1st𝐾)‘𝑋) = 𝑌)
43adantr 480 . . . . . . . 8 ((𝜑𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) → ((1st𝐾)‘𝑋) = 𝑌)
5 uobeq.k . . . . . . . . . 10 (𝜑𝐾 ∈ (𝐷 Full 𝐸))
6 relfunc 17787 . . . . . . . . . . . 12 Rel (𝐷 Func 𝐸)
7 fullfunc 17833 . . . . . . . . . . . . 13 (𝐷 Full 𝐸) ⊆ (𝐷 Func 𝐸)
87, 5sselid 3935 . . . . . . . . . . . 12 (𝜑𝐾 ∈ (𝐷 Func 𝐸))
9 1st2nd 7981 . . . . . . . . . . . 12 ((Rel (𝐷 Func 𝐸) ∧ 𝐾 ∈ (𝐷 Func 𝐸)) → 𝐾 = ⟨(1st𝐾), (2nd𝐾)⟩)
106, 8, 9sylancr 587 . . . . . . . . . . 11 (𝜑𝐾 = ⟨(1st𝐾), (2nd𝐾)⟩)
11 uobeq.i . . . . . . . . . . . . 13 𝐼 = (idfunc𝐷)
128func1st2nd 49062 . . . . . . . . . . . . 13 (𝜑 → (1st𝐾)(𝐷 Func 𝐸)(2nd𝐾))
13 inss1 4190 . . . . . . . . . . . . . . . 16 ((𝐸 Full 𝐷) ∩ (𝐸 Faith 𝐷)) ⊆ (𝐸 Full 𝐷)
14 fullfunc 17833 . . . . . . . . . . . . . . . 16 (𝐸 Full 𝐷) ⊆ (𝐸 Func 𝐷)
1513, 14sstri 3947 . . . . . . . . . . . . . . 15 ((𝐸 Full 𝐷) ∩ (𝐸 Faith 𝐷)) ⊆ (𝐸 Func 𝐷)
16 uobeqw.l . . . . . . . . . . . . . . 15 (𝜑𝐿 ∈ ((𝐸 Full 𝐷) ∩ (𝐸 Faith 𝐷)))
1715, 16sselid 3935 . . . . . . . . . . . . . 14 (𝜑𝐿 ∈ (𝐸 Func 𝐷))
1817func1st2nd 49062 . . . . . . . . . . . . 13 (𝜑 → (1st𝐿)(𝐸 Func 𝐷)(2nd𝐿))
198, 17cofu1st2nd 49078 . . . . . . . . . . . . . 14 (𝜑 → (𝐿func 𝐾) = (⟨(1st𝐿), (2nd𝐿)⟩ ∘func ⟨(1st𝐾), (2nd𝐾)⟩))
20 uobeq.n . . . . . . . . . . . . . 14 (𝜑 → (𝐿func 𝐾) = 𝐼)
2119, 20eqtr3d 2766 . . . . . . . . . . . . 13 (𝜑 → (⟨(1st𝐿), (2nd𝐿)⟩ ∘func ⟨(1st𝐾), (2nd𝐾)⟩) = 𝐼)
2211, 12, 18, 21cofidfth 49148 . . . . . . . . . . . 12 (𝜑 → (1st𝐾)(𝐷 Faith 𝐸)(2nd𝐾))
23 df-br 5096 . . . . . . . . . . . 12 ((1st𝐾)(𝐷 Faith 𝐸)(2nd𝐾) ↔ ⟨(1st𝐾), (2nd𝐾)⟩ ∈ (𝐷 Faith 𝐸))
2422, 23sylib 218 . . . . . . . . . . 11 (𝜑 → ⟨(1st𝐾), (2nd𝐾)⟩ ∈ (𝐷 Faith 𝐸))
2510, 24eqeltrd 2828 . . . . . . . . . 10 (𝜑𝐾 ∈ (𝐷 Faith 𝐸))
265, 25elind 4153 . . . . . . . . 9 (𝜑𝐾 ∈ ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)))
2726adantr 480 . . . . . . . 8 ((𝜑𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) → 𝐾 ∈ ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)))
28 uobffth.g . . . . . . . . 9 (𝜑 → (𝐾func 𝐹) = 𝐺)
2928adantr 480 . . . . . . . 8 ((𝜑𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) → (𝐾func 𝐹) = 𝐺)
30 eqidd 2730 . . . . . . . 8 ((𝜑𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) → ((𝑋(2nd𝐾)((1st𝐹)‘𝑧))‘𝑚) = ((𝑋(2nd𝐾)((1st𝐹)‘𝑧))‘𝑚))
31 simpr 484 . . . . . . . 8 ((𝜑𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) → 𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚)
324, 27, 29, 30, 31uptrai 49203 . . . . . . 7 ((𝜑𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) → 𝑧(𝐺(𝐶 UP 𝐸)𝑌)((𝑋(2nd𝐾)((1st𝐹)‘𝑧))‘𝑚))
33 breq2 5099 . . . . . . 7 (𝑛 = ((𝑋(2nd𝐾)((1st𝐹)‘𝑧))‘𝑚) → (𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛𝑧(𝐺(𝐶 UP 𝐸)𝑌)((𝑋(2nd𝐾)((1st𝐹)‘𝑧))‘𝑚)))
342, 32, 33spcedv 3555 . . . . . 6 ((𝜑𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) → ∃𝑛 𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛)
3534exlimiv 1930 . . . . 5 (∃𝑚(𝜑𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) → ∃𝑛 𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛)
361, 35sylbir 235 . . . 4 ((𝜑 ∧ ∃𝑚 𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) → ∃𝑛 𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛)
37 19.42v 1953 . . . . 5 (∃𝑛(𝜑𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) ↔ (𝜑 ∧ ∃𝑛 𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛))
38 fvexd 6841 . . . . . . 7 ((𝜑𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) → ((𝑌(2nd𝐿)((1st𝐺)‘𝑧))‘𝑛) ∈ V)
393fveq2d 6830 . . . . . . . . . 10 (𝜑 → ((1st𝐿)‘((1st𝐾)‘𝑋)) = ((1st𝐿)‘𝑌))
40 uobffth.b . . . . . . . . . . 11 𝐵 = (Base‘𝐷)
41 uobffth.x . . . . . . . . . . 11 (𝜑𝑋𝐵)
4211, 40, 41, 8, 17, 20cofid1a 49098 . . . . . . . . . 10 (𝜑 → ((1st𝐿)‘((1st𝐾)‘𝑋)) = 𝑋)
4339, 42eqtr3d 2766 . . . . . . . . 9 (𝜑 → ((1st𝐿)‘𝑌) = 𝑋)
4443adantr 480 . . . . . . . 8 ((𝜑𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) → ((1st𝐿)‘𝑌) = 𝑋)
4516adantr 480 . . . . . . . 8 ((𝜑𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) → 𝐿 ∈ ((𝐸 Full 𝐷) ∩ (𝐸 Faith 𝐷)))
46 uobffth.f . . . . . . . . . . 11 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
4746, 8, 17cofuass 17814 . . . . . . . . . 10 (𝜑 → ((𝐿func 𝐾) ∘func 𝐹) = (𝐿func (𝐾func 𝐹)))
4820oveq1d 7368 . . . . . . . . . . 11 (𝜑 → ((𝐿func 𝐾) ∘func 𝐹) = (𝐼func 𝐹))
4946, 11cofulid 17815 . . . . . . . . . . 11 (𝜑 → (𝐼func 𝐹) = 𝐹)
5048, 49eqtrd 2764 . . . . . . . . . 10 (𝜑 → ((𝐿func 𝐾) ∘func 𝐹) = 𝐹)
5128oveq2d 7369 . . . . . . . . . 10 (𝜑 → (𝐿func (𝐾func 𝐹)) = (𝐿func 𝐺))
5247, 50, 513eqtr3rd 2773 . . . . . . . . 9 (𝜑 → (𝐿func 𝐺) = 𝐹)
5352adantr 480 . . . . . . . 8 ((𝜑𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) → (𝐿func 𝐺) = 𝐹)
54 eqidd 2730 . . . . . . . 8 ((𝜑𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) → ((𝑌(2nd𝐿)((1st𝐺)‘𝑧))‘𝑛) = ((𝑌(2nd𝐿)((1st𝐺)‘𝑧))‘𝑛))
55 simpr 484 . . . . . . . 8 ((𝜑𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) → 𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛)
5644, 45, 53, 54, 55uptrai 49203 . . . . . . 7 ((𝜑𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) → 𝑧(𝐹(𝐶 UP 𝐷)𝑋)((𝑌(2nd𝐿)((1st𝐺)‘𝑧))‘𝑛))
57 breq2 5099 . . . . . . 7 (𝑚 = ((𝑌(2nd𝐿)((1st𝐺)‘𝑧))‘𝑛) → (𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚𝑧(𝐹(𝐶 UP 𝐷)𝑋)((𝑌(2nd𝐿)((1st𝐺)‘𝑧))‘𝑛)))
5838, 56, 57spcedv 3555 . . . . . 6 ((𝜑𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) → ∃𝑚 𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚)
5958exlimiv 1930 . . . . 5 (∃𝑛(𝜑𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) → ∃𝑚 𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚)
6037, 59sylbir 235 . . . 4 ((𝜑 ∧ ∃𝑛 𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) → ∃𝑚 𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚)
6136, 60impbida 800 . . 3 (𝜑 → (∃𝑚 𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚 ↔ ∃𝑛 𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛))
62 relup 49169 . . . 4 Rel (𝐹(𝐶 UP 𝐷)𝑋)
63 releldmb 5892 . . . 4 (Rel (𝐹(𝐶 UP 𝐷)𝑋) → (𝑧 ∈ dom (𝐹(𝐶 UP 𝐷)𝑋) ↔ ∃𝑚 𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚))
6462, 63ax-mp 5 . . 3 (𝑧 ∈ dom (𝐹(𝐶 UP 𝐷)𝑋) ↔ ∃𝑚 𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚)
65 relup 49169 . . . 4 Rel (𝐺(𝐶 UP 𝐸)𝑌)
66 releldmb 5892 . . . 4 (Rel (𝐺(𝐶 UP 𝐸)𝑌) → (𝑧 ∈ dom (𝐺(𝐶 UP 𝐸)𝑌) ↔ ∃𝑛 𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛))
6765, 66ax-mp 5 . . 3 (𝑧 ∈ dom (𝐺(𝐶 UP 𝐸)𝑌) ↔ ∃𝑛 𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛)
6861, 64, 673bitr4g 314 . 2 (𝜑 → (𝑧 ∈ dom (𝐹(𝐶 UP 𝐷)𝑋) ↔ 𝑧 ∈ dom (𝐺(𝐶 UP 𝐸)𝑌)))
6968eqrdv 2727 1 (𝜑 → dom (𝐹(𝐶 UP 𝐷)𝑋) = dom (𝐺(𝐶 UP 𝐸)𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  Vcvv 3438  cin 3904  cop 4585   class class class wbr 5095  dom cdm 5623  Rel wrel 5628  cfv 6486  (class class class)co 7353  1st c1st 7929  2nd c2nd 7930  Basecbs 17138   Func cfunc 17779  idfunccidfu 17780  func ccofu 17781   Full cful 17829   Faith cfth 17830   UP cup 49159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-map 8762  df-ixp 8832  df-cat 17592  df-cid 17593  df-func 17783  df-idfu 17784  df-cofu 17785  df-full 17831  df-fth 17832  df-up 49160
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator