Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uobeqw Structured version   Visualization version   GIF version

Theorem uobeqw 49344
Description: If a full functor (in fact, a full embedding) is a section of a fully faithful functor (surjective on objects), then the sets of universal objects are equal. (Contributed by Zhi Wang, 17-Nov-2025.)
Hypotheses
Ref Expression
uobffth.b 𝐵 = (Base‘𝐷)
uobffth.x (𝜑𝑋𝐵)
uobffth.f (𝜑𝐹 ∈ (𝐶 Func 𝐷))
uobffth.g (𝜑 → (𝐾func 𝐹) = 𝐺)
uobffth.y (𝜑 → ((1st𝐾)‘𝑋) = 𝑌)
uobeq.i 𝐼 = (idfunc𝐷)
uobeq.k (𝜑𝐾 ∈ (𝐷 Full 𝐸))
uobeq.n (𝜑 → (𝐿func 𝐾) = 𝐼)
uobeqw.l (𝜑𝐿 ∈ ((𝐸 Full 𝐷) ∩ (𝐸 Faith 𝐷)))
Assertion
Ref Expression
uobeqw (𝜑 → dom (𝐹(𝐶 UP 𝐷)𝑋) = dom (𝐺(𝐶 UP 𝐸)𝑌))

Proof of Theorem uobeqw
Dummy variables 𝑚 𝑛 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 19.42v 1954 . . . . 5 (∃𝑚(𝜑𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) ↔ (𝜑 ∧ ∃𝑚 𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚))
2 fvexd 6843 . . . . . . 7 ((𝜑𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) → ((𝑋(2nd𝐾)((1st𝐹)‘𝑧))‘𝑚) ∈ V)
3 uobffth.y . . . . . . . . 9 (𝜑 → ((1st𝐾)‘𝑋) = 𝑌)
43adantr 480 . . . . . . . 8 ((𝜑𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) → ((1st𝐾)‘𝑋) = 𝑌)
5 uobeq.k . . . . . . . . . 10 (𝜑𝐾 ∈ (𝐷 Full 𝐸))
6 relfunc 17771 . . . . . . . . . . . 12 Rel (𝐷 Func 𝐸)
7 fullfunc 17817 . . . . . . . . . . . . 13 (𝐷 Full 𝐸) ⊆ (𝐷 Func 𝐸)
87, 5sselid 3928 . . . . . . . . . . . 12 (𝜑𝐾 ∈ (𝐷 Func 𝐸))
9 1st2nd 7977 . . . . . . . . . . . 12 ((Rel (𝐷 Func 𝐸) ∧ 𝐾 ∈ (𝐷 Func 𝐸)) → 𝐾 = ⟨(1st𝐾), (2nd𝐾)⟩)
106, 8, 9sylancr 587 . . . . . . . . . . 11 (𝜑𝐾 = ⟨(1st𝐾), (2nd𝐾)⟩)
11 uobeq.i . . . . . . . . . . . . 13 𝐼 = (idfunc𝐷)
128func1st2nd 49201 . . . . . . . . . . . . 13 (𝜑 → (1st𝐾)(𝐷 Func 𝐸)(2nd𝐾))
13 inss1 4186 . . . . . . . . . . . . . . . 16 ((𝐸 Full 𝐷) ∩ (𝐸 Faith 𝐷)) ⊆ (𝐸 Full 𝐷)
14 fullfunc 17817 . . . . . . . . . . . . . . . 16 (𝐸 Full 𝐷) ⊆ (𝐸 Func 𝐷)
1513, 14sstri 3940 . . . . . . . . . . . . . . 15 ((𝐸 Full 𝐷) ∩ (𝐸 Faith 𝐷)) ⊆ (𝐸 Func 𝐷)
16 uobeqw.l . . . . . . . . . . . . . . 15 (𝜑𝐿 ∈ ((𝐸 Full 𝐷) ∩ (𝐸 Faith 𝐷)))
1715, 16sselid 3928 . . . . . . . . . . . . . 14 (𝜑𝐿 ∈ (𝐸 Func 𝐷))
1817func1st2nd 49201 . . . . . . . . . . . . 13 (𝜑 → (1st𝐿)(𝐸 Func 𝐷)(2nd𝐿))
198, 17cofu1st2nd 49217 . . . . . . . . . . . . . 14 (𝜑 → (𝐿func 𝐾) = (⟨(1st𝐿), (2nd𝐿)⟩ ∘func ⟨(1st𝐾), (2nd𝐾)⟩))
20 uobeq.n . . . . . . . . . . . . . 14 (𝜑 → (𝐿func 𝐾) = 𝐼)
2119, 20eqtr3d 2770 . . . . . . . . . . . . 13 (𝜑 → (⟨(1st𝐿), (2nd𝐿)⟩ ∘func ⟨(1st𝐾), (2nd𝐾)⟩) = 𝐼)
2211, 12, 18, 21cofidfth 49287 . . . . . . . . . . . 12 (𝜑 → (1st𝐾)(𝐷 Faith 𝐸)(2nd𝐾))
23 df-br 5094 . . . . . . . . . . . 12 ((1st𝐾)(𝐷 Faith 𝐸)(2nd𝐾) ↔ ⟨(1st𝐾), (2nd𝐾)⟩ ∈ (𝐷 Faith 𝐸))
2422, 23sylib 218 . . . . . . . . . . 11 (𝜑 → ⟨(1st𝐾), (2nd𝐾)⟩ ∈ (𝐷 Faith 𝐸))
2510, 24eqeltrd 2833 . . . . . . . . . 10 (𝜑𝐾 ∈ (𝐷 Faith 𝐸))
265, 25elind 4149 . . . . . . . . 9 (𝜑𝐾 ∈ ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)))
2726adantr 480 . . . . . . . 8 ((𝜑𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) → 𝐾 ∈ ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)))
28 uobffth.g . . . . . . . . 9 (𝜑 → (𝐾func 𝐹) = 𝐺)
2928adantr 480 . . . . . . . 8 ((𝜑𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) → (𝐾func 𝐹) = 𝐺)
30 eqidd 2734 . . . . . . . 8 ((𝜑𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) → ((𝑋(2nd𝐾)((1st𝐹)‘𝑧))‘𝑚) = ((𝑋(2nd𝐾)((1st𝐹)‘𝑧))‘𝑚))
31 simpr 484 . . . . . . . 8 ((𝜑𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) → 𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚)
324, 27, 29, 30, 31uptrai 49342 . . . . . . 7 ((𝜑𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) → 𝑧(𝐺(𝐶 UP 𝐸)𝑌)((𝑋(2nd𝐾)((1st𝐹)‘𝑧))‘𝑚))
33 breq2 5097 . . . . . . 7 (𝑛 = ((𝑋(2nd𝐾)((1st𝐹)‘𝑧))‘𝑚) → (𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛𝑧(𝐺(𝐶 UP 𝐸)𝑌)((𝑋(2nd𝐾)((1st𝐹)‘𝑧))‘𝑚)))
342, 32, 33spcedv 3549 . . . . . 6 ((𝜑𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) → ∃𝑛 𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛)
3534exlimiv 1931 . . . . 5 (∃𝑚(𝜑𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) → ∃𝑛 𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛)
361, 35sylbir 235 . . . 4 ((𝜑 ∧ ∃𝑚 𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) → ∃𝑛 𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛)
37 19.42v 1954 . . . . 5 (∃𝑛(𝜑𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) ↔ (𝜑 ∧ ∃𝑛 𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛))
38 fvexd 6843 . . . . . . 7 ((𝜑𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) → ((𝑌(2nd𝐿)((1st𝐺)‘𝑧))‘𝑛) ∈ V)
393fveq2d 6832 . . . . . . . . . 10 (𝜑 → ((1st𝐿)‘((1st𝐾)‘𝑋)) = ((1st𝐿)‘𝑌))
40 uobffth.b . . . . . . . . . . 11 𝐵 = (Base‘𝐷)
41 uobffth.x . . . . . . . . . . 11 (𝜑𝑋𝐵)
4211, 40, 41, 8, 17, 20cofid1a 49237 . . . . . . . . . 10 (𝜑 → ((1st𝐿)‘((1st𝐾)‘𝑋)) = 𝑋)
4339, 42eqtr3d 2770 . . . . . . . . 9 (𝜑 → ((1st𝐿)‘𝑌) = 𝑋)
4443adantr 480 . . . . . . . 8 ((𝜑𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) → ((1st𝐿)‘𝑌) = 𝑋)
4516adantr 480 . . . . . . . 8 ((𝜑𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) → 𝐿 ∈ ((𝐸 Full 𝐷) ∩ (𝐸 Faith 𝐷)))
46 uobffth.f . . . . . . . . . . 11 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
4746, 8, 17cofuass 17798 . . . . . . . . . 10 (𝜑 → ((𝐿func 𝐾) ∘func 𝐹) = (𝐿func (𝐾func 𝐹)))
4820oveq1d 7367 . . . . . . . . . . 11 (𝜑 → ((𝐿func 𝐾) ∘func 𝐹) = (𝐼func 𝐹))
4946, 11cofulid 17799 . . . . . . . . . . 11 (𝜑 → (𝐼func 𝐹) = 𝐹)
5048, 49eqtrd 2768 . . . . . . . . . 10 (𝜑 → ((𝐿func 𝐾) ∘func 𝐹) = 𝐹)
5128oveq2d 7368 . . . . . . . . . 10 (𝜑 → (𝐿func (𝐾func 𝐹)) = (𝐿func 𝐺))
5247, 50, 513eqtr3rd 2777 . . . . . . . . 9 (𝜑 → (𝐿func 𝐺) = 𝐹)
5352adantr 480 . . . . . . . 8 ((𝜑𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) → (𝐿func 𝐺) = 𝐹)
54 eqidd 2734 . . . . . . . 8 ((𝜑𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) → ((𝑌(2nd𝐿)((1st𝐺)‘𝑧))‘𝑛) = ((𝑌(2nd𝐿)((1st𝐺)‘𝑧))‘𝑛))
55 simpr 484 . . . . . . . 8 ((𝜑𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) → 𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛)
5644, 45, 53, 54, 55uptrai 49342 . . . . . . 7 ((𝜑𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) → 𝑧(𝐹(𝐶 UP 𝐷)𝑋)((𝑌(2nd𝐿)((1st𝐺)‘𝑧))‘𝑛))
57 breq2 5097 . . . . . . 7 (𝑚 = ((𝑌(2nd𝐿)((1st𝐺)‘𝑧))‘𝑛) → (𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚𝑧(𝐹(𝐶 UP 𝐷)𝑋)((𝑌(2nd𝐿)((1st𝐺)‘𝑧))‘𝑛)))
5838, 56, 57spcedv 3549 . . . . . 6 ((𝜑𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) → ∃𝑚 𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚)
5958exlimiv 1931 . . . . 5 (∃𝑛(𝜑𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) → ∃𝑚 𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚)
6037, 59sylbir 235 . . . 4 ((𝜑 ∧ ∃𝑛 𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) → ∃𝑚 𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚)
6136, 60impbida 800 . . 3 (𝜑 → (∃𝑚 𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚 ↔ ∃𝑛 𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛))
62 relup 49308 . . . 4 Rel (𝐹(𝐶 UP 𝐷)𝑋)
63 releldmb 5890 . . . 4 (Rel (𝐹(𝐶 UP 𝐷)𝑋) → (𝑧 ∈ dom (𝐹(𝐶 UP 𝐷)𝑋) ↔ ∃𝑚 𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚))
6462, 63ax-mp 5 . . 3 (𝑧 ∈ dom (𝐹(𝐶 UP 𝐷)𝑋) ↔ ∃𝑚 𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚)
65 relup 49308 . . . 4 Rel (𝐺(𝐶 UP 𝐸)𝑌)
66 releldmb 5890 . . . 4 (Rel (𝐺(𝐶 UP 𝐸)𝑌) → (𝑧 ∈ dom (𝐺(𝐶 UP 𝐸)𝑌) ↔ ∃𝑛 𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛))
6765, 66ax-mp 5 . . 3 (𝑧 ∈ dom (𝐺(𝐶 UP 𝐸)𝑌) ↔ ∃𝑛 𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛)
6861, 64, 673bitr4g 314 . 2 (𝜑 → (𝑧 ∈ dom (𝐹(𝐶 UP 𝐷)𝑋) ↔ 𝑧 ∈ dom (𝐺(𝐶 UP 𝐸)𝑌)))
6968eqrdv 2731 1 (𝜑 → dom (𝐹(𝐶 UP 𝐷)𝑋) = dom (𝐺(𝐶 UP 𝐸)𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2113  Vcvv 3437  cin 3897  cop 4581   class class class wbr 5093  dom cdm 5619  Rel wrel 5624  cfv 6486  (class class class)co 7352  1st c1st 7925  2nd c2nd 7926  Basecbs 17122   Func cfunc 17763  idfunccidfu 17764  func ccofu 17765   Full cful 17813   Faith cfth 17814   UP cup 49298
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928  df-map 8758  df-ixp 8828  df-cat 17576  df-cid 17577  df-func 17767  df-idfu 17768  df-cofu 17769  df-full 17815  df-fth 17816  df-up 49299
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator