Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uobeqw Structured version   Visualization version   GIF version

Theorem uobeqw 49208
Description: If a full functor (in fact, a full embedding) is a section of a fully faithful functor (surjective on objects), then the sets of universal objects are equal. (Contributed by Zhi Wang, 17-Nov-2025.)
Hypotheses
Ref Expression
uobffth.b 𝐵 = (Base‘𝐷)
uobffth.x (𝜑𝑋𝐵)
uobffth.f (𝜑𝐹 ∈ (𝐶 Func 𝐷))
uobffth.g (𝜑 → (𝐾func 𝐹) = 𝐺)
uobffth.y (𝜑 → ((1st𝐾)‘𝑋) = 𝑌)
uobeq.i 𝐼 = (idfunc𝐷)
uobeq.k (𝜑𝐾 ∈ (𝐷 Full 𝐸))
uobeq.n (𝜑 → (𝐿func 𝐾) = 𝐼)
uobeqw.l (𝜑𝐿 ∈ ((𝐸 Full 𝐷) ∩ (𝐸 Faith 𝐷)))
Assertion
Ref Expression
uobeqw (𝜑 → dom (𝐹(𝐶 UP 𝐷)𝑋) = dom (𝐺(𝐶 UP 𝐸)𝑌))

Proof of Theorem uobeqw
Dummy variables 𝑚 𝑛 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 19.42v 1953 . . . . 5 (∃𝑚(𝜑𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) ↔ (𝜑 ∧ ∃𝑚 𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚))
2 fvexd 6873 . . . . . . 7 ((𝜑𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) → ((𝑋(2nd𝐾)((1st𝐹)‘𝑧))‘𝑚) ∈ V)
3 uobffth.y . . . . . . . . 9 (𝜑 → ((1st𝐾)‘𝑋) = 𝑌)
43adantr 480 . . . . . . . 8 ((𝜑𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) → ((1st𝐾)‘𝑋) = 𝑌)
5 uobeq.k . . . . . . . . . 10 (𝜑𝐾 ∈ (𝐷 Full 𝐸))
6 relfunc 17824 . . . . . . . . . . . 12 Rel (𝐷 Func 𝐸)
7 fullfunc 17870 . . . . . . . . . . . . 13 (𝐷 Full 𝐸) ⊆ (𝐷 Func 𝐸)
87, 5sselid 3944 . . . . . . . . . . . 12 (𝜑𝐾 ∈ (𝐷 Func 𝐸))
9 1st2nd 8018 . . . . . . . . . . . 12 ((Rel (𝐷 Func 𝐸) ∧ 𝐾 ∈ (𝐷 Func 𝐸)) → 𝐾 = ⟨(1st𝐾), (2nd𝐾)⟩)
106, 8, 9sylancr 587 . . . . . . . . . . 11 (𝜑𝐾 = ⟨(1st𝐾), (2nd𝐾)⟩)
11 uobeq.i . . . . . . . . . . . . 13 𝐼 = (idfunc𝐷)
128func1st2nd 49065 . . . . . . . . . . . . 13 (𝜑 → (1st𝐾)(𝐷 Func 𝐸)(2nd𝐾))
13 inss1 4200 . . . . . . . . . . . . . . . 16 ((𝐸 Full 𝐷) ∩ (𝐸 Faith 𝐷)) ⊆ (𝐸 Full 𝐷)
14 fullfunc 17870 . . . . . . . . . . . . . . . 16 (𝐸 Full 𝐷) ⊆ (𝐸 Func 𝐷)
1513, 14sstri 3956 . . . . . . . . . . . . . . 15 ((𝐸 Full 𝐷) ∩ (𝐸 Faith 𝐷)) ⊆ (𝐸 Func 𝐷)
16 uobeqw.l . . . . . . . . . . . . . . 15 (𝜑𝐿 ∈ ((𝐸 Full 𝐷) ∩ (𝐸 Faith 𝐷)))
1715, 16sselid 3944 . . . . . . . . . . . . . 14 (𝜑𝐿 ∈ (𝐸 Func 𝐷))
1817func1st2nd 49065 . . . . . . . . . . . . 13 (𝜑 → (1st𝐿)(𝐸 Func 𝐷)(2nd𝐿))
198, 17cofu1st2nd 49081 . . . . . . . . . . . . . 14 (𝜑 → (𝐿func 𝐾) = (⟨(1st𝐿), (2nd𝐿)⟩ ∘func ⟨(1st𝐾), (2nd𝐾)⟩))
20 uobeq.n . . . . . . . . . . . . . 14 (𝜑 → (𝐿func 𝐾) = 𝐼)
2119, 20eqtr3d 2766 . . . . . . . . . . . . 13 (𝜑 → (⟨(1st𝐿), (2nd𝐿)⟩ ∘func ⟨(1st𝐾), (2nd𝐾)⟩) = 𝐼)
2211, 12, 18, 21cofidfth 49151 . . . . . . . . . . . 12 (𝜑 → (1st𝐾)(𝐷 Faith 𝐸)(2nd𝐾))
23 df-br 5108 . . . . . . . . . . . 12 ((1st𝐾)(𝐷 Faith 𝐸)(2nd𝐾) ↔ ⟨(1st𝐾), (2nd𝐾)⟩ ∈ (𝐷 Faith 𝐸))
2422, 23sylib 218 . . . . . . . . . . 11 (𝜑 → ⟨(1st𝐾), (2nd𝐾)⟩ ∈ (𝐷 Faith 𝐸))
2510, 24eqeltrd 2828 . . . . . . . . . 10 (𝜑𝐾 ∈ (𝐷 Faith 𝐸))
265, 25elind 4163 . . . . . . . . 9 (𝜑𝐾 ∈ ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)))
2726adantr 480 . . . . . . . 8 ((𝜑𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) → 𝐾 ∈ ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)))
28 uobffth.g . . . . . . . . 9 (𝜑 → (𝐾func 𝐹) = 𝐺)
2928adantr 480 . . . . . . . 8 ((𝜑𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) → (𝐾func 𝐹) = 𝐺)
30 eqidd 2730 . . . . . . . 8 ((𝜑𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) → ((𝑋(2nd𝐾)((1st𝐹)‘𝑧))‘𝑚) = ((𝑋(2nd𝐾)((1st𝐹)‘𝑧))‘𝑚))
31 simpr 484 . . . . . . . 8 ((𝜑𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) → 𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚)
324, 27, 29, 30, 31uptrai 49206 . . . . . . 7 ((𝜑𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) → 𝑧(𝐺(𝐶 UP 𝐸)𝑌)((𝑋(2nd𝐾)((1st𝐹)‘𝑧))‘𝑚))
33 breq2 5111 . . . . . . 7 (𝑛 = ((𝑋(2nd𝐾)((1st𝐹)‘𝑧))‘𝑚) → (𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛𝑧(𝐺(𝐶 UP 𝐸)𝑌)((𝑋(2nd𝐾)((1st𝐹)‘𝑧))‘𝑚)))
342, 32, 33spcedv 3564 . . . . . 6 ((𝜑𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) → ∃𝑛 𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛)
3534exlimiv 1930 . . . . 5 (∃𝑚(𝜑𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) → ∃𝑛 𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛)
361, 35sylbir 235 . . . 4 ((𝜑 ∧ ∃𝑚 𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚) → ∃𝑛 𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛)
37 19.42v 1953 . . . . 5 (∃𝑛(𝜑𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) ↔ (𝜑 ∧ ∃𝑛 𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛))
38 fvexd 6873 . . . . . . 7 ((𝜑𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) → ((𝑌(2nd𝐿)((1st𝐺)‘𝑧))‘𝑛) ∈ V)
393fveq2d 6862 . . . . . . . . . 10 (𝜑 → ((1st𝐿)‘((1st𝐾)‘𝑋)) = ((1st𝐿)‘𝑌))
40 uobffth.b . . . . . . . . . . 11 𝐵 = (Base‘𝐷)
41 uobffth.x . . . . . . . . . . 11 (𝜑𝑋𝐵)
4211, 40, 41, 8, 17, 20cofid1a 49101 . . . . . . . . . 10 (𝜑 → ((1st𝐿)‘((1st𝐾)‘𝑋)) = 𝑋)
4339, 42eqtr3d 2766 . . . . . . . . 9 (𝜑 → ((1st𝐿)‘𝑌) = 𝑋)
4443adantr 480 . . . . . . . 8 ((𝜑𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) → ((1st𝐿)‘𝑌) = 𝑋)
4516adantr 480 . . . . . . . 8 ((𝜑𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) → 𝐿 ∈ ((𝐸 Full 𝐷) ∩ (𝐸 Faith 𝐷)))
46 uobffth.f . . . . . . . . . . 11 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
4746, 8, 17cofuass 17851 . . . . . . . . . 10 (𝜑 → ((𝐿func 𝐾) ∘func 𝐹) = (𝐿func (𝐾func 𝐹)))
4820oveq1d 7402 . . . . . . . . . . 11 (𝜑 → ((𝐿func 𝐾) ∘func 𝐹) = (𝐼func 𝐹))
4946, 11cofulid 17852 . . . . . . . . . . 11 (𝜑 → (𝐼func 𝐹) = 𝐹)
5048, 49eqtrd 2764 . . . . . . . . . 10 (𝜑 → ((𝐿func 𝐾) ∘func 𝐹) = 𝐹)
5128oveq2d 7403 . . . . . . . . . 10 (𝜑 → (𝐿func (𝐾func 𝐹)) = (𝐿func 𝐺))
5247, 50, 513eqtr3rd 2773 . . . . . . . . 9 (𝜑 → (𝐿func 𝐺) = 𝐹)
5352adantr 480 . . . . . . . 8 ((𝜑𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) → (𝐿func 𝐺) = 𝐹)
54 eqidd 2730 . . . . . . . 8 ((𝜑𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) → ((𝑌(2nd𝐿)((1st𝐺)‘𝑧))‘𝑛) = ((𝑌(2nd𝐿)((1st𝐺)‘𝑧))‘𝑛))
55 simpr 484 . . . . . . . 8 ((𝜑𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) → 𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛)
5644, 45, 53, 54, 55uptrai 49206 . . . . . . 7 ((𝜑𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) → 𝑧(𝐹(𝐶 UP 𝐷)𝑋)((𝑌(2nd𝐿)((1st𝐺)‘𝑧))‘𝑛))
57 breq2 5111 . . . . . . 7 (𝑚 = ((𝑌(2nd𝐿)((1st𝐺)‘𝑧))‘𝑛) → (𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚𝑧(𝐹(𝐶 UP 𝐷)𝑋)((𝑌(2nd𝐿)((1st𝐺)‘𝑧))‘𝑛)))
5838, 56, 57spcedv 3564 . . . . . 6 ((𝜑𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) → ∃𝑚 𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚)
5958exlimiv 1930 . . . . 5 (∃𝑛(𝜑𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) → ∃𝑚 𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚)
6037, 59sylbir 235 . . . 4 ((𝜑 ∧ ∃𝑛 𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛) → ∃𝑚 𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚)
6136, 60impbida 800 . . 3 (𝜑 → (∃𝑚 𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚 ↔ ∃𝑛 𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛))
62 relup 49172 . . . 4 Rel (𝐹(𝐶 UP 𝐷)𝑋)
63 releldmb 5910 . . . 4 (Rel (𝐹(𝐶 UP 𝐷)𝑋) → (𝑧 ∈ dom (𝐹(𝐶 UP 𝐷)𝑋) ↔ ∃𝑚 𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚))
6462, 63ax-mp 5 . . 3 (𝑧 ∈ dom (𝐹(𝐶 UP 𝐷)𝑋) ↔ ∃𝑚 𝑧(𝐹(𝐶 UP 𝐷)𝑋)𝑚)
65 relup 49172 . . . 4 Rel (𝐺(𝐶 UP 𝐸)𝑌)
66 releldmb 5910 . . . 4 (Rel (𝐺(𝐶 UP 𝐸)𝑌) → (𝑧 ∈ dom (𝐺(𝐶 UP 𝐸)𝑌) ↔ ∃𝑛 𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛))
6765, 66ax-mp 5 . . 3 (𝑧 ∈ dom (𝐺(𝐶 UP 𝐸)𝑌) ↔ ∃𝑛 𝑧(𝐺(𝐶 UP 𝐸)𝑌)𝑛)
6861, 64, 673bitr4g 314 . 2 (𝜑 → (𝑧 ∈ dom (𝐹(𝐶 UP 𝐷)𝑋) ↔ 𝑧 ∈ dom (𝐺(𝐶 UP 𝐸)𝑌)))
6968eqrdv 2727 1 (𝜑 → dom (𝐹(𝐶 UP 𝐷)𝑋) = dom (𝐺(𝐶 UP 𝐸)𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  Vcvv 3447  cin 3913  cop 4595   class class class wbr 5107  dom cdm 5638  Rel wrel 5643  cfv 6511  (class class class)co 7387  1st c1st 7966  2nd c2nd 7967  Basecbs 17179   Func cfunc 17816  idfunccidfu 17817  func ccofu 17818   Full cful 17866   Faith cfth 17867   UP cup 49162
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-map 8801  df-ixp 8871  df-cat 17629  df-cid 17630  df-func 17820  df-idfu 17821  df-cofu 17822  df-full 17868  df-fth 17869  df-up 49163
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator