Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uptra Structured version   Visualization version   GIF version

Theorem uptra 49122
Description: Universal property and fully faithful functor. (Contributed by Zhi Wang, 16-Nov-2025.)
Hypotheses
Ref Expression
uptra.y (𝜑 → ((1st𝐾)‘𝑋) = 𝑌)
uptra.k (𝜑𝐾 ∈ ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)))
uptra.g (𝜑 → (𝐾func 𝐹) = 𝐺)
uptra.b 𝐵 = (Base‘𝐷)
uptra.x (𝜑𝑋𝐵)
uptra.f (𝜑𝐹 ∈ (𝐶 Func 𝐷))
uptra.n (𝜑 → ((𝑋(2nd𝐾)((1st𝐹)‘𝑍))‘𝑀) = 𝑁)
uptra.j 𝐽 = (Hom ‘𝐷)
uptra.m (𝜑𝑀 ∈ (𝑋𝐽((1st𝐹)‘𝑍)))
Assertion
Ref Expression
uptra (𝜑 → (𝑍(𝐹(𝐶 UP 𝐷)𝑋)𝑀𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁))

Proof of Theorem uptra
StepHypRef Expression
1 uptra.y . . 3 (𝜑 → ((1st𝐾)‘𝑋) = 𝑌)
2 relfull 17878 . . . . 5 Rel (𝐷 Full 𝐸)
3 relin1 5783 . . . . 5 (Rel (𝐷 Full 𝐸) → Rel ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)))
42, 3ax-mp 5 . . . 4 Rel ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))
5 uptra.k . . . 4 (𝜑𝐾 ∈ ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)))
6 1st2ndbr 8030 . . . 4 ((Rel ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)) ∧ 𝐾 ∈ ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))) → (1st𝐾)((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))(2nd𝐾))
74, 5, 6sylancr 587 . . 3 (𝜑 → (1st𝐾)((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))(2nd𝐾))
8 uptra.g . . . 4 (𝜑 → (𝐾func 𝐹) = 𝐺)
9 uptra.f . . . . 5 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
10 inss1 4208 . . . . . . 7 ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)) ⊆ (𝐷 Full 𝐸)
11 fullfunc 17876 . . . . . . 7 (𝐷 Full 𝐸) ⊆ (𝐷 Func 𝐸)
1210, 11sstri 3964 . . . . . 6 ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)) ⊆ (𝐷 Func 𝐸)
1312, 5sselid 3952 . . . . 5 (𝜑𝐾 ∈ (𝐷 Func 𝐸))
149, 13cofu1st2nd 49009 . . . 4 (𝜑 → (𝐾func 𝐹) = (⟨(1st𝐾), (2nd𝐾)⟩ ∘func ⟨(1st𝐹), (2nd𝐹)⟩))
15 relfunc 17830 . . . . 5 Rel (𝐶 Func 𝐸)
169, 13cofucl 17856 . . . . . 6 (𝜑 → (𝐾func 𝐹) ∈ (𝐶 Func 𝐸))
178, 16eqeltrrd 2830 . . . . 5 (𝜑𝐺 ∈ (𝐶 Func 𝐸))
18 1st2nd 8027 . . . . 5 ((Rel (𝐶 Func 𝐸) ∧ 𝐺 ∈ (𝐶 Func 𝐸)) → 𝐺 = ⟨(1st𝐺), (2nd𝐺)⟩)
1915, 17, 18sylancr 587 . . . 4 (𝜑𝐺 = ⟨(1st𝐺), (2nd𝐺)⟩)
208, 14, 193eqtr3d 2773 . . 3 (𝜑 → (⟨(1st𝐾), (2nd𝐾)⟩ ∘func ⟨(1st𝐹), (2nd𝐹)⟩) = ⟨(1st𝐺), (2nd𝐺)⟩)
21 uptra.b . . 3 𝐵 = (Base‘𝐷)
22 uptra.x . . 3 (𝜑𝑋𝐵)
239func1st2nd 48993 . . 3 (𝜑 → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
24 uptra.n . . 3 (𝜑 → ((𝑋(2nd𝐾)((1st𝐹)‘𝑍))‘𝑀) = 𝑁)
25 uptra.j . . 3 𝐽 = (Hom ‘𝐷)
26 uptra.m . . 3 (𝜑𝑀 ∈ (𝑋𝐽((1st𝐹)‘𝑍)))
271, 7, 20, 21, 22, 23, 24, 25, 26uptr 49120 . 2 (𝜑 → (𝑍(⟨(1st𝐹), (2nd𝐹)⟩(𝐶 UP 𝐷)𝑋)𝑀𝑍(⟨(1st𝐺), (2nd𝐺)⟩(𝐶 UP 𝐸)𝑌)𝑁))
289up1st2ndb 49094 . 2 (𝜑 → (𝑍(𝐹(𝐶 UP 𝐷)𝑋)𝑀𝑍(⟨(1st𝐹), (2nd𝐹)⟩(𝐶 UP 𝐷)𝑋)𝑀))
2917up1st2ndb 49094 . 2 (𝜑 → (𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁𝑍(⟨(1st𝐺), (2nd𝐺)⟩(𝐶 UP 𝐸)𝑌)𝑁))
3027, 28, 293bitr4d 311 1 (𝜑 → (𝑍(𝐹(𝐶 UP 𝐷)𝑋)𝑀𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  cin 3921  cop 4603   class class class wbr 5115  Rel wrel 5651  cfv 6519  (class class class)co 7394  1st c1st 7975  2nd c2nd 7976  Basecbs 17185  Hom chom 17237   Func cfunc 17822  func ccofu 17824   Full cful 17872   Faith cfth 17873   UP cup 49081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5242  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-ral 3047  df-rex 3056  df-rmo 3357  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-iun 4965  df-br 5116  df-opab 5178  df-mpt 5197  df-id 5541  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-riota 7351  df-ov 7397  df-oprab 7398  df-mpo 7399  df-1st 7977  df-2nd 7978  df-map 8805  df-ixp 8875  df-cat 17635  df-cid 17636  df-func 17826  df-cofu 17828  df-full 17874  df-fth 17875  df-up 49082
This theorem is referenced by:  uptrar  49123  uptrai  49124
  Copyright terms: Public domain W3C validator