Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uptra Structured version   Visualization version   GIF version

Theorem uptra 49246
Description: Universal property and fully faithful functor. (Contributed by Zhi Wang, 16-Nov-2025.)
Hypotheses
Ref Expression
uptra.y (𝜑 → ((1st𝐾)‘𝑋) = 𝑌)
uptra.k (𝜑𝐾 ∈ ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)))
uptra.g (𝜑 → (𝐾func 𝐹) = 𝐺)
uptra.b 𝐵 = (Base‘𝐷)
uptra.x (𝜑𝑋𝐵)
uptra.f (𝜑𝐹 ∈ (𝐶 Func 𝐷))
uptra.n (𝜑 → ((𝑋(2nd𝐾)((1st𝐹)‘𝑍))‘𝑀) = 𝑁)
uptra.j 𝐽 = (Hom ‘𝐷)
uptra.m (𝜑𝑀 ∈ (𝑋𝐽((1st𝐹)‘𝑍)))
Assertion
Ref Expression
uptra (𝜑 → (𝑍(𝐹(𝐶 UP 𝐷)𝑋)𝑀𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁))

Proof of Theorem uptra
StepHypRef Expression
1 uptra.y . . 3 (𝜑 → ((1st𝐾)‘𝑋) = 𝑌)
2 relfull 17814 . . . . 5 Rel (𝐷 Full 𝐸)
3 relin1 5752 . . . . 5 (Rel (𝐷 Full 𝐸) → Rel ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)))
42, 3ax-mp 5 . . . 4 Rel ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))
5 uptra.k . . . 4 (𝜑𝐾 ∈ ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)))
6 1st2ndbr 7974 . . . 4 ((Rel ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)) ∧ 𝐾 ∈ ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))) → (1st𝐾)((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))(2nd𝐾))
74, 5, 6sylancr 587 . . 3 (𝜑 → (1st𝐾)((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))(2nd𝐾))
8 uptra.g . . . 4 (𝜑 → (𝐾func 𝐹) = 𝐺)
9 uptra.f . . . . 5 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
10 inss1 4187 . . . . . . 7 ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)) ⊆ (𝐷 Full 𝐸)
11 fullfunc 17812 . . . . . . 7 (𝐷 Full 𝐸) ⊆ (𝐷 Func 𝐸)
1210, 11sstri 3944 . . . . . 6 ((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸)) ⊆ (𝐷 Func 𝐸)
1312, 5sselid 3932 . . . . 5 (𝜑𝐾 ∈ (𝐷 Func 𝐸))
149, 13cofu1st2nd 49123 . . . 4 (𝜑 → (𝐾func 𝐹) = (⟨(1st𝐾), (2nd𝐾)⟩ ∘func ⟨(1st𝐹), (2nd𝐹)⟩))
15 relfunc 17766 . . . . 5 Rel (𝐶 Func 𝐸)
169, 13cofucl 17792 . . . . . 6 (𝜑 → (𝐾func 𝐹) ∈ (𝐶 Func 𝐸))
178, 16eqeltrrd 2832 . . . . 5 (𝜑𝐺 ∈ (𝐶 Func 𝐸))
18 1st2nd 7971 . . . . 5 ((Rel (𝐶 Func 𝐸) ∧ 𝐺 ∈ (𝐶 Func 𝐸)) → 𝐺 = ⟨(1st𝐺), (2nd𝐺)⟩)
1915, 17, 18sylancr 587 . . . 4 (𝜑𝐺 = ⟨(1st𝐺), (2nd𝐺)⟩)
208, 14, 193eqtr3d 2774 . . 3 (𝜑 → (⟨(1st𝐾), (2nd𝐾)⟩ ∘func ⟨(1st𝐹), (2nd𝐹)⟩) = ⟨(1st𝐺), (2nd𝐺)⟩)
21 uptra.b . . 3 𝐵 = (Base‘𝐷)
22 uptra.x . . 3 (𝜑𝑋𝐵)
239func1st2nd 49107 . . 3 (𝜑 → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
24 uptra.n . . 3 (𝜑 → ((𝑋(2nd𝐾)((1st𝐹)‘𝑍))‘𝑀) = 𝑁)
25 uptra.j . . 3 𝐽 = (Hom ‘𝐷)
26 uptra.m . . 3 (𝜑𝑀 ∈ (𝑋𝐽((1st𝐹)‘𝑍)))
271, 7, 20, 21, 22, 23, 24, 25, 26uptr 49244 . 2 (𝜑 → (𝑍(⟨(1st𝐹), (2nd𝐹)⟩(𝐶 UP 𝐷)𝑋)𝑀𝑍(⟨(1st𝐺), (2nd𝐺)⟩(𝐶 UP 𝐸)𝑌)𝑁))
289up1st2ndb 49218 . 2 (𝜑 → (𝑍(𝐹(𝐶 UP 𝐷)𝑋)𝑀𝑍(⟨(1st𝐹), (2nd𝐹)⟩(𝐶 UP 𝐷)𝑋)𝑀))
2917up1st2ndb 49218 . 2 (𝜑 → (𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁𝑍(⟨(1st𝐺), (2nd𝐺)⟩(𝐶 UP 𝐸)𝑌)𝑁))
3027, 28, 293bitr4d 311 1 (𝜑 → (𝑍(𝐹(𝐶 UP 𝐷)𝑋)𝑀𝑍(𝐺(𝐶 UP 𝐸)𝑌)𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2111  cin 3901  cop 4582   class class class wbr 5091  Rel wrel 5621  cfv 6481  (class class class)co 7346  1st c1st 7919  2nd c2nd 7920  Basecbs 17117  Hom chom 17169   Func cfunc 17758  func ccofu 17760   Full cful 17808   Faith cfth 17809   UP cup 49204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-map 8752  df-ixp 8822  df-cat 17571  df-cid 17572  df-func 17762  df-cofu 17764  df-full 17810  df-fth 17811  df-up 49205
This theorem is referenced by:  uptrar  49247  uptrai  49248
  Copyright terms: Public domain W3C validator