Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rescofuf Structured version   Visualization version   GIF version

Theorem rescofuf 48869
Description: The restriction of functor composition is a function from product functor space to functor space. (Contributed by Zhi Wang, 25-Sep-2025.)
Assertion
Ref Expression
rescofuf ( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))):((𝐷 Func 𝐸) × (𝐶 Func 𝐷))⟶(𝐶 Func 𝐸)

Proof of Theorem rescofuf
Dummy variables 𝑓 𝑔 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3467 . . . . 5 𝑔 ∈ V
2 vex 3467 . . . . 5 𝑓 ∈ V
3 opex 5449 . . . . 5 ⟨((1st𝑔) ∘ (1st𝑓)), (𝑥 ∈ dom dom (2nd𝑓), 𝑦 ∈ dom dom (2nd𝑓) ↦ ((((1st𝑓)‘𝑥)(2nd𝑔)((1st𝑓)‘𝑦)) ∘ (𝑥(2nd𝑓)𝑦)))⟩ ∈ V
4 df-cofu 17875 . . . . . 6 func = (𝑔 ∈ V, 𝑓 ∈ V ↦ ⟨((1st𝑔) ∘ (1st𝑓)), (𝑥 ∈ dom dom (2nd𝑓), 𝑦 ∈ dom dom (2nd𝑓) ↦ ((((1st𝑓)‘𝑥)(2nd𝑔)((1st𝑓)‘𝑦)) ∘ (𝑥(2nd𝑓)𝑦)))⟩)
54ovmpt4g 7561 . . . . 5 ((𝑔 ∈ V ∧ 𝑓 ∈ V ∧ ⟨((1st𝑔) ∘ (1st𝑓)), (𝑥 ∈ dom dom (2nd𝑓), 𝑦 ∈ dom dom (2nd𝑓) ↦ ((((1st𝑓)‘𝑥)(2nd𝑔)((1st𝑓)‘𝑦)) ∘ (𝑥(2nd𝑓)𝑦)))⟩ ∈ V) → (𝑔func 𝑓) = ⟨((1st𝑔) ∘ (1st𝑓)), (𝑥 ∈ dom dom (2nd𝑓), 𝑦 ∈ dom dom (2nd𝑓) ↦ ((((1st𝑓)‘𝑥)(2nd𝑔)((1st𝑓)‘𝑦)) ∘ (𝑥(2nd𝑓)𝑦)))⟩)
61, 2, 3, 5mp3an 1462 . . . 4 (𝑔func 𝑓) = ⟨((1st𝑔) ∘ (1st𝑓)), (𝑥 ∈ dom dom (2nd𝑓), 𝑦 ∈ dom dom (2nd𝑓) ↦ ((((1st𝑓)‘𝑥)(2nd𝑔)((1st𝑓)‘𝑦)) ∘ (𝑥(2nd𝑓)𝑦)))⟩
7 simpr 484 . . . . 5 ((𝑔 ∈ (𝐷 Func 𝐸) ∧ 𝑓 ∈ (𝐶 Func 𝐷)) → 𝑓 ∈ (𝐶 Func 𝐷))
8 simpl 482 . . . . 5 ((𝑔 ∈ (𝐷 Func 𝐸) ∧ 𝑓 ∈ (𝐶 Func 𝐷)) → 𝑔 ∈ (𝐷 Func 𝐸))
97, 8cofucl 17903 . . . 4 ((𝑔 ∈ (𝐷 Func 𝐸) ∧ 𝑓 ∈ (𝐶 Func 𝐷)) → (𝑔func 𝑓) ∈ (𝐶 Func 𝐸))
106, 9eqeltrrid 2838 . . 3 ((𝑔 ∈ (𝐷 Func 𝐸) ∧ 𝑓 ∈ (𝐶 Func 𝐷)) → ⟨((1st𝑔) ∘ (1st𝑓)), (𝑥 ∈ dom dom (2nd𝑓), 𝑦 ∈ dom dom (2nd𝑓) ↦ ((((1st𝑓)‘𝑥)(2nd𝑔)((1st𝑓)‘𝑦)) ∘ (𝑥(2nd𝑓)𝑦)))⟩ ∈ (𝐶 Func 𝐸))
1110rgen2 3186 . 2 𝑔 ∈ (𝐷 Func 𝐸)∀𝑓 ∈ (𝐶 Func 𝐷)⟨((1st𝑔) ∘ (1st𝑓)), (𝑥 ∈ dom dom (2nd𝑓), 𝑦 ∈ dom dom (2nd𝑓) ↦ ((((1st𝑓)‘𝑥)(2nd𝑔)((1st𝑓)‘𝑦)) ∘ (𝑥(2nd𝑓)𝑦)))⟩ ∈ (𝐶 Func 𝐸)
124reseq1i 5973 . . . 4 ( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) = ((𝑔 ∈ V, 𝑓 ∈ V ↦ ⟨((1st𝑔) ∘ (1st𝑓)), (𝑥 ∈ dom dom (2nd𝑓), 𝑦 ∈ dom dom (2nd𝑓) ↦ ((((1st𝑓)‘𝑥)(2nd𝑔)((1st𝑓)‘𝑦)) ∘ (𝑥(2nd𝑓)𝑦)))⟩) ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
13 ssv 3988 . . . . 5 (𝐷 Func 𝐸) ⊆ V
14 ssv 3988 . . . . 5 (𝐶 Func 𝐷) ⊆ V
15 resmpo 7534 . . . . 5 (((𝐷 Func 𝐸) ⊆ V ∧ (𝐶 Func 𝐷) ⊆ V) → ((𝑔 ∈ V, 𝑓 ∈ V ↦ ⟨((1st𝑔) ∘ (1st𝑓)), (𝑥 ∈ dom dom (2nd𝑓), 𝑦 ∈ dom dom (2nd𝑓) ↦ ((((1st𝑓)‘𝑥)(2nd𝑔)((1st𝑓)‘𝑦)) ∘ (𝑥(2nd𝑓)𝑦)))⟩) ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) = (𝑔 ∈ (𝐷 Func 𝐸), 𝑓 ∈ (𝐶 Func 𝐷) ↦ ⟨((1st𝑔) ∘ (1st𝑓)), (𝑥 ∈ dom dom (2nd𝑓), 𝑦 ∈ dom dom (2nd𝑓) ↦ ((((1st𝑓)‘𝑥)(2nd𝑔)((1st𝑓)‘𝑦)) ∘ (𝑥(2nd𝑓)𝑦)))⟩))
1613, 14, 15mp2an 692 . . . 4 ((𝑔 ∈ V, 𝑓 ∈ V ↦ ⟨((1st𝑔) ∘ (1st𝑓)), (𝑥 ∈ dom dom (2nd𝑓), 𝑦 ∈ dom dom (2nd𝑓) ↦ ((((1st𝑓)‘𝑥)(2nd𝑔)((1st𝑓)‘𝑦)) ∘ (𝑥(2nd𝑓)𝑦)))⟩) ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) = (𝑔 ∈ (𝐷 Func 𝐸), 𝑓 ∈ (𝐶 Func 𝐷) ↦ ⟨((1st𝑔) ∘ (1st𝑓)), (𝑥 ∈ dom dom (2nd𝑓), 𝑦 ∈ dom dom (2nd𝑓) ↦ ((((1st𝑓)‘𝑥)(2nd𝑔)((1st𝑓)‘𝑦)) ∘ (𝑥(2nd𝑓)𝑦)))⟩)
1712, 16eqtri 2757 . . 3 ( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) = (𝑔 ∈ (𝐷 Func 𝐸), 𝑓 ∈ (𝐶 Func 𝐷) ↦ ⟨((1st𝑔) ∘ (1st𝑓)), (𝑥 ∈ dom dom (2nd𝑓), 𝑦 ∈ dom dom (2nd𝑓) ↦ ((((1st𝑓)‘𝑥)(2nd𝑔)((1st𝑓)‘𝑦)) ∘ (𝑥(2nd𝑓)𝑦)))⟩)
1817fmpo 8074 . 2 (∀𝑔 ∈ (𝐷 Func 𝐸)∀𝑓 ∈ (𝐶 Func 𝐷)⟨((1st𝑔) ∘ (1st𝑓)), (𝑥 ∈ dom dom (2nd𝑓), 𝑦 ∈ dom dom (2nd𝑓) ↦ ((((1st𝑓)‘𝑥)(2nd𝑔)((1st𝑓)‘𝑦)) ∘ (𝑥(2nd𝑓)𝑦)))⟩ ∈ (𝐶 Func 𝐸) ↔ ( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))):((𝐷 Func 𝐸) × (𝐶 Func 𝐷))⟶(𝐶 Func 𝐸))
1911, 18mpbi 230 1 ( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))):((𝐷 Func 𝐸) × (𝐶 Func 𝐷))⟶(𝐶 Func 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1539  wcel 2107  wral 3050  Vcvv 3463  wss 3931  cop 4612   × cxp 5663  dom cdm 5665  cres 5667  ccom 5669  wf 6536  cfv 6540  (class class class)co 7412  cmpo 7414  1st c1st 7993  2nd c2nd 7994   Func cfunc 17869  func ccofu 17871
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7736
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6493  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7369  df-ov 7415  df-oprab 7416  df-mpo 7417  df-1st 7995  df-2nd 7996  df-map 8849  df-ixp 8919  df-cat 17681  df-cid 17682  df-func 17873  df-cofu 17875
This theorem is referenced by:  fucof1  48969  fucofvalne  48972
  Copyright terms: Public domain W3C validator