Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rescofuf Structured version   Visualization version   GIF version

Theorem rescofuf 49082
Description: The restriction of functor composition is a function from product functor space to functor space. (Contributed by Zhi Wang, 25-Sep-2025.)
Assertion
Ref Expression
rescofuf ( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))):((𝐷 Func 𝐸) × (𝐶 Func 𝐷))⟶(𝐶 Func 𝐸)

Proof of Theorem rescofuf
Dummy variables 𝑓 𝑔 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3451 . . . . 5 𝑔 ∈ V
2 vex 3451 . . . . 5 𝑓 ∈ V
3 opex 5424 . . . . 5 ⟨((1st𝑔) ∘ (1st𝑓)), (𝑥 ∈ dom dom (2nd𝑓), 𝑦 ∈ dom dom (2nd𝑓) ↦ ((((1st𝑓)‘𝑥)(2nd𝑔)((1st𝑓)‘𝑦)) ∘ (𝑥(2nd𝑓)𝑦)))⟩ ∈ V
4 df-cofu 17822 . . . . . 6 func = (𝑔 ∈ V, 𝑓 ∈ V ↦ ⟨((1st𝑔) ∘ (1st𝑓)), (𝑥 ∈ dom dom (2nd𝑓), 𝑦 ∈ dom dom (2nd𝑓) ↦ ((((1st𝑓)‘𝑥)(2nd𝑔)((1st𝑓)‘𝑦)) ∘ (𝑥(2nd𝑓)𝑦)))⟩)
54ovmpt4g 7536 . . . . 5 ((𝑔 ∈ V ∧ 𝑓 ∈ V ∧ ⟨((1st𝑔) ∘ (1st𝑓)), (𝑥 ∈ dom dom (2nd𝑓), 𝑦 ∈ dom dom (2nd𝑓) ↦ ((((1st𝑓)‘𝑥)(2nd𝑔)((1st𝑓)‘𝑦)) ∘ (𝑥(2nd𝑓)𝑦)))⟩ ∈ V) → (𝑔func 𝑓) = ⟨((1st𝑔) ∘ (1st𝑓)), (𝑥 ∈ dom dom (2nd𝑓), 𝑦 ∈ dom dom (2nd𝑓) ↦ ((((1st𝑓)‘𝑥)(2nd𝑔)((1st𝑓)‘𝑦)) ∘ (𝑥(2nd𝑓)𝑦)))⟩)
61, 2, 3, 5mp3an 1463 . . . 4 (𝑔func 𝑓) = ⟨((1st𝑔) ∘ (1st𝑓)), (𝑥 ∈ dom dom (2nd𝑓), 𝑦 ∈ dom dom (2nd𝑓) ↦ ((((1st𝑓)‘𝑥)(2nd𝑔)((1st𝑓)‘𝑦)) ∘ (𝑥(2nd𝑓)𝑦)))⟩
7 simpr 484 . . . . 5 ((𝑔 ∈ (𝐷 Func 𝐸) ∧ 𝑓 ∈ (𝐶 Func 𝐷)) → 𝑓 ∈ (𝐶 Func 𝐷))
8 simpl 482 . . . . 5 ((𝑔 ∈ (𝐷 Func 𝐸) ∧ 𝑓 ∈ (𝐶 Func 𝐷)) → 𝑔 ∈ (𝐷 Func 𝐸))
97, 8cofucl 17850 . . . 4 ((𝑔 ∈ (𝐷 Func 𝐸) ∧ 𝑓 ∈ (𝐶 Func 𝐷)) → (𝑔func 𝑓) ∈ (𝐶 Func 𝐸))
106, 9eqeltrrid 2833 . . 3 ((𝑔 ∈ (𝐷 Func 𝐸) ∧ 𝑓 ∈ (𝐶 Func 𝐷)) → ⟨((1st𝑔) ∘ (1st𝑓)), (𝑥 ∈ dom dom (2nd𝑓), 𝑦 ∈ dom dom (2nd𝑓) ↦ ((((1st𝑓)‘𝑥)(2nd𝑔)((1st𝑓)‘𝑦)) ∘ (𝑥(2nd𝑓)𝑦)))⟩ ∈ (𝐶 Func 𝐸))
1110rgen2 3177 . 2 𝑔 ∈ (𝐷 Func 𝐸)∀𝑓 ∈ (𝐶 Func 𝐷)⟨((1st𝑔) ∘ (1st𝑓)), (𝑥 ∈ dom dom (2nd𝑓), 𝑦 ∈ dom dom (2nd𝑓) ↦ ((((1st𝑓)‘𝑥)(2nd𝑔)((1st𝑓)‘𝑦)) ∘ (𝑥(2nd𝑓)𝑦)))⟩ ∈ (𝐶 Func 𝐸)
124reseq1i 5946 . . . 4 ( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) = ((𝑔 ∈ V, 𝑓 ∈ V ↦ ⟨((1st𝑔) ∘ (1st𝑓)), (𝑥 ∈ dom dom (2nd𝑓), 𝑦 ∈ dom dom (2nd𝑓) ↦ ((((1st𝑓)‘𝑥)(2nd𝑔)((1st𝑓)‘𝑦)) ∘ (𝑥(2nd𝑓)𝑦)))⟩) ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
13 ssv 3971 . . . . 5 (𝐷 Func 𝐸) ⊆ V
14 ssv 3971 . . . . 5 (𝐶 Func 𝐷) ⊆ V
15 resmpo 7509 . . . . 5 (((𝐷 Func 𝐸) ⊆ V ∧ (𝐶 Func 𝐷) ⊆ V) → ((𝑔 ∈ V, 𝑓 ∈ V ↦ ⟨((1st𝑔) ∘ (1st𝑓)), (𝑥 ∈ dom dom (2nd𝑓), 𝑦 ∈ dom dom (2nd𝑓) ↦ ((((1st𝑓)‘𝑥)(2nd𝑔)((1st𝑓)‘𝑦)) ∘ (𝑥(2nd𝑓)𝑦)))⟩) ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) = (𝑔 ∈ (𝐷 Func 𝐸), 𝑓 ∈ (𝐶 Func 𝐷) ↦ ⟨((1st𝑔) ∘ (1st𝑓)), (𝑥 ∈ dom dom (2nd𝑓), 𝑦 ∈ dom dom (2nd𝑓) ↦ ((((1st𝑓)‘𝑥)(2nd𝑔)((1st𝑓)‘𝑦)) ∘ (𝑥(2nd𝑓)𝑦)))⟩))
1613, 14, 15mp2an 692 . . . 4 ((𝑔 ∈ V, 𝑓 ∈ V ↦ ⟨((1st𝑔) ∘ (1st𝑓)), (𝑥 ∈ dom dom (2nd𝑓), 𝑦 ∈ dom dom (2nd𝑓) ↦ ((((1st𝑓)‘𝑥)(2nd𝑔)((1st𝑓)‘𝑦)) ∘ (𝑥(2nd𝑓)𝑦)))⟩) ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) = (𝑔 ∈ (𝐷 Func 𝐸), 𝑓 ∈ (𝐶 Func 𝐷) ↦ ⟨((1st𝑔) ∘ (1st𝑓)), (𝑥 ∈ dom dom (2nd𝑓), 𝑦 ∈ dom dom (2nd𝑓) ↦ ((((1st𝑓)‘𝑥)(2nd𝑔)((1st𝑓)‘𝑦)) ∘ (𝑥(2nd𝑓)𝑦)))⟩)
1712, 16eqtri 2752 . . 3 ( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) = (𝑔 ∈ (𝐷 Func 𝐸), 𝑓 ∈ (𝐶 Func 𝐷) ↦ ⟨((1st𝑔) ∘ (1st𝑓)), (𝑥 ∈ dom dom (2nd𝑓), 𝑦 ∈ dom dom (2nd𝑓) ↦ ((((1st𝑓)‘𝑥)(2nd𝑔)((1st𝑓)‘𝑦)) ∘ (𝑥(2nd𝑓)𝑦)))⟩)
1817fmpo 8047 . 2 (∀𝑔 ∈ (𝐷 Func 𝐸)∀𝑓 ∈ (𝐶 Func 𝐷)⟨((1st𝑔) ∘ (1st𝑓)), (𝑥 ∈ dom dom (2nd𝑓), 𝑦 ∈ dom dom (2nd𝑓) ↦ ((((1st𝑓)‘𝑥)(2nd𝑔)((1st𝑓)‘𝑦)) ∘ (𝑥(2nd𝑓)𝑦)))⟩ ∈ (𝐶 Func 𝐸) ↔ ( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))):((𝐷 Func 𝐸) × (𝐶 Func 𝐷))⟶(𝐶 Func 𝐸))
1911, 18mpbi 230 1 ( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))):((𝐷 Func 𝐸) × (𝐶 Func 𝐷))⟶(𝐶 Func 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2109  wral 3044  Vcvv 3447  wss 3914  cop 4595   × cxp 5636  dom cdm 5638  cres 5640  ccom 5642  wf 6507  cfv 6511  (class class class)co 7387  cmpo 7389  1st c1st 7966  2nd c2nd 7967   Func cfunc 17816  func ccofu 17818
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-map 8801  df-ixp 8871  df-cat 17629  df-cid 17630  df-func 17820  df-cofu 17822
This theorem is referenced by:  fucof1  49311  fucofvalne  49314
  Copyright terms: Public domain W3C validator