Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rescofuf Structured version   Visualization version   GIF version

Theorem rescofuf 48843
Description: The restriction of functor composition is a function from product functor space to functor space. (Contributed by Zhi Wang, 25-Sep-2025.)
Assertion
Ref Expression
rescofuf ( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))):((𝐷 Func 𝐸) × (𝐶 Func 𝐷))⟶(𝐶 Func 𝐸)

Proof of Theorem rescofuf
Dummy variables 𝑓 𝑔 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3485 . . . . 5 𝑔 ∈ V
2 vex 3485 . . . . 5 𝑓 ∈ V
3 opex 5478 . . . . 5 ⟨((1st𝑔) ∘ (1st𝑓)), (𝑥 ∈ dom dom (2nd𝑓), 𝑦 ∈ dom dom (2nd𝑓) ↦ ((((1st𝑓)‘𝑥)(2nd𝑔)((1st𝑓)‘𝑦)) ∘ (𝑥(2nd𝑓)𝑦)))⟩ ∈ V
4 df-cofu 17920 . . . . . 6 func = (𝑔 ∈ V, 𝑓 ∈ V ↦ ⟨((1st𝑔) ∘ (1st𝑓)), (𝑥 ∈ dom dom (2nd𝑓), 𝑦 ∈ dom dom (2nd𝑓) ↦ ((((1st𝑓)‘𝑥)(2nd𝑔)((1st𝑓)‘𝑦)) ∘ (𝑥(2nd𝑓)𝑦)))⟩)
54ovmpt4g 7587 . . . . 5 ((𝑔 ∈ V ∧ 𝑓 ∈ V ∧ ⟨((1st𝑔) ∘ (1st𝑓)), (𝑥 ∈ dom dom (2nd𝑓), 𝑦 ∈ dom dom (2nd𝑓) ↦ ((((1st𝑓)‘𝑥)(2nd𝑔)((1st𝑓)‘𝑦)) ∘ (𝑥(2nd𝑓)𝑦)))⟩ ∈ V) → (𝑔func 𝑓) = ⟨((1st𝑔) ∘ (1st𝑓)), (𝑥 ∈ dom dom (2nd𝑓), 𝑦 ∈ dom dom (2nd𝑓) ↦ ((((1st𝑓)‘𝑥)(2nd𝑔)((1st𝑓)‘𝑦)) ∘ (𝑥(2nd𝑓)𝑦)))⟩)
61, 2, 3, 5mp3an 1462 . . . 4 (𝑔func 𝑓) = ⟨((1st𝑔) ∘ (1st𝑓)), (𝑥 ∈ dom dom (2nd𝑓), 𝑦 ∈ dom dom (2nd𝑓) ↦ ((((1st𝑓)‘𝑥)(2nd𝑔)((1st𝑓)‘𝑦)) ∘ (𝑥(2nd𝑓)𝑦)))⟩
7 simpr 484 . . . . 5 ((𝑔 ∈ (𝐷 Func 𝐸) ∧ 𝑓 ∈ (𝐶 Func 𝐷)) → 𝑓 ∈ (𝐶 Func 𝐷))
8 simpl 482 . . . . 5 ((𝑔 ∈ (𝐷 Func 𝐸) ∧ 𝑓 ∈ (𝐶 Func 𝐷)) → 𝑔 ∈ (𝐷 Func 𝐸))
97, 8cofucl 17948 . . . 4 ((𝑔 ∈ (𝐷 Func 𝐸) ∧ 𝑓 ∈ (𝐶 Func 𝐷)) → (𝑔func 𝑓) ∈ (𝐶 Func 𝐸))
106, 9eqeltrrid 2846 . . 3 ((𝑔 ∈ (𝐷 Func 𝐸) ∧ 𝑓 ∈ (𝐶 Func 𝐷)) → ⟨((1st𝑔) ∘ (1st𝑓)), (𝑥 ∈ dom dom (2nd𝑓), 𝑦 ∈ dom dom (2nd𝑓) ↦ ((((1st𝑓)‘𝑥)(2nd𝑔)((1st𝑓)‘𝑦)) ∘ (𝑥(2nd𝑓)𝑦)))⟩ ∈ (𝐶 Func 𝐸))
1110rgen2 3199 . 2 𝑔 ∈ (𝐷 Func 𝐸)∀𝑓 ∈ (𝐶 Func 𝐷)⟨((1st𝑔) ∘ (1st𝑓)), (𝑥 ∈ dom dom (2nd𝑓), 𝑦 ∈ dom dom (2nd𝑓) ↦ ((((1st𝑓)‘𝑥)(2nd𝑔)((1st𝑓)‘𝑦)) ∘ (𝑥(2nd𝑓)𝑦)))⟩ ∈ (𝐶 Func 𝐸)
124reseq1i 6000 . . . 4 ( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) = ((𝑔 ∈ V, 𝑓 ∈ V ↦ ⟨((1st𝑔) ∘ (1st𝑓)), (𝑥 ∈ dom dom (2nd𝑓), 𝑦 ∈ dom dom (2nd𝑓) ↦ ((((1st𝑓)‘𝑥)(2nd𝑔)((1st𝑓)‘𝑦)) ∘ (𝑥(2nd𝑓)𝑦)))⟩) ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
13 ssv 4023 . . . . 5 (𝐷 Func 𝐸) ⊆ V
14 ssv 4023 . . . . 5 (𝐶 Func 𝐷) ⊆ V
15 resmpo 7560 . . . . 5 (((𝐷 Func 𝐸) ⊆ V ∧ (𝐶 Func 𝐷) ⊆ V) → ((𝑔 ∈ V, 𝑓 ∈ V ↦ ⟨((1st𝑔) ∘ (1st𝑓)), (𝑥 ∈ dom dom (2nd𝑓), 𝑦 ∈ dom dom (2nd𝑓) ↦ ((((1st𝑓)‘𝑥)(2nd𝑔)((1st𝑓)‘𝑦)) ∘ (𝑥(2nd𝑓)𝑦)))⟩) ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) = (𝑔 ∈ (𝐷 Func 𝐸), 𝑓 ∈ (𝐶 Func 𝐷) ↦ ⟨((1st𝑔) ∘ (1st𝑓)), (𝑥 ∈ dom dom (2nd𝑓), 𝑦 ∈ dom dom (2nd𝑓) ↦ ((((1st𝑓)‘𝑥)(2nd𝑔)((1st𝑓)‘𝑦)) ∘ (𝑥(2nd𝑓)𝑦)))⟩))
1613, 14, 15mp2an 692 . . . 4 ((𝑔 ∈ V, 𝑓 ∈ V ↦ ⟨((1st𝑔) ∘ (1st𝑓)), (𝑥 ∈ dom dom (2nd𝑓), 𝑦 ∈ dom dom (2nd𝑓) ↦ ((((1st𝑓)‘𝑥)(2nd𝑔)((1st𝑓)‘𝑦)) ∘ (𝑥(2nd𝑓)𝑦)))⟩) ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) = (𝑔 ∈ (𝐷 Func 𝐸), 𝑓 ∈ (𝐶 Func 𝐷) ↦ ⟨((1st𝑔) ∘ (1st𝑓)), (𝑥 ∈ dom dom (2nd𝑓), 𝑦 ∈ dom dom (2nd𝑓) ↦ ((((1st𝑓)‘𝑥)(2nd𝑔)((1st𝑓)‘𝑦)) ∘ (𝑥(2nd𝑓)𝑦)))⟩)
1712, 16eqtri 2765 . . 3 ( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) = (𝑔 ∈ (𝐷 Func 𝐸), 𝑓 ∈ (𝐶 Func 𝐷) ↦ ⟨((1st𝑔) ∘ (1st𝑓)), (𝑥 ∈ dom dom (2nd𝑓), 𝑦 ∈ dom dom (2nd𝑓) ↦ ((((1st𝑓)‘𝑥)(2nd𝑔)((1st𝑓)‘𝑦)) ∘ (𝑥(2nd𝑓)𝑦)))⟩)
1817fmpo 8101 . 2 (∀𝑔 ∈ (𝐷 Func 𝐸)∀𝑓 ∈ (𝐶 Func 𝐷)⟨((1st𝑔) ∘ (1st𝑓)), (𝑥 ∈ dom dom (2nd𝑓), 𝑦 ∈ dom dom (2nd𝑓) ↦ ((((1st𝑓)‘𝑥)(2nd𝑔)((1st𝑓)‘𝑦)) ∘ (𝑥(2nd𝑓)𝑦)))⟩ ∈ (𝐶 Func 𝐸) ↔ ( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))):((𝐷 Func 𝐸) × (𝐶 Func 𝐷))⟶(𝐶 Func 𝐸))
1911, 18mpbi 230 1 ( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))):((𝐷 Func 𝐸) × (𝐶 Func 𝐷))⟶(𝐶 Func 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1539  wcel 2108  wral 3061  Vcvv 3481  wss 3966  cop 4640   × cxp 5691  dom cdm 5693  cres 5695  ccom 5697  wf 6565  cfv 6569  (class class class)co 7438  cmpo 7440  1st c1st 8020  2nd c2nd 8021   Func cfunc 17914  func ccofu 17916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5288  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-riota 7395  df-ov 7441  df-oprab 7442  df-mpo 7443  df-1st 8022  df-2nd 8023  df-map 8876  df-ixp 8946  df-cat 17722  df-cid 17723  df-func 17918  df-cofu 17920
This theorem is referenced by:  fucof1  48891  fucofvalne  48894
  Copyright terms: Public domain W3C validator