Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rescofuf Structured version   Visualization version   GIF version

Theorem rescofuf 49208
Description: The restriction of functor composition is a function from product functor space to functor space. (Contributed by Zhi Wang, 25-Sep-2025.)
Assertion
Ref Expression
rescofuf ( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))):((𝐷 Func 𝐸) × (𝐶 Func 𝐷))⟶(𝐶 Func 𝐸)

Proof of Theorem rescofuf
Dummy variables 𝑓 𝑔 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3442 . . . . 5 𝑔 ∈ V
2 vex 3442 . . . . 5 𝑓 ∈ V
3 opex 5409 . . . . 5 ⟨((1st𝑔) ∘ (1st𝑓)), (𝑥 ∈ dom dom (2nd𝑓), 𝑦 ∈ dom dom (2nd𝑓) ↦ ((((1st𝑓)‘𝑥)(2nd𝑔)((1st𝑓)‘𝑦)) ∘ (𝑥(2nd𝑓)𝑦)))⟩ ∈ V
4 df-cofu 17777 . . . . . 6 func = (𝑔 ∈ V, 𝑓 ∈ V ↦ ⟨((1st𝑔) ∘ (1st𝑓)), (𝑥 ∈ dom dom (2nd𝑓), 𝑦 ∈ dom dom (2nd𝑓) ↦ ((((1st𝑓)‘𝑥)(2nd𝑔)((1st𝑓)‘𝑦)) ∘ (𝑥(2nd𝑓)𝑦)))⟩)
54ovmpt4g 7502 . . . . 5 ((𝑔 ∈ V ∧ 𝑓 ∈ V ∧ ⟨((1st𝑔) ∘ (1st𝑓)), (𝑥 ∈ dom dom (2nd𝑓), 𝑦 ∈ dom dom (2nd𝑓) ↦ ((((1st𝑓)‘𝑥)(2nd𝑔)((1st𝑓)‘𝑦)) ∘ (𝑥(2nd𝑓)𝑦)))⟩ ∈ V) → (𝑔func 𝑓) = ⟨((1st𝑔) ∘ (1st𝑓)), (𝑥 ∈ dom dom (2nd𝑓), 𝑦 ∈ dom dom (2nd𝑓) ↦ ((((1st𝑓)‘𝑥)(2nd𝑔)((1st𝑓)‘𝑦)) ∘ (𝑥(2nd𝑓)𝑦)))⟩)
61, 2, 3, 5mp3an 1463 . . . 4 (𝑔func 𝑓) = ⟨((1st𝑔) ∘ (1st𝑓)), (𝑥 ∈ dom dom (2nd𝑓), 𝑦 ∈ dom dom (2nd𝑓) ↦ ((((1st𝑓)‘𝑥)(2nd𝑔)((1st𝑓)‘𝑦)) ∘ (𝑥(2nd𝑓)𝑦)))⟩
7 simpr 484 . . . . 5 ((𝑔 ∈ (𝐷 Func 𝐸) ∧ 𝑓 ∈ (𝐶 Func 𝐷)) → 𝑓 ∈ (𝐶 Func 𝐷))
8 simpl 482 . . . . 5 ((𝑔 ∈ (𝐷 Func 𝐸) ∧ 𝑓 ∈ (𝐶 Func 𝐷)) → 𝑔 ∈ (𝐷 Func 𝐸))
97, 8cofucl 17805 . . . 4 ((𝑔 ∈ (𝐷 Func 𝐸) ∧ 𝑓 ∈ (𝐶 Func 𝐷)) → (𝑔func 𝑓) ∈ (𝐶 Func 𝐸))
106, 9eqeltrrid 2838 . . 3 ((𝑔 ∈ (𝐷 Func 𝐸) ∧ 𝑓 ∈ (𝐶 Func 𝐷)) → ⟨((1st𝑔) ∘ (1st𝑓)), (𝑥 ∈ dom dom (2nd𝑓), 𝑦 ∈ dom dom (2nd𝑓) ↦ ((((1st𝑓)‘𝑥)(2nd𝑔)((1st𝑓)‘𝑦)) ∘ (𝑥(2nd𝑓)𝑦)))⟩ ∈ (𝐶 Func 𝐸))
1110rgen2 3174 . 2 𝑔 ∈ (𝐷 Func 𝐸)∀𝑓 ∈ (𝐶 Func 𝐷)⟨((1st𝑔) ∘ (1st𝑓)), (𝑥 ∈ dom dom (2nd𝑓), 𝑦 ∈ dom dom (2nd𝑓) ↦ ((((1st𝑓)‘𝑥)(2nd𝑔)((1st𝑓)‘𝑦)) ∘ (𝑥(2nd𝑓)𝑦)))⟩ ∈ (𝐶 Func 𝐸)
124reseq1i 5931 . . . 4 ( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) = ((𝑔 ∈ V, 𝑓 ∈ V ↦ ⟨((1st𝑔) ∘ (1st𝑓)), (𝑥 ∈ dom dom (2nd𝑓), 𝑦 ∈ dom dom (2nd𝑓) ↦ ((((1st𝑓)‘𝑥)(2nd𝑔)((1st𝑓)‘𝑦)) ∘ (𝑥(2nd𝑓)𝑦)))⟩) ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
13 ssv 3956 . . . . 5 (𝐷 Func 𝐸) ⊆ V
14 ssv 3956 . . . . 5 (𝐶 Func 𝐷) ⊆ V
15 resmpo 7475 . . . . 5 (((𝐷 Func 𝐸) ⊆ V ∧ (𝐶 Func 𝐷) ⊆ V) → ((𝑔 ∈ V, 𝑓 ∈ V ↦ ⟨((1st𝑔) ∘ (1st𝑓)), (𝑥 ∈ dom dom (2nd𝑓), 𝑦 ∈ dom dom (2nd𝑓) ↦ ((((1st𝑓)‘𝑥)(2nd𝑔)((1st𝑓)‘𝑦)) ∘ (𝑥(2nd𝑓)𝑦)))⟩) ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) = (𝑔 ∈ (𝐷 Func 𝐸), 𝑓 ∈ (𝐶 Func 𝐷) ↦ ⟨((1st𝑔) ∘ (1st𝑓)), (𝑥 ∈ dom dom (2nd𝑓), 𝑦 ∈ dom dom (2nd𝑓) ↦ ((((1st𝑓)‘𝑥)(2nd𝑔)((1st𝑓)‘𝑦)) ∘ (𝑥(2nd𝑓)𝑦)))⟩))
1613, 14, 15mp2an 692 . . . 4 ((𝑔 ∈ V, 𝑓 ∈ V ↦ ⟨((1st𝑔) ∘ (1st𝑓)), (𝑥 ∈ dom dom (2nd𝑓), 𝑦 ∈ dom dom (2nd𝑓) ↦ ((((1st𝑓)‘𝑥)(2nd𝑔)((1st𝑓)‘𝑦)) ∘ (𝑥(2nd𝑓)𝑦)))⟩) ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) = (𝑔 ∈ (𝐷 Func 𝐸), 𝑓 ∈ (𝐶 Func 𝐷) ↦ ⟨((1st𝑔) ∘ (1st𝑓)), (𝑥 ∈ dom dom (2nd𝑓), 𝑦 ∈ dom dom (2nd𝑓) ↦ ((((1st𝑓)‘𝑥)(2nd𝑔)((1st𝑓)‘𝑦)) ∘ (𝑥(2nd𝑓)𝑦)))⟩)
1712, 16eqtri 2756 . . 3 ( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) = (𝑔 ∈ (𝐷 Func 𝐸), 𝑓 ∈ (𝐶 Func 𝐷) ↦ ⟨((1st𝑔) ∘ (1st𝑓)), (𝑥 ∈ dom dom (2nd𝑓), 𝑦 ∈ dom dom (2nd𝑓) ↦ ((((1st𝑓)‘𝑥)(2nd𝑔)((1st𝑓)‘𝑦)) ∘ (𝑥(2nd𝑓)𝑦)))⟩)
1817fmpo 8009 . 2 (∀𝑔 ∈ (𝐷 Func 𝐸)∀𝑓 ∈ (𝐶 Func 𝐷)⟨((1st𝑔) ∘ (1st𝑓)), (𝑥 ∈ dom dom (2nd𝑓), 𝑦 ∈ dom dom (2nd𝑓) ↦ ((((1st𝑓)‘𝑥)(2nd𝑔)((1st𝑓)‘𝑦)) ∘ (𝑥(2nd𝑓)𝑦)))⟩ ∈ (𝐶 Func 𝐸) ↔ ( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))):((𝐷 Func 𝐸) × (𝐶 Func 𝐷))⟶(𝐶 Func 𝐸))
1911, 18mpbi 230 1 ( ∘func ↾ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))):((𝐷 Func 𝐸) × (𝐶 Func 𝐷))⟶(𝐶 Func 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  wcel 2113  wral 3049  Vcvv 3438  wss 3899  cop 4583   × cxp 5619  dom cdm 5621  cres 5623  ccom 5625  wf 6485  cfv 6489  (class class class)co 7355  cmpo 7357  1st c1st 7928  2nd c2nd 7929   Func cfunc 17771  func ccofu 17773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-1st 7930  df-2nd 7931  df-map 8761  df-ixp 8831  df-cat 17584  df-cid 17585  df-func 17775  df-cofu 17777
This theorem is referenced by:  fucof1  49437  fucofvalne  49440
  Copyright terms: Public domain W3C validator