| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > uptr2a | Structured version Visualization version GIF version | ||
| Description: Universal property and fully faithful functor surjective on objects. (Contributed by Zhi Wang, 25-Nov-2025.) |
| Ref | Expression |
|---|---|
| uptr2a.a | ⊢ 𝐴 = (Base‘𝐶) |
| uptr2a.b | ⊢ 𝐵 = (Base‘𝐷) |
| uptr2a.y | ⊢ (𝜑 → 𝑌 = ((1st ‘𝐾)‘𝑋)) |
| uptr2a.f | ⊢ (𝜑 → (𝐺 ∘func 𝐾) = 𝐹) |
| uptr2a.x | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| uptr2a.g | ⊢ (𝜑 → 𝐺 ∈ (𝐷 Func 𝐸)) |
| uptr2a.k | ⊢ (𝜑 → 𝐾 ∈ ((𝐶 Full 𝐷) ∩ (𝐶 Faith 𝐷))) |
| uptr2a.1 | ⊢ (𝜑 → (1st ‘𝐾):𝐴–onto→𝐵) |
| Ref | Expression |
|---|---|
| uptr2a | ⊢ (𝜑 → (𝑋(𝐹(𝐶 UP 𝐸)𝑍)𝑀 ↔ 𝑌(𝐺(𝐷 UP 𝐸)𝑍)𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uptr2a.a | . . 3 ⊢ 𝐴 = (Base‘𝐶) | |
| 2 | uptr2a.b | . . 3 ⊢ 𝐵 = (Base‘𝐷) | |
| 3 | uptr2a.y | . . 3 ⊢ (𝜑 → 𝑌 = ((1st ‘𝐾)‘𝑋)) | |
| 4 | uptr2a.1 | . . 3 ⊢ (𝜑 → (1st ‘𝐾):𝐴–onto→𝐵) | |
| 5 | relfull 17817 | . . . . 5 ⊢ Rel (𝐶 Full 𝐷) | |
| 6 | relin1 5751 | . . . . 5 ⊢ (Rel (𝐶 Full 𝐷) → Rel ((𝐶 Full 𝐷) ∩ (𝐶 Faith 𝐷))) | |
| 7 | 5, 6 | ax-mp 5 | . . . 4 ⊢ Rel ((𝐶 Full 𝐷) ∩ (𝐶 Faith 𝐷)) |
| 8 | uptr2a.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ ((𝐶 Full 𝐷) ∩ (𝐶 Faith 𝐷))) | |
| 9 | 1st2ndbr 7974 | . . . 4 ⊢ ((Rel ((𝐶 Full 𝐷) ∩ (𝐶 Faith 𝐷)) ∧ 𝐾 ∈ ((𝐶 Full 𝐷) ∩ (𝐶 Faith 𝐷))) → (1st ‘𝐾)((𝐶 Full 𝐷) ∩ (𝐶 Faith 𝐷))(2nd ‘𝐾)) | |
| 10 | 7, 8, 9 | sylancr 587 | . . 3 ⊢ (𝜑 → (1st ‘𝐾)((𝐶 Full 𝐷) ∩ (𝐶 Faith 𝐷))(2nd ‘𝐾)) |
| 11 | uptr2a.f | . . . 4 ⊢ (𝜑 → (𝐺 ∘func 𝐾) = 𝐹) | |
| 12 | inss1 4184 | . . . . . . 7 ⊢ ((𝐶 Full 𝐷) ∩ (𝐶 Faith 𝐷)) ⊆ (𝐶 Full 𝐷) | |
| 13 | fullfunc 17815 | . . . . . . 7 ⊢ (𝐶 Full 𝐷) ⊆ (𝐶 Func 𝐷) | |
| 14 | 12, 13 | sstri 3939 | . . . . . 6 ⊢ ((𝐶 Full 𝐷) ∩ (𝐶 Faith 𝐷)) ⊆ (𝐶 Func 𝐷) |
| 15 | 14, 8 | sselid 3927 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ (𝐶 Func 𝐷)) |
| 16 | uptr2a.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ (𝐷 Func 𝐸)) | |
| 17 | 15, 16 | cofu1st2nd 49203 | . . . 4 ⊢ (𝜑 → (𝐺 ∘func 𝐾) = (〈(1st ‘𝐺), (2nd ‘𝐺)〉 ∘func 〈(1st ‘𝐾), (2nd ‘𝐾)〉)) |
| 18 | relfunc 17769 | . . . . 5 ⊢ Rel (𝐶 Func 𝐸) | |
| 19 | 15, 16 | cofucl 17795 | . . . . . 6 ⊢ (𝜑 → (𝐺 ∘func 𝐾) ∈ (𝐶 Func 𝐸)) |
| 20 | 11, 19 | eqeltrrd 2832 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐸)) |
| 21 | 1st2nd 7971 | . . . . 5 ⊢ ((Rel (𝐶 Func 𝐸) ∧ 𝐹 ∈ (𝐶 Func 𝐸)) → 𝐹 = 〈(1st ‘𝐹), (2nd ‘𝐹)〉) | |
| 22 | 18, 20, 21 | sylancr 587 | . . . 4 ⊢ (𝜑 → 𝐹 = 〈(1st ‘𝐹), (2nd ‘𝐹)〉) |
| 23 | 11, 17, 22 | 3eqtr3d 2774 | . . 3 ⊢ (𝜑 → (〈(1st ‘𝐺), (2nd ‘𝐺)〉 ∘func 〈(1st ‘𝐾), (2nd ‘𝐾)〉) = 〈(1st ‘𝐹), (2nd ‘𝐹)〉) |
| 24 | uptr2a.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
| 25 | 16 | func1st2nd 49187 | . . 3 ⊢ (𝜑 → (1st ‘𝐺)(𝐷 Func 𝐸)(2nd ‘𝐺)) |
| 26 | 1, 2, 3, 4, 10, 23, 24, 25 | uptr2 49332 | . 2 ⊢ (𝜑 → (𝑋(〈(1st ‘𝐹), (2nd ‘𝐹)〉(𝐶 UP 𝐸)𝑍)𝑀 ↔ 𝑌(〈(1st ‘𝐺), (2nd ‘𝐺)〉(𝐷 UP 𝐸)𝑍)𝑀)) |
| 27 | 20 | up1st2ndb 49298 | . 2 ⊢ (𝜑 → (𝑋(𝐹(𝐶 UP 𝐸)𝑍)𝑀 ↔ 𝑋(〈(1st ‘𝐹), (2nd ‘𝐹)〉(𝐶 UP 𝐸)𝑍)𝑀)) |
| 28 | 16 | up1st2ndb 49298 | . 2 ⊢ (𝜑 → (𝑌(𝐺(𝐷 UP 𝐸)𝑍)𝑀 ↔ 𝑌(〈(1st ‘𝐺), (2nd ‘𝐺)〉(𝐷 UP 𝐸)𝑍)𝑀)) |
| 29 | 26, 27, 28 | 3bitr4d 311 | 1 ⊢ (𝜑 → (𝑋(𝐹(𝐶 UP 𝐸)𝑍)𝑀 ↔ 𝑌(𝐺(𝐷 UP 𝐸)𝑍)𝑀)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 ∩ cin 3896 〈cop 4579 class class class wbr 5089 Rel wrel 5619 –onto→wfo 6479 ‘cfv 6481 (class class class)co 7346 1st c1st 7919 2nd c2nd 7920 Basecbs 17120 Func cfunc 17761 ∘func ccofu 17763 Full cful 17811 Faith cfth 17812 UP cup 49284 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-map 8752 df-ixp 8822 df-cat 17574 df-cid 17575 df-func 17765 df-cofu 17767 df-full 17813 df-fth 17814 df-up 49285 |
| This theorem is referenced by: lmdran 49782 cmdlan 49783 |
| Copyright terms: Public domain | W3C validator |