| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > uptr2a | Structured version Visualization version GIF version | ||
| Description: Universal property and fully faithful functor surjective on objects. (Contributed by Zhi Wang, 25-Nov-2025.) |
| Ref | Expression |
|---|---|
| uptr2a.a | ⊢ 𝐴 = (Base‘𝐶) |
| uptr2a.b | ⊢ 𝐵 = (Base‘𝐷) |
| uptr2a.y | ⊢ (𝜑 → 𝑌 = ((1st ‘𝐾)‘𝑋)) |
| uptr2a.f | ⊢ (𝜑 → (𝐺 ∘func 𝐾) = 𝐹) |
| uptr2a.x | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| uptr2a.g | ⊢ (𝜑 → 𝐺 ∈ (𝐷 Func 𝐸)) |
| uptr2a.k | ⊢ (𝜑 → 𝐾 ∈ ((𝐶 Full 𝐷) ∩ (𝐶 Faith 𝐷))) |
| uptr2a.1 | ⊢ (𝜑 → (1st ‘𝐾):𝐴–onto→𝐵) |
| Ref | Expression |
|---|---|
| uptr2a | ⊢ (𝜑 → (𝑋(𝐹(𝐶 UP 𝐸)𝑍)𝑀 ↔ 𝑌(𝐺(𝐷 UP 𝐸)𝑍)𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uptr2a.a | . . 3 ⊢ 𝐴 = (Base‘𝐶) | |
| 2 | uptr2a.b | . . 3 ⊢ 𝐵 = (Base‘𝐷) | |
| 3 | uptr2a.y | . . 3 ⊢ (𝜑 → 𝑌 = ((1st ‘𝐾)‘𝑋)) | |
| 4 | uptr2a.1 | . . 3 ⊢ (𝜑 → (1st ‘𝐾):𝐴–onto→𝐵) | |
| 5 | relfull 17878 | . . . . 5 ⊢ Rel (𝐶 Full 𝐷) | |
| 6 | relin1 5777 | . . . . 5 ⊢ (Rel (𝐶 Full 𝐷) → Rel ((𝐶 Full 𝐷) ∩ (𝐶 Faith 𝐷))) | |
| 7 | 5, 6 | ax-mp 5 | . . . 4 ⊢ Rel ((𝐶 Full 𝐷) ∩ (𝐶 Faith 𝐷)) |
| 8 | uptr2a.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ ((𝐶 Full 𝐷) ∩ (𝐶 Faith 𝐷))) | |
| 9 | 1st2ndbr 8023 | . . . 4 ⊢ ((Rel ((𝐶 Full 𝐷) ∩ (𝐶 Faith 𝐷)) ∧ 𝐾 ∈ ((𝐶 Full 𝐷) ∩ (𝐶 Faith 𝐷))) → (1st ‘𝐾)((𝐶 Full 𝐷) ∩ (𝐶 Faith 𝐷))(2nd ‘𝐾)) | |
| 10 | 7, 8, 9 | sylancr 587 | . . 3 ⊢ (𝜑 → (1st ‘𝐾)((𝐶 Full 𝐷) ∩ (𝐶 Faith 𝐷))(2nd ‘𝐾)) |
| 11 | uptr2a.f | . . . 4 ⊢ (𝜑 → (𝐺 ∘func 𝐾) = 𝐹) | |
| 12 | inss1 4202 | . . . . . . 7 ⊢ ((𝐶 Full 𝐷) ∩ (𝐶 Faith 𝐷)) ⊆ (𝐶 Full 𝐷) | |
| 13 | fullfunc 17876 | . . . . . . 7 ⊢ (𝐶 Full 𝐷) ⊆ (𝐶 Func 𝐷) | |
| 14 | 12, 13 | sstri 3958 | . . . . . 6 ⊢ ((𝐶 Full 𝐷) ∩ (𝐶 Faith 𝐷)) ⊆ (𝐶 Func 𝐷) |
| 15 | 14, 8 | sselid 3946 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ (𝐶 Func 𝐷)) |
| 16 | uptr2a.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ (𝐷 Func 𝐸)) | |
| 17 | 15, 16 | cofu1st2nd 49071 | . . . 4 ⊢ (𝜑 → (𝐺 ∘func 𝐾) = (〈(1st ‘𝐺), (2nd ‘𝐺)〉 ∘func 〈(1st ‘𝐾), (2nd ‘𝐾)〉)) |
| 18 | relfunc 17830 | . . . . 5 ⊢ Rel (𝐶 Func 𝐸) | |
| 19 | 15, 16 | cofucl 17856 | . . . . . 6 ⊢ (𝜑 → (𝐺 ∘func 𝐾) ∈ (𝐶 Func 𝐸)) |
| 20 | 11, 19 | eqeltrrd 2830 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐸)) |
| 21 | 1st2nd 8020 | . . . . 5 ⊢ ((Rel (𝐶 Func 𝐸) ∧ 𝐹 ∈ (𝐶 Func 𝐸)) → 𝐹 = 〈(1st ‘𝐹), (2nd ‘𝐹)〉) | |
| 22 | 18, 20, 21 | sylancr 587 | . . . 4 ⊢ (𝜑 → 𝐹 = 〈(1st ‘𝐹), (2nd ‘𝐹)〉) |
| 23 | 11, 17, 22 | 3eqtr3d 2773 | . . 3 ⊢ (𝜑 → (〈(1st ‘𝐺), (2nd ‘𝐺)〉 ∘func 〈(1st ‘𝐾), (2nd ‘𝐾)〉) = 〈(1st ‘𝐹), (2nd ‘𝐹)〉) |
| 24 | uptr2a.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
| 25 | 16 | func1st2nd 49055 | . . 3 ⊢ (𝜑 → (1st ‘𝐺)(𝐷 Func 𝐸)(2nd ‘𝐺)) |
| 26 | 1, 2, 3, 4, 10, 23, 24, 25 | uptr2 49200 | . 2 ⊢ (𝜑 → (𝑋(〈(1st ‘𝐹), (2nd ‘𝐹)〉(𝐶 UP 𝐸)𝑍)𝑀 ↔ 𝑌(〈(1st ‘𝐺), (2nd ‘𝐺)〉(𝐷 UP 𝐸)𝑍)𝑀)) |
| 27 | 20 | up1st2ndb 49166 | . 2 ⊢ (𝜑 → (𝑋(𝐹(𝐶 UP 𝐸)𝑍)𝑀 ↔ 𝑋(〈(1st ‘𝐹), (2nd ‘𝐹)〉(𝐶 UP 𝐸)𝑍)𝑀)) |
| 28 | 16 | up1st2ndb 49166 | . 2 ⊢ (𝜑 → (𝑌(𝐺(𝐷 UP 𝐸)𝑍)𝑀 ↔ 𝑌(〈(1st ‘𝐺), (2nd ‘𝐺)〉(𝐷 UP 𝐸)𝑍)𝑀)) |
| 29 | 26, 27, 28 | 3bitr4d 311 | 1 ⊢ (𝜑 → (𝑋(𝐹(𝐶 UP 𝐸)𝑍)𝑀 ↔ 𝑌(𝐺(𝐷 UP 𝐸)𝑍)𝑀)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∩ cin 3915 〈cop 4597 class class class wbr 5109 Rel wrel 5645 –onto→wfo 6511 ‘cfv 6513 (class class class)co 7389 1st c1st 7968 2nd c2nd 7969 Basecbs 17185 Func cfunc 17822 ∘func ccofu 17824 Full cful 17872 Faith cfth 17873 UP cup 49152 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-1st 7970 df-2nd 7971 df-map 8803 df-ixp 8873 df-cat 17635 df-cid 17636 df-func 17826 df-cofu 17828 df-full 17874 df-fth 17875 df-up 49153 |
| This theorem is referenced by: lmdran 49650 cmdlan 49651 |
| Copyright terms: Public domain | W3C validator |