Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uptr2a Structured version   Visualization version   GIF version

Theorem uptr2a 49201
Description: Universal property and fully faithful functor surjective on objects. (Contributed by Zhi Wang, 25-Nov-2025.)
Hypotheses
Ref Expression
uptr2a.a 𝐴 = (Base‘𝐶)
uptr2a.b 𝐵 = (Base‘𝐷)
uptr2a.y (𝜑𝑌 = ((1st𝐾)‘𝑋))
uptr2a.f (𝜑 → (𝐺func 𝐾) = 𝐹)
uptr2a.x (𝜑𝑋𝐴)
uptr2a.g (𝜑𝐺 ∈ (𝐷 Func 𝐸))
uptr2a.k (𝜑𝐾 ∈ ((𝐶 Full 𝐷) ∩ (𝐶 Faith 𝐷)))
uptr2a.1 (𝜑 → (1st𝐾):𝐴onto𝐵)
Assertion
Ref Expression
uptr2a (𝜑 → (𝑋(𝐹(𝐶 UP 𝐸)𝑍)𝑀𝑌(𝐺(𝐷 UP 𝐸)𝑍)𝑀))

Proof of Theorem uptr2a
StepHypRef Expression
1 uptr2a.a . . 3 𝐴 = (Base‘𝐶)
2 uptr2a.b . . 3 𝐵 = (Base‘𝐷)
3 uptr2a.y . . 3 (𝜑𝑌 = ((1st𝐾)‘𝑋))
4 uptr2a.1 . . 3 (𝜑 → (1st𝐾):𝐴onto𝐵)
5 relfull 17878 . . . . 5 Rel (𝐶 Full 𝐷)
6 relin1 5777 . . . . 5 (Rel (𝐶 Full 𝐷) → Rel ((𝐶 Full 𝐷) ∩ (𝐶 Faith 𝐷)))
75, 6ax-mp 5 . . . 4 Rel ((𝐶 Full 𝐷) ∩ (𝐶 Faith 𝐷))
8 uptr2a.k . . . 4 (𝜑𝐾 ∈ ((𝐶 Full 𝐷) ∩ (𝐶 Faith 𝐷)))
9 1st2ndbr 8023 . . . 4 ((Rel ((𝐶 Full 𝐷) ∩ (𝐶 Faith 𝐷)) ∧ 𝐾 ∈ ((𝐶 Full 𝐷) ∩ (𝐶 Faith 𝐷))) → (1st𝐾)((𝐶 Full 𝐷) ∩ (𝐶 Faith 𝐷))(2nd𝐾))
107, 8, 9sylancr 587 . . 3 (𝜑 → (1st𝐾)((𝐶 Full 𝐷) ∩ (𝐶 Faith 𝐷))(2nd𝐾))
11 uptr2a.f . . . 4 (𝜑 → (𝐺func 𝐾) = 𝐹)
12 inss1 4202 . . . . . . 7 ((𝐶 Full 𝐷) ∩ (𝐶 Faith 𝐷)) ⊆ (𝐶 Full 𝐷)
13 fullfunc 17876 . . . . . . 7 (𝐶 Full 𝐷) ⊆ (𝐶 Func 𝐷)
1412, 13sstri 3958 . . . . . 6 ((𝐶 Full 𝐷) ∩ (𝐶 Faith 𝐷)) ⊆ (𝐶 Func 𝐷)
1514, 8sselid 3946 . . . . 5 (𝜑𝐾 ∈ (𝐶 Func 𝐷))
16 uptr2a.g . . . . 5 (𝜑𝐺 ∈ (𝐷 Func 𝐸))
1715, 16cofu1st2nd 49071 . . . 4 (𝜑 → (𝐺func 𝐾) = (⟨(1st𝐺), (2nd𝐺)⟩ ∘func ⟨(1st𝐾), (2nd𝐾)⟩))
18 relfunc 17830 . . . . 5 Rel (𝐶 Func 𝐸)
1915, 16cofucl 17856 . . . . . 6 (𝜑 → (𝐺func 𝐾) ∈ (𝐶 Func 𝐸))
2011, 19eqeltrrd 2830 . . . . 5 (𝜑𝐹 ∈ (𝐶 Func 𝐸))
21 1st2nd 8020 . . . . 5 ((Rel (𝐶 Func 𝐸) ∧ 𝐹 ∈ (𝐶 Func 𝐸)) → 𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
2218, 20, 21sylancr 587 . . . 4 (𝜑𝐹 = ⟨(1st𝐹), (2nd𝐹)⟩)
2311, 17, 223eqtr3d 2773 . . 3 (𝜑 → (⟨(1st𝐺), (2nd𝐺)⟩ ∘func ⟨(1st𝐾), (2nd𝐾)⟩) = ⟨(1st𝐹), (2nd𝐹)⟩)
24 uptr2a.x . . 3 (𝜑𝑋𝐴)
2516func1st2nd 49055 . . 3 (𝜑 → (1st𝐺)(𝐷 Func 𝐸)(2nd𝐺))
261, 2, 3, 4, 10, 23, 24, 25uptr2 49200 . 2 (𝜑 → (𝑋(⟨(1st𝐹), (2nd𝐹)⟩(𝐶 UP 𝐸)𝑍)𝑀𝑌(⟨(1st𝐺), (2nd𝐺)⟩(𝐷 UP 𝐸)𝑍)𝑀))
2720up1st2ndb 49166 . 2 (𝜑 → (𝑋(𝐹(𝐶 UP 𝐸)𝑍)𝑀𝑋(⟨(1st𝐹), (2nd𝐹)⟩(𝐶 UP 𝐸)𝑍)𝑀))
2816up1st2ndb 49166 . 2 (𝜑 → (𝑌(𝐺(𝐷 UP 𝐸)𝑍)𝑀𝑌(⟨(1st𝐺), (2nd𝐺)⟩(𝐷 UP 𝐸)𝑍)𝑀))
2926, 27, 283bitr4d 311 1 (𝜑 → (𝑋(𝐹(𝐶 UP 𝐸)𝑍)𝑀𝑌(𝐺(𝐷 UP 𝐸)𝑍)𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  cin 3915  cop 4597   class class class wbr 5109  Rel wrel 5645  ontowfo 6511  cfv 6513  (class class class)co 7389  1st c1st 7968  2nd c2nd 7969  Basecbs 17185   Func cfunc 17822  func ccofu 17824   Full cful 17872   Faith cfth 17873   UP cup 49152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-1st 7970  df-2nd 7971  df-map 8803  df-ixp 8873  df-cat 17635  df-cid 17636  df-func 17826  df-cofu 17828  df-full 17874  df-fth 17875  df-up 49153
This theorem is referenced by:  lmdran  49650  cmdlan  49651
  Copyright terms: Public domain W3C validator