![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cpmatsubgpmat | Structured version Visualization version GIF version |
Description: The set of all constant polynomial matrices over a ring 𝑅 is an additive subgroup of the ring of all polynomial matrices over the ring 𝑅. (Contributed by AV, 15-Nov-2019.) |
Ref | Expression |
---|---|
cpmatsrngpmat.s | ⊢ 𝑆 = (𝑁 ConstPolyMat 𝑅) |
cpmatsrngpmat.p | ⊢ 𝑃 = (Poly1‘𝑅) |
cpmatsrngpmat.c | ⊢ 𝐶 = (𝑁 Mat 𝑃) |
Ref | Expression |
---|---|
cpmatsubgpmat | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ∈ (SubGrp‘𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cpmatsrngpmat.s | . . . 4 ⊢ 𝑆 = (𝑁 ConstPolyMat 𝑅) | |
2 | cpmatsrngpmat.p | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
3 | cpmatsrngpmat.c | . . . 4 ⊢ 𝐶 = (𝑁 Mat 𝑃) | |
4 | eqid 2727 | . . . 4 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
5 | 1, 2, 3, 4 | cpmat 22585 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 = {𝑚 ∈ (Base‘𝐶) ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g‘𝑅)}) |
6 | ssrab2 4073 | . . 3 ⊢ {𝑚 ∈ (Base‘𝐶) ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g‘𝑅)} ⊆ (Base‘𝐶) | |
7 | 5, 6 | eqsstrdi 4032 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ⊆ (Base‘𝐶)) |
8 | 1, 2, 3 | 1elcpmat 22591 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r‘𝐶) ∈ 𝑆) |
9 | 8 | ne0d 4331 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ≠ ∅) |
10 | 1, 2, 3 | cpmatacl 22592 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝐶)𝑦) ∈ 𝑆) |
11 | 1, 2, 3 | cpmatinvcl 22593 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ∀𝑥 ∈ 𝑆 ((invg‘𝐶)‘𝑥) ∈ 𝑆) |
12 | r19.26 3106 | . . 3 ⊢ (∀𝑥 ∈ 𝑆 (∀𝑦 ∈ 𝑆 (𝑥(+g‘𝐶)𝑦) ∈ 𝑆 ∧ ((invg‘𝐶)‘𝑥) ∈ 𝑆) ↔ (∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝐶)𝑦) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 ((invg‘𝐶)‘𝑥) ∈ 𝑆)) | |
13 | 10, 11, 12 | sylanbrc 582 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ∀𝑥 ∈ 𝑆 (∀𝑦 ∈ 𝑆 (𝑥(+g‘𝐶)𝑦) ∈ 𝑆 ∧ ((invg‘𝐶)‘𝑥) ∈ 𝑆)) |
14 | 2, 3 | pmatring 22568 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ Ring) |
15 | ringgrp 20162 | . . 3 ⊢ (𝐶 ∈ Ring → 𝐶 ∈ Grp) | |
16 | eqid 2727 | . . . 4 ⊢ (+g‘𝐶) = (+g‘𝐶) | |
17 | eqid 2727 | . . . 4 ⊢ (invg‘𝐶) = (invg‘𝐶) | |
18 | 4, 16, 17 | issubg2 19080 | . . 3 ⊢ (𝐶 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐶) ↔ (𝑆 ⊆ (Base‘𝐶) ∧ 𝑆 ≠ ∅ ∧ ∀𝑥 ∈ 𝑆 (∀𝑦 ∈ 𝑆 (𝑥(+g‘𝐶)𝑦) ∈ 𝑆 ∧ ((invg‘𝐶)‘𝑥) ∈ 𝑆)))) |
19 | 14, 15, 18 | 3syl 18 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑆 ∈ (SubGrp‘𝐶) ↔ (𝑆 ⊆ (Base‘𝐶) ∧ 𝑆 ≠ ∅ ∧ ∀𝑥 ∈ 𝑆 (∀𝑦 ∈ 𝑆 (𝑥(+g‘𝐶)𝑦) ∈ 𝑆 ∧ ((invg‘𝐶)‘𝑥) ∈ 𝑆)))) |
20 | 7, 9, 13, 19 | mpbir3and 1340 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ∈ (SubGrp‘𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 ≠ wne 2935 ∀wral 3056 {crab 3427 ⊆ wss 3944 ∅c0 4318 ‘cfv 6542 (class class class)co 7414 Fincfn 8953 ℕcn 12228 Basecbs 17165 +gcplusg 17218 0gc0g 17406 Grpcgrp 18875 invgcminusg 18876 SubGrpcsubg 19059 1rcur 20105 Ringcrg 20157 Poly1cpl1 22070 coe1cco1 22071 Mat cmat 22281 ConstPolyMat ccpmat 22579 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7732 ax-cnex 11180 ax-resscn 11181 ax-1cn 11182 ax-icn 11183 ax-addcl 11184 ax-addrcl 11185 ax-mulcl 11186 ax-mulrcl 11187 ax-mulcom 11188 ax-addass 11189 ax-mulass 11190 ax-distr 11191 ax-i2m1 11192 ax-1ne0 11193 ax-1rid 11194 ax-rnegex 11195 ax-rrecex 11196 ax-cnre 11197 ax-pre-lttri 11198 ax-pre-lttrn 11199 ax-pre-ltadd 11200 ax-pre-mulgt0 11201 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-ot 4633 df-uni 4904 df-int 4945 df-iun 4993 df-iin 4994 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-of 7677 df-ofr 7678 df-om 7863 df-1st 7985 df-2nd 7986 df-supp 8158 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-er 8716 df-map 8836 df-pm 8837 df-ixp 8906 df-en 8954 df-dom 8955 df-sdom 8956 df-fin 8957 df-fsupp 9376 df-sup 9451 df-oi 9519 df-card 9948 df-pnf 11266 df-mnf 11267 df-xr 11268 df-ltxr 11269 df-le 11270 df-sub 11462 df-neg 11463 df-nn 12229 df-2 12291 df-3 12292 df-4 12293 df-5 12294 df-6 12295 df-7 12296 df-8 12297 df-9 12298 df-n0 12489 df-z 12575 df-dec 12694 df-uz 12839 df-fz 13503 df-fzo 13646 df-seq 13985 df-hash 14308 df-struct 17101 df-sets 17118 df-slot 17136 df-ndx 17148 df-base 17166 df-ress 17195 df-plusg 17231 df-mulr 17232 df-sca 17234 df-vsca 17235 df-ip 17236 df-tset 17237 df-ple 17238 df-ds 17240 df-hom 17242 df-cco 17243 df-0g 17408 df-gsum 17409 df-prds 17414 df-pws 17416 df-mre 17551 df-mrc 17552 df-acs 17554 df-mgm 18585 df-sgrp 18664 df-mnd 18680 df-mhm 18725 df-submnd 18726 df-grp 18878 df-minusg 18879 df-sbg 18880 df-mulg 19008 df-subg 19062 df-ghm 19152 df-cntz 19252 df-cmn 19721 df-abl 19722 df-mgp 20059 df-rng 20077 df-ur 20106 df-srg 20111 df-ring 20159 df-subrng 20465 df-subrg 20490 df-lmod 20727 df-lss 20798 df-sra 21040 df-rgmod 21041 df-dsmm 21646 df-frlm 21661 df-ascl 21769 df-psr 21822 df-mvr 21823 df-mpl 21824 df-opsr 21826 df-psr1 22073 df-vr1 22074 df-ply1 22075 df-coe1 22076 df-mamu 22260 df-mat 22282 df-cpmat 22582 |
This theorem is referenced by: cpmatsrgpmat 22597 0elcpmat 22598 m2cpmghm 22620 chfacfisfcpmat 22731 |
Copyright terms: Public domain | W3C validator |