![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cpmatsubgpmat | Structured version Visualization version GIF version |
Description: The set of all constant polynomial matrices over a ring 𝑅 is an additive subgroup of the ring of all polynomial matrices over the ring 𝑅. (Contributed by AV, 15-Nov-2019.) |
Ref | Expression |
---|---|
cpmatsrngpmat.s | ⊢ 𝑆 = (𝑁 ConstPolyMat 𝑅) |
cpmatsrngpmat.p | ⊢ 𝑃 = (Poly1‘𝑅) |
cpmatsrngpmat.c | ⊢ 𝐶 = (𝑁 Mat 𝑃) |
Ref | Expression |
---|---|
cpmatsubgpmat | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ∈ (SubGrp‘𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cpmatsrngpmat.s | . . . 4 ⊢ 𝑆 = (𝑁 ConstPolyMat 𝑅) | |
2 | cpmatsrngpmat.p | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
3 | cpmatsrngpmat.c | . . . 4 ⊢ 𝐶 = (𝑁 Mat 𝑃) | |
4 | eqid 2734 | . . . 4 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
5 | 1, 2, 3, 4 | cpmat 22730 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 = {𝑚 ∈ (Base‘𝐶) ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g‘𝑅)}) |
6 | ssrab2 4089 | . . 3 ⊢ {𝑚 ∈ (Base‘𝐶) ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g‘𝑅)} ⊆ (Base‘𝐶) | |
7 | 5, 6 | eqsstrdi 4049 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ⊆ (Base‘𝐶)) |
8 | 1, 2, 3 | 1elcpmat 22736 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r‘𝐶) ∈ 𝑆) |
9 | 8 | ne0d 4347 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ≠ ∅) |
10 | 1, 2, 3 | cpmatacl 22737 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝐶)𝑦) ∈ 𝑆) |
11 | 1, 2, 3 | cpmatinvcl 22738 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ∀𝑥 ∈ 𝑆 ((invg‘𝐶)‘𝑥) ∈ 𝑆) |
12 | r19.26 3108 | . . 3 ⊢ (∀𝑥 ∈ 𝑆 (∀𝑦 ∈ 𝑆 (𝑥(+g‘𝐶)𝑦) ∈ 𝑆 ∧ ((invg‘𝐶)‘𝑥) ∈ 𝑆) ↔ (∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝐶)𝑦) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 ((invg‘𝐶)‘𝑥) ∈ 𝑆)) | |
13 | 10, 11, 12 | sylanbrc 583 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ∀𝑥 ∈ 𝑆 (∀𝑦 ∈ 𝑆 (𝑥(+g‘𝐶)𝑦) ∈ 𝑆 ∧ ((invg‘𝐶)‘𝑥) ∈ 𝑆)) |
14 | 2, 3 | pmatring 22713 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ Ring) |
15 | ringgrp 20255 | . . 3 ⊢ (𝐶 ∈ Ring → 𝐶 ∈ Grp) | |
16 | eqid 2734 | . . . 4 ⊢ (+g‘𝐶) = (+g‘𝐶) | |
17 | eqid 2734 | . . . 4 ⊢ (invg‘𝐶) = (invg‘𝐶) | |
18 | 4, 16, 17 | issubg2 19171 | . . 3 ⊢ (𝐶 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐶) ↔ (𝑆 ⊆ (Base‘𝐶) ∧ 𝑆 ≠ ∅ ∧ ∀𝑥 ∈ 𝑆 (∀𝑦 ∈ 𝑆 (𝑥(+g‘𝐶)𝑦) ∈ 𝑆 ∧ ((invg‘𝐶)‘𝑥) ∈ 𝑆)))) |
19 | 14, 15, 18 | 3syl 18 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑆 ∈ (SubGrp‘𝐶) ↔ (𝑆 ⊆ (Base‘𝐶) ∧ 𝑆 ≠ ∅ ∧ ∀𝑥 ∈ 𝑆 (∀𝑦 ∈ 𝑆 (𝑥(+g‘𝐶)𝑦) ∈ 𝑆 ∧ ((invg‘𝐶)‘𝑥) ∈ 𝑆)))) |
20 | 7, 9, 13, 19 | mpbir3and 1341 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ∈ (SubGrp‘𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1536 ∈ wcel 2105 ≠ wne 2937 ∀wral 3058 {crab 3432 ⊆ wss 3962 ∅c0 4338 ‘cfv 6562 (class class class)co 7430 Fincfn 8983 ℕcn 12263 Basecbs 17244 +gcplusg 17297 0gc0g 17485 Grpcgrp 18963 invgcminusg 18964 SubGrpcsubg 19150 1rcur 20198 Ringcrg 20250 Poly1cpl1 22193 coe1cco1 22194 Mat cmat 22426 ConstPolyMat ccpmat 22724 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-ot 4639 df-uni 4912 df-int 4951 df-iun 4997 df-iin 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-se 5641 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-isom 6571 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-of 7696 df-ofr 7697 df-om 7887 df-1st 8012 df-2nd 8013 df-supp 8184 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-1o 8504 df-2o 8505 df-er 8743 df-map 8866 df-pm 8867 df-ixp 8936 df-en 8984 df-dom 8985 df-sdom 8986 df-fin 8987 df-fsupp 9399 df-sup 9479 df-oi 9547 df-card 9976 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-nn 12264 df-2 12326 df-3 12327 df-4 12328 df-5 12329 df-6 12330 df-7 12331 df-8 12332 df-9 12333 df-n0 12524 df-z 12611 df-dec 12731 df-uz 12876 df-fz 13544 df-fzo 13691 df-seq 14039 df-hash 14366 df-struct 17180 df-sets 17197 df-slot 17215 df-ndx 17227 df-base 17245 df-ress 17274 df-plusg 17310 df-mulr 17311 df-sca 17313 df-vsca 17314 df-ip 17315 df-tset 17316 df-ple 17317 df-ds 17319 df-hom 17321 df-cco 17322 df-0g 17487 df-gsum 17488 df-prds 17493 df-pws 17495 df-mre 17630 df-mrc 17631 df-acs 17633 df-mgm 18665 df-sgrp 18744 df-mnd 18760 df-mhm 18808 df-submnd 18809 df-grp 18966 df-minusg 18967 df-sbg 18968 df-mulg 19098 df-subg 19153 df-ghm 19243 df-cntz 19347 df-cmn 19814 df-abl 19815 df-mgp 20152 df-rng 20170 df-ur 20199 df-srg 20204 df-ring 20252 df-subrng 20562 df-subrg 20586 df-lmod 20876 df-lss 20947 df-sra 21189 df-rgmod 21190 df-dsmm 21769 df-frlm 21784 df-ascl 21892 df-psr 21946 df-mvr 21947 df-mpl 21948 df-opsr 21950 df-psr1 22196 df-vr1 22197 df-ply1 22198 df-coe1 22199 df-mamu 22410 df-mat 22427 df-cpmat 22727 |
This theorem is referenced by: cpmatsrgpmat 22742 0elcpmat 22743 m2cpmghm 22765 chfacfisfcpmat 22876 |
Copyright terms: Public domain | W3C validator |