| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cpmatsubgpmat | Structured version Visualization version GIF version | ||
| Description: The set of all constant polynomial matrices over a ring 𝑅 is an additive subgroup of the ring of all polynomial matrices over the ring 𝑅. (Contributed by AV, 15-Nov-2019.) |
| Ref | Expression |
|---|---|
| cpmatsrngpmat.s | ⊢ 𝑆 = (𝑁 ConstPolyMat 𝑅) |
| cpmatsrngpmat.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| cpmatsrngpmat.c | ⊢ 𝐶 = (𝑁 Mat 𝑃) |
| Ref | Expression |
|---|---|
| cpmatsubgpmat | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ∈ (SubGrp‘𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cpmatsrngpmat.s | . . . 4 ⊢ 𝑆 = (𝑁 ConstPolyMat 𝑅) | |
| 2 | cpmatsrngpmat.p | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 3 | cpmatsrngpmat.c | . . . 4 ⊢ 𝐶 = (𝑁 Mat 𝑃) | |
| 4 | eqid 2735 | . . . 4 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 5 | 1, 2, 3, 4 | cpmat 22645 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 = {𝑚 ∈ (Base‘𝐶) ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g‘𝑅)}) |
| 6 | ssrab2 4055 | . . 3 ⊢ {𝑚 ∈ (Base‘𝐶) ∣ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g‘𝑅)} ⊆ (Base‘𝐶) | |
| 7 | 5, 6 | eqsstrdi 4003 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ⊆ (Base‘𝐶)) |
| 8 | 1, 2, 3 | 1elcpmat 22651 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r‘𝐶) ∈ 𝑆) |
| 9 | 8 | ne0d 4317 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ≠ ∅) |
| 10 | 1, 2, 3 | cpmatacl 22652 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝐶)𝑦) ∈ 𝑆) |
| 11 | 1, 2, 3 | cpmatinvcl 22653 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ∀𝑥 ∈ 𝑆 ((invg‘𝐶)‘𝑥) ∈ 𝑆) |
| 12 | r19.26 3098 | . . 3 ⊢ (∀𝑥 ∈ 𝑆 (∀𝑦 ∈ 𝑆 (𝑥(+g‘𝐶)𝑦) ∈ 𝑆 ∧ ((invg‘𝐶)‘𝑥) ∈ 𝑆) ↔ (∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝐶)𝑦) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 ((invg‘𝐶)‘𝑥) ∈ 𝑆)) | |
| 13 | 10, 11, 12 | sylanbrc 583 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ∀𝑥 ∈ 𝑆 (∀𝑦 ∈ 𝑆 (𝑥(+g‘𝐶)𝑦) ∈ 𝑆 ∧ ((invg‘𝐶)‘𝑥) ∈ 𝑆)) |
| 14 | 2, 3 | pmatring 22628 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ Ring) |
| 15 | ringgrp 20196 | . . 3 ⊢ (𝐶 ∈ Ring → 𝐶 ∈ Grp) | |
| 16 | eqid 2735 | . . . 4 ⊢ (+g‘𝐶) = (+g‘𝐶) | |
| 17 | eqid 2735 | . . . 4 ⊢ (invg‘𝐶) = (invg‘𝐶) | |
| 18 | 4, 16, 17 | issubg2 19122 | . . 3 ⊢ (𝐶 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐶) ↔ (𝑆 ⊆ (Base‘𝐶) ∧ 𝑆 ≠ ∅ ∧ ∀𝑥 ∈ 𝑆 (∀𝑦 ∈ 𝑆 (𝑥(+g‘𝐶)𝑦) ∈ 𝑆 ∧ ((invg‘𝐶)‘𝑥) ∈ 𝑆)))) |
| 19 | 14, 15, 18 | 3syl 18 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑆 ∈ (SubGrp‘𝐶) ↔ (𝑆 ⊆ (Base‘𝐶) ∧ 𝑆 ≠ ∅ ∧ ∀𝑥 ∈ 𝑆 (∀𝑦 ∈ 𝑆 (𝑥(+g‘𝐶)𝑦) ∈ 𝑆 ∧ ((invg‘𝐶)‘𝑥) ∈ 𝑆)))) |
| 20 | 7, 9, 13, 19 | mpbir3and 1343 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ∈ (SubGrp‘𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ∀wral 3051 {crab 3415 ⊆ wss 3926 ∅c0 4308 ‘cfv 6530 (class class class)co 7403 Fincfn 8957 ℕcn 12238 Basecbs 17226 +gcplusg 17269 0gc0g 17451 Grpcgrp 18914 invgcminusg 18915 SubGrpcsubg 19101 1rcur 20139 Ringcrg 20191 Poly1cpl1 22110 coe1cco1 22111 Mat cmat 22343 ConstPolyMat ccpmat 22639 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-ot 4610 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-isom 6539 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-of 7669 df-ofr 7670 df-om 7860 df-1st 7986 df-2nd 7987 df-supp 8158 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-2o 8479 df-er 8717 df-map 8840 df-pm 8841 df-ixp 8910 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-fsupp 9372 df-sup 9452 df-oi 9522 df-card 9951 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-nn 12239 df-2 12301 df-3 12302 df-4 12303 df-5 12304 df-6 12305 df-7 12306 df-8 12307 df-9 12308 df-n0 12500 df-z 12587 df-dec 12707 df-uz 12851 df-fz 13523 df-fzo 13670 df-seq 14018 df-hash 14347 df-struct 17164 df-sets 17181 df-slot 17199 df-ndx 17211 df-base 17227 df-ress 17250 df-plusg 17282 df-mulr 17283 df-sca 17285 df-vsca 17286 df-ip 17287 df-tset 17288 df-ple 17289 df-ds 17291 df-hom 17293 df-cco 17294 df-0g 17453 df-gsum 17454 df-prds 17459 df-pws 17461 df-mre 17596 df-mrc 17597 df-acs 17599 df-mgm 18616 df-sgrp 18695 df-mnd 18711 df-mhm 18759 df-submnd 18760 df-grp 18917 df-minusg 18918 df-sbg 18919 df-mulg 19049 df-subg 19104 df-ghm 19194 df-cntz 19298 df-cmn 19761 df-abl 19762 df-mgp 20099 df-rng 20111 df-ur 20140 df-srg 20145 df-ring 20193 df-subrng 20504 df-subrg 20528 df-lmod 20817 df-lss 20887 df-sra 21129 df-rgmod 21130 df-dsmm 21690 df-frlm 21705 df-ascl 21813 df-psr 21867 df-mvr 21868 df-mpl 21869 df-opsr 21871 df-psr1 22113 df-vr1 22114 df-ply1 22115 df-coe1 22116 df-mamu 22327 df-mat 22344 df-cpmat 22642 |
| This theorem is referenced by: cpmatsrgpmat 22657 0elcpmat 22658 m2cpmghm 22680 chfacfisfcpmat 22791 |
| Copyright terms: Public domain | W3C validator |