![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mptcoe1fsupp | Structured version Visualization version GIF version |
Description: A mapping involving coefficients of polynomials is finitely supported. (Contributed by AV, 12-Oct-2019.) |
Ref | Expression |
---|---|
mptcoe1fsupp.p | ⊢ 𝑃 = (Poly1‘𝑅) |
mptcoe1fsupp.b | ⊢ 𝐵 = (Base‘𝑃) |
mptcoe1fsupp.0 | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
mptcoe1fsupp | ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑘 ∈ ℕ0 ↦ ((coe1‘𝑀)‘𝑘)) finSupp 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mptcoe1fsupp.0 | . . . 4 ⊢ 0 = (0g‘𝑅) | |
2 | 1 | fvexi 6857 | . . 3 ⊢ 0 ∈ V |
3 | 2 | a1i 11 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → 0 ∈ V) |
4 | eqid 2733 | . . . 4 ⊢ (coe1‘𝑀) = (coe1‘𝑀) | |
5 | mptcoe1fsupp.b | . . . 4 ⊢ 𝐵 = (Base‘𝑃) | |
6 | mptcoe1fsupp.p | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
7 | eqid 2733 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
8 | 4, 5, 6, 7 | coe1fvalcl 21599 | . . 3 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝑘 ∈ ℕ0) → ((coe1‘𝑀)‘𝑘) ∈ (Base‘𝑅)) |
9 | 8 | adantll 713 | . 2 ⊢ (((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) → ((coe1‘𝑀)‘𝑘) ∈ (Base‘𝑅)) |
10 | simpr 486 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → 𝑀 ∈ 𝐵) | |
11 | 4, 5, 6, 1, 7 | coe1fsupp 21601 | . . . . . 6 ⊢ (𝑀 ∈ 𝐵 → (coe1‘𝑀) ∈ {𝑐 ∈ ((Base‘𝑅) ↑m ℕ0) ∣ 𝑐 finSupp 0 }) |
12 | elrabi 3640 | . . . . . 6 ⊢ ((coe1‘𝑀) ∈ {𝑐 ∈ ((Base‘𝑅) ↑m ℕ0) ∣ 𝑐 finSupp 0 } → (coe1‘𝑀) ∈ ((Base‘𝑅) ↑m ℕ0)) | |
13 | 10, 11, 12 | 3syl 18 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (coe1‘𝑀) ∈ ((Base‘𝑅) ↑m ℕ0)) |
14 | 13, 2 | jctir 522 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ((coe1‘𝑀) ∈ ((Base‘𝑅) ↑m ℕ0) ∧ 0 ∈ V)) |
15 | 4, 5, 6, 1 | coe1sfi 21600 | . . . . 5 ⊢ (𝑀 ∈ 𝐵 → (coe1‘𝑀) finSupp 0 ) |
16 | 15 | adantl 483 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (coe1‘𝑀) finSupp 0 ) |
17 | fsuppmapnn0ub 13906 | . . . 4 ⊢ (((coe1‘𝑀) ∈ ((Base‘𝑅) ↑m ℕ0) ∧ 0 ∈ V) → ((coe1‘𝑀) finSupp 0 → ∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1‘𝑀)‘𝑥) = 0 ))) | |
18 | 14, 16, 17 | sylc 65 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1‘𝑀)‘𝑥) = 0 )) |
19 | csbfv 6893 | . . . . . . . 8 ⊢ ⦋𝑥 / 𝑘⦌((coe1‘𝑀)‘𝑘) = ((coe1‘𝑀)‘𝑥) | |
20 | simpr 486 | . . . . . . . 8 ⊢ ((((((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑠 < 𝑥) ∧ ((coe1‘𝑀)‘𝑥) = 0 ) → ((coe1‘𝑀)‘𝑥) = 0 ) | |
21 | 19, 20 | eqtrid 2785 | . . . . . . 7 ⊢ ((((((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑠 < 𝑥) ∧ ((coe1‘𝑀)‘𝑥) = 0 ) → ⦋𝑥 / 𝑘⦌((coe1‘𝑀)‘𝑘) = 0 ) |
22 | 21 | exp31 421 | . . . . . 6 ⊢ ((((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → (𝑠 < 𝑥 → (((coe1‘𝑀)‘𝑥) = 0 → ⦋𝑥 / 𝑘⦌((coe1‘𝑀)‘𝑘) = 0 ))) |
23 | 22 | a2d 29 | . . . . 5 ⊢ ((((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ((𝑠 < 𝑥 → ((coe1‘𝑀)‘𝑥) = 0 ) → (𝑠 < 𝑥 → ⦋𝑥 / 𝑘⦌((coe1‘𝑀)‘𝑘) = 0 ))) |
24 | 23 | ralimdva 3161 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ0) → (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1‘𝑀)‘𝑥) = 0 ) → ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ⦋𝑥 / 𝑘⦌((coe1‘𝑀)‘𝑘) = 0 ))) |
25 | 24 | reximdva 3162 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1‘𝑀)‘𝑥) = 0 ) → ∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ⦋𝑥 / 𝑘⦌((coe1‘𝑀)‘𝑘) = 0 ))) |
26 | 18, 25 | mpd 15 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ⦋𝑥 / 𝑘⦌((coe1‘𝑀)‘𝑘) = 0 )) |
27 | 3, 9, 26 | mptnn0fsupp 13908 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑘 ∈ ℕ0 ↦ ((coe1‘𝑀)‘𝑘)) finSupp 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∀wral 3061 ∃wrex 3070 {crab 3406 Vcvv 3444 ⦋csb 3856 class class class wbr 5106 ↦ cmpt 5189 ‘cfv 6497 (class class class)co 7358 ↑m cmap 8768 finSupp cfsupp 9308 < clt 11194 ℕ0cn0 12418 Basecbs 17088 0gc0g 17326 Ringcrg 19969 Poly1cpl1 21564 coe1cco1 21565 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5243 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-cnex 11112 ax-resscn 11113 ax-1cn 11114 ax-icn 11115 ax-addcl 11116 ax-addrcl 11117 ax-mulcl 11118 ax-mulrcl 11119 ax-mulcom 11120 ax-addass 11121 ax-mulass 11122 ax-distr 11123 ax-i2m1 11124 ax-1ne0 11125 ax-1rid 11126 ax-rnegex 11127 ax-rrecex 11128 ax-cnre 11129 ax-pre-lttri 11130 ax-pre-lttrn 11131 ax-pre-ltadd 11132 ax-pre-mulgt0 11133 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3352 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3930 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-tp 4592 df-op 4594 df-uni 4867 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-tr 5224 df-id 5532 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5589 df-we 5591 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-pred 6254 df-ord 6321 df-on 6322 df-lim 6323 df-suc 6324 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-riota 7314 df-ov 7361 df-oprab 7362 df-mpo 7363 df-of 7618 df-om 7804 df-1st 7922 df-2nd 7923 df-supp 8094 df-frecs 8213 df-wrecs 8244 df-recs 8318 df-rdg 8357 df-1o 8413 df-er 8651 df-map 8770 df-en 8887 df-dom 8888 df-sdom 8889 df-fin 8890 df-fsupp 9309 df-pnf 11196 df-mnf 11197 df-xr 11198 df-ltxr 11199 df-le 11200 df-sub 11392 df-neg 11393 df-nn 12159 df-2 12221 df-3 12222 df-4 12223 df-5 12224 df-6 12225 df-7 12226 df-8 12227 df-9 12228 df-n0 12419 df-z 12505 df-dec 12624 df-uz 12769 df-fz 13431 df-struct 17024 df-sets 17041 df-slot 17059 df-ndx 17071 df-base 17089 df-ress 17118 df-plusg 17151 df-mulr 17152 df-sca 17154 df-vsca 17155 df-tset 17157 df-ple 17158 df-psr 21327 df-mpl 21329 df-opsr 21331 df-psr1 21567 df-ply1 21569 df-coe1 21570 |
This theorem is referenced by: mp2pm2mplem5 22175 cpmidpmatlem3 22237 chcoeffeqlem 22250 |
Copyright terms: Public domain | W3C validator |