![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mptcoe1fsupp | Structured version Visualization version GIF version |
Description: A mapping involving coefficients of polynomials is finitely supported. (Contributed by AV, 12-Oct-2019.) |
Ref | Expression |
---|---|
mptcoe1fsupp.p | ⊢ 𝑃 = (Poly1‘𝑅) |
mptcoe1fsupp.b | ⊢ 𝐵 = (Base‘𝑃) |
mptcoe1fsupp.0 | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
mptcoe1fsupp | ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑘 ∈ ℕ0 ↦ ((coe1‘𝑀)‘𝑘)) finSupp 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mptcoe1fsupp.0 | . . . 4 ⊢ 0 = (0g‘𝑅) | |
2 | 1 | fvexi 6905 | . . 3 ⊢ 0 ∈ V |
3 | 2 | a1i 11 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → 0 ∈ V) |
4 | eqid 2727 | . . . 4 ⊢ (coe1‘𝑀) = (coe1‘𝑀) | |
5 | mptcoe1fsupp.b | . . . 4 ⊢ 𝐵 = (Base‘𝑃) | |
6 | mptcoe1fsupp.p | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
7 | eqid 2727 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
8 | 4, 5, 6, 7 | coe1fvalcl 22105 | . . 3 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝑘 ∈ ℕ0) → ((coe1‘𝑀)‘𝑘) ∈ (Base‘𝑅)) |
9 | 8 | adantll 713 | . 2 ⊢ (((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) → ((coe1‘𝑀)‘𝑘) ∈ (Base‘𝑅)) |
10 | simpr 484 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → 𝑀 ∈ 𝐵) | |
11 | 4, 5, 6, 1, 7 | coe1fsupp 22107 | . . . . . 6 ⊢ (𝑀 ∈ 𝐵 → (coe1‘𝑀) ∈ {𝑐 ∈ ((Base‘𝑅) ↑m ℕ0) ∣ 𝑐 finSupp 0 }) |
12 | elrabi 3674 | . . . . . 6 ⊢ ((coe1‘𝑀) ∈ {𝑐 ∈ ((Base‘𝑅) ↑m ℕ0) ∣ 𝑐 finSupp 0 } → (coe1‘𝑀) ∈ ((Base‘𝑅) ↑m ℕ0)) | |
13 | 10, 11, 12 | 3syl 18 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (coe1‘𝑀) ∈ ((Base‘𝑅) ↑m ℕ0)) |
14 | 13, 2 | jctir 520 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ((coe1‘𝑀) ∈ ((Base‘𝑅) ↑m ℕ0) ∧ 0 ∈ V)) |
15 | 4, 5, 6, 1 | coe1sfi 22106 | . . . . 5 ⊢ (𝑀 ∈ 𝐵 → (coe1‘𝑀) finSupp 0 ) |
16 | 15 | adantl 481 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (coe1‘𝑀) finSupp 0 ) |
17 | fsuppmapnn0ub 13978 | . . . 4 ⊢ (((coe1‘𝑀) ∈ ((Base‘𝑅) ↑m ℕ0) ∧ 0 ∈ V) → ((coe1‘𝑀) finSupp 0 → ∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1‘𝑀)‘𝑥) = 0 ))) | |
18 | 14, 16, 17 | sylc 65 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1‘𝑀)‘𝑥) = 0 )) |
19 | csbfv 6941 | . . . . . . . 8 ⊢ ⦋𝑥 / 𝑘⦌((coe1‘𝑀)‘𝑘) = ((coe1‘𝑀)‘𝑥) | |
20 | simpr 484 | . . . . . . . 8 ⊢ ((((((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑠 < 𝑥) ∧ ((coe1‘𝑀)‘𝑥) = 0 ) → ((coe1‘𝑀)‘𝑥) = 0 ) | |
21 | 19, 20 | eqtrid 2779 | . . . . . . 7 ⊢ ((((((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑠 < 𝑥) ∧ ((coe1‘𝑀)‘𝑥) = 0 ) → ⦋𝑥 / 𝑘⦌((coe1‘𝑀)‘𝑘) = 0 ) |
22 | 21 | exp31 419 | . . . . . 6 ⊢ ((((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → (𝑠 < 𝑥 → (((coe1‘𝑀)‘𝑥) = 0 → ⦋𝑥 / 𝑘⦌((coe1‘𝑀)‘𝑘) = 0 ))) |
23 | 22 | a2d 29 | . . . . 5 ⊢ ((((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ((𝑠 < 𝑥 → ((coe1‘𝑀)‘𝑥) = 0 ) → (𝑠 < 𝑥 → ⦋𝑥 / 𝑘⦌((coe1‘𝑀)‘𝑘) = 0 ))) |
24 | 23 | ralimdva 3162 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ0) → (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1‘𝑀)‘𝑥) = 0 ) → ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ⦋𝑥 / 𝑘⦌((coe1‘𝑀)‘𝑘) = 0 ))) |
25 | 24 | reximdva 3163 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1‘𝑀)‘𝑥) = 0 ) → ∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ⦋𝑥 / 𝑘⦌((coe1‘𝑀)‘𝑘) = 0 ))) |
26 | 18, 25 | mpd 15 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ⦋𝑥 / 𝑘⦌((coe1‘𝑀)‘𝑘) = 0 )) |
27 | 3, 9, 26 | mptnn0fsupp 13980 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑘 ∈ ℕ0 ↦ ((coe1‘𝑀)‘𝑘)) finSupp 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∀wral 3056 ∃wrex 3065 {crab 3427 Vcvv 3469 ⦋csb 3889 class class class wbr 5142 ↦ cmpt 5225 ‘cfv 6542 (class class class)co 7414 ↑m cmap 8834 finSupp cfsupp 9375 < clt 11264 ℕ0cn0 12488 Basecbs 17165 0gc0g 17406 Ringcrg 20157 Poly1cpl1 22070 coe1cco1 22071 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7732 ax-cnex 11180 ax-resscn 11181 ax-1cn 11182 ax-icn 11183 ax-addcl 11184 ax-addrcl 11185 ax-mulcl 11186 ax-mulrcl 11187 ax-mulcom 11188 ax-addass 11189 ax-mulass 11190 ax-distr 11191 ax-i2m1 11192 ax-1ne0 11193 ax-1rid 11194 ax-rnegex 11195 ax-rrecex 11196 ax-cnre 11197 ax-pre-lttri 11198 ax-pre-lttrn 11199 ax-pre-ltadd 11200 ax-pre-mulgt0 11201 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-of 7677 df-om 7863 df-1st 7985 df-2nd 7986 df-supp 8158 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-er 8716 df-map 8836 df-en 8954 df-dom 8955 df-sdom 8956 df-fin 8957 df-fsupp 9376 df-pnf 11266 df-mnf 11267 df-xr 11268 df-ltxr 11269 df-le 11270 df-sub 11462 df-neg 11463 df-nn 12229 df-2 12291 df-3 12292 df-4 12293 df-5 12294 df-6 12295 df-7 12296 df-8 12297 df-9 12298 df-n0 12489 df-z 12575 df-dec 12694 df-uz 12839 df-fz 13503 df-struct 17101 df-sets 17118 df-slot 17136 df-ndx 17148 df-base 17166 df-ress 17195 df-plusg 17231 df-mulr 17232 df-sca 17234 df-vsca 17235 df-tset 17237 df-ple 17238 df-psr 21822 df-mpl 21824 df-opsr 21826 df-psr1 22073 df-ply1 22075 df-coe1 22076 |
This theorem is referenced by: mp2pm2mplem5 22686 cpmidpmatlem3 22748 chcoeffeqlem 22761 evls1fldgencl 33277 |
Copyright terms: Public domain | W3C validator |