![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mptcoe1fsupp | Structured version Visualization version GIF version |
Description: A mapping involving coefficients of polynomials is finitely supported. (Contributed by AV, 12-Oct-2019.) |
Ref | Expression |
---|---|
mptcoe1fsupp.p | ⊢ 𝑃 = (Poly1‘𝑅) |
mptcoe1fsupp.b | ⊢ 𝐵 = (Base‘𝑃) |
mptcoe1fsupp.0 | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
mptcoe1fsupp | ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑘 ∈ ℕ0 ↦ ((coe1‘𝑀)‘𝑘)) finSupp 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mptcoe1fsupp.0 | . . . 4 ⊢ 0 = (0g‘𝑅) | |
2 | 1 | fvexi 6906 | . . 3 ⊢ 0 ∈ V |
3 | 2 | a1i 11 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → 0 ∈ V) |
4 | eqid 2733 | . . . 4 ⊢ (coe1‘𝑀) = (coe1‘𝑀) | |
5 | mptcoe1fsupp.b | . . . 4 ⊢ 𝐵 = (Base‘𝑃) | |
6 | mptcoe1fsupp.p | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
7 | eqid 2733 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
8 | 4, 5, 6, 7 | coe1fvalcl 21736 | . . 3 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝑘 ∈ ℕ0) → ((coe1‘𝑀)‘𝑘) ∈ (Base‘𝑅)) |
9 | 8 | adantll 713 | . 2 ⊢ (((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) → ((coe1‘𝑀)‘𝑘) ∈ (Base‘𝑅)) |
10 | simpr 486 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → 𝑀 ∈ 𝐵) | |
11 | 4, 5, 6, 1, 7 | coe1fsupp 21738 | . . . . . 6 ⊢ (𝑀 ∈ 𝐵 → (coe1‘𝑀) ∈ {𝑐 ∈ ((Base‘𝑅) ↑m ℕ0) ∣ 𝑐 finSupp 0 }) |
12 | elrabi 3678 | . . . . . 6 ⊢ ((coe1‘𝑀) ∈ {𝑐 ∈ ((Base‘𝑅) ↑m ℕ0) ∣ 𝑐 finSupp 0 } → (coe1‘𝑀) ∈ ((Base‘𝑅) ↑m ℕ0)) | |
13 | 10, 11, 12 | 3syl 18 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (coe1‘𝑀) ∈ ((Base‘𝑅) ↑m ℕ0)) |
14 | 13, 2 | jctir 522 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ((coe1‘𝑀) ∈ ((Base‘𝑅) ↑m ℕ0) ∧ 0 ∈ V)) |
15 | 4, 5, 6, 1 | coe1sfi 21737 | . . . . 5 ⊢ (𝑀 ∈ 𝐵 → (coe1‘𝑀) finSupp 0 ) |
16 | 15 | adantl 483 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (coe1‘𝑀) finSupp 0 ) |
17 | fsuppmapnn0ub 13960 | . . . 4 ⊢ (((coe1‘𝑀) ∈ ((Base‘𝑅) ↑m ℕ0) ∧ 0 ∈ V) → ((coe1‘𝑀) finSupp 0 → ∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1‘𝑀)‘𝑥) = 0 ))) | |
18 | 14, 16, 17 | sylc 65 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1‘𝑀)‘𝑥) = 0 )) |
19 | csbfv 6942 | . . . . . . . 8 ⊢ ⦋𝑥 / 𝑘⦌((coe1‘𝑀)‘𝑘) = ((coe1‘𝑀)‘𝑥) | |
20 | simpr 486 | . . . . . . . 8 ⊢ ((((((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑠 < 𝑥) ∧ ((coe1‘𝑀)‘𝑥) = 0 ) → ((coe1‘𝑀)‘𝑥) = 0 ) | |
21 | 19, 20 | eqtrid 2785 | . . . . . . 7 ⊢ ((((((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑠 < 𝑥) ∧ ((coe1‘𝑀)‘𝑥) = 0 ) → ⦋𝑥 / 𝑘⦌((coe1‘𝑀)‘𝑘) = 0 ) |
22 | 21 | exp31 421 | . . . . . 6 ⊢ ((((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → (𝑠 < 𝑥 → (((coe1‘𝑀)‘𝑥) = 0 → ⦋𝑥 / 𝑘⦌((coe1‘𝑀)‘𝑘) = 0 ))) |
23 | 22 | a2d 29 | . . . . 5 ⊢ ((((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ((𝑠 < 𝑥 → ((coe1‘𝑀)‘𝑥) = 0 ) → (𝑠 < 𝑥 → ⦋𝑥 / 𝑘⦌((coe1‘𝑀)‘𝑘) = 0 ))) |
24 | 23 | ralimdva 3168 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ0) → (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1‘𝑀)‘𝑥) = 0 ) → ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ⦋𝑥 / 𝑘⦌((coe1‘𝑀)‘𝑘) = 0 ))) |
25 | 24 | reximdva 3169 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1‘𝑀)‘𝑥) = 0 ) → ∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ⦋𝑥 / 𝑘⦌((coe1‘𝑀)‘𝑘) = 0 ))) |
26 | 18, 25 | mpd 15 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ⦋𝑥 / 𝑘⦌((coe1‘𝑀)‘𝑘) = 0 )) |
27 | 3, 9, 26 | mptnn0fsupp 13962 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑘 ∈ ℕ0 ↦ ((coe1‘𝑀)‘𝑘)) finSupp 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∀wral 3062 ∃wrex 3071 {crab 3433 Vcvv 3475 ⦋csb 3894 class class class wbr 5149 ↦ cmpt 5232 ‘cfv 6544 (class class class)co 7409 ↑m cmap 8820 finSupp cfsupp 9361 < clt 11248 ℕ0cn0 12472 Basecbs 17144 0gc0g 17385 Ringcrg 20056 Poly1cpl1 21701 coe1cco1 21702 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-of 7670 df-om 7856 df-1st 7975 df-2nd 7976 df-supp 8147 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-er 8703 df-map 8822 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-fsupp 9362 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-2 12275 df-3 12276 df-4 12277 df-5 12278 df-6 12279 df-7 12280 df-8 12281 df-9 12282 df-n0 12473 df-z 12559 df-dec 12678 df-uz 12823 df-fz 13485 df-struct 17080 df-sets 17097 df-slot 17115 df-ndx 17127 df-base 17145 df-ress 17174 df-plusg 17210 df-mulr 17211 df-sca 17213 df-vsca 17214 df-tset 17216 df-ple 17217 df-psr 21462 df-mpl 21464 df-opsr 21466 df-psr1 21704 df-ply1 21706 df-coe1 21707 |
This theorem is referenced by: mp2pm2mplem5 22312 cpmidpmatlem3 22374 chcoeffeqlem 22387 |
Copyright terms: Public domain | W3C validator |