| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mptcoe1fsupp | Structured version Visualization version GIF version | ||
| Description: A mapping involving coefficients of polynomials is finitely supported. (Contributed by AV, 12-Oct-2019.) |
| Ref | Expression |
|---|---|
| mptcoe1fsupp.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| mptcoe1fsupp.b | ⊢ 𝐵 = (Base‘𝑃) |
| mptcoe1fsupp.0 | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| mptcoe1fsupp | ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑘 ∈ ℕ0 ↦ ((coe1‘𝑀)‘𝑘)) finSupp 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mptcoe1fsupp.0 | . . . 4 ⊢ 0 = (0g‘𝑅) | |
| 2 | 1 | fvexi 6842 | . . 3 ⊢ 0 ∈ V |
| 3 | 2 | a1i 11 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → 0 ∈ V) |
| 4 | eqid 2733 | . . . 4 ⊢ (coe1‘𝑀) = (coe1‘𝑀) | |
| 5 | mptcoe1fsupp.b | . . . 4 ⊢ 𝐵 = (Base‘𝑃) | |
| 6 | mptcoe1fsupp.p | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 7 | eqid 2733 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 8 | 4, 5, 6, 7 | coe1fvalcl 22126 | . . 3 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝑘 ∈ ℕ0) → ((coe1‘𝑀)‘𝑘) ∈ (Base‘𝑅)) |
| 9 | 8 | adantll 714 | . 2 ⊢ (((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) → ((coe1‘𝑀)‘𝑘) ∈ (Base‘𝑅)) |
| 10 | simpr 484 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → 𝑀 ∈ 𝐵) | |
| 11 | 4, 5, 6, 1, 7 | coe1fsupp 22128 | . . . . . 6 ⊢ (𝑀 ∈ 𝐵 → (coe1‘𝑀) ∈ {𝑐 ∈ ((Base‘𝑅) ↑m ℕ0) ∣ 𝑐 finSupp 0 }) |
| 12 | elrabi 3639 | . . . . . 6 ⊢ ((coe1‘𝑀) ∈ {𝑐 ∈ ((Base‘𝑅) ↑m ℕ0) ∣ 𝑐 finSupp 0 } → (coe1‘𝑀) ∈ ((Base‘𝑅) ↑m ℕ0)) | |
| 13 | 10, 11, 12 | 3syl 18 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (coe1‘𝑀) ∈ ((Base‘𝑅) ↑m ℕ0)) |
| 14 | 13, 2 | jctir 520 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ((coe1‘𝑀) ∈ ((Base‘𝑅) ↑m ℕ0) ∧ 0 ∈ V)) |
| 15 | 4, 5, 6, 1 | coe1sfi 22127 | . . . . 5 ⊢ (𝑀 ∈ 𝐵 → (coe1‘𝑀) finSupp 0 ) |
| 16 | 15 | adantl 481 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (coe1‘𝑀) finSupp 0 ) |
| 17 | fsuppmapnn0ub 13904 | . . . 4 ⊢ (((coe1‘𝑀) ∈ ((Base‘𝑅) ↑m ℕ0) ∧ 0 ∈ V) → ((coe1‘𝑀) finSupp 0 → ∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1‘𝑀)‘𝑥) = 0 ))) | |
| 18 | 14, 16, 17 | sylc 65 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1‘𝑀)‘𝑥) = 0 )) |
| 19 | csbfv 6875 | . . . . . . . 8 ⊢ ⦋𝑥 / 𝑘⦌((coe1‘𝑀)‘𝑘) = ((coe1‘𝑀)‘𝑥) | |
| 20 | simpr 484 | . . . . . . . 8 ⊢ ((((((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑠 < 𝑥) ∧ ((coe1‘𝑀)‘𝑥) = 0 ) → ((coe1‘𝑀)‘𝑥) = 0 ) | |
| 21 | 19, 20 | eqtrid 2780 | . . . . . . 7 ⊢ ((((((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑠 < 𝑥) ∧ ((coe1‘𝑀)‘𝑥) = 0 ) → ⦋𝑥 / 𝑘⦌((coe1‘𝑀)‘𝑘) = 0 ) |
| 22 | 21 | exp31 419 | . . . . . 6 ⊢ ((((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → (𝑠 < 𝑥 → (((coe1‘𝑀)‘𝑥) = 0 → ⦋𝑥 / 𝑘⦌((coe1‘𝑀)‘𝑘) = 0 ))) |
| 23 | 22 | a2d 29 | . . . . 5 ⊢ ((((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ((𝑠 < 𝑥 → ((coe1‘𝑀)‘𝑥) = 0 ) → (𝑠 < 𝑥 → ⦋𝑥 / 𝑘⦌((coe1‘𝑀)‘𝑘) = 0 ))) |
| 24 | 23 | ralimdva 3145 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ0) → (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1‘𝑀)‘𝑥) = 0 ) → ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ⦋𝑥 / 𝑘⦌((coe1‘𝑀)‘𝑘) = 0 ))) |
| 25 | 24 | reximdva 3146 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1‘𝑀)‘𝑥) = 0 ) → ∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ⦋𝑥 / 𝑘⦌((coe1‘𝑀)‘𝑘) = 0 ))) |
| 26 | 18, 25 | mpd 15 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ⦋𝑥 / 𝑘⦌((coe1‘𝑀)‘𝑘) = 0 )) |
| 27 | 3, 9, 26 | mptnn0fsupp 13906 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑘 ∈ ℕ0 ↦ ((coe1‘𝑀)‘𝑘)) finSupp 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3048 ∃wrex 3057 {crab 3396 Vcvv 3437 ⦋csb 3846 class class class wbr 5093 ↦ cmpt 5174 ‘cfv 6486 (class class class)co 7352 ↑m cmap 8756 finSupp cfsupp 9252 < clt 11153 ℕ0cn0 12388 Basecbs 17122 0gc0g 17345 Ringcrg 20153 Poly1cpl1 22090 coe1cco1 22091 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-of 7616 df-om 7803 df-1st 7927 df-2nd 7928 df-supp 8097 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-map 8758 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-fsupp 9253 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-7 12200 df-8 12201 df-9 12202 df-n0 12389 df-z 12476 df-dec 12595 df-uz 12739 df-fz 13410 df-struct 17060 df-sets 17077 df-slot 17095 df-ndx 17107 df-base 17123 df-ress 17144 df-plusg 17176 df-mulr 17177 df-sca 17179 df-vsca 17180 df-tset 17182 df-ple 17183 df-psr 21848 df-mpl 21850 df-opsr 21852 df-psr1 22093 df-ply1 22095 df-coe1 22096 |
| This theorem is referenced by: mp2pm2mplem5 22726 cpmidpmatlem3 22788 chcoeffeqlem 22801 evls1fldgencl 33704 |
| Copyright terms: Public domain | W3C validator |