Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptcoe1fsupp Structured version   Visualization version   GIF version

Theorem mptcoe1fsupp 20940
 Description: A mapping involving coefficients of polynomials is finitely supported. (Contributed by AV, 12-Oct-2019.)
Hypotheses
Ref Expression
mptcoe1fsupp.p 𝑃 = (Poly1𝑅)
mptcoe1fsupp.b 𝐵 = (Base‘𝑃)
mptcoe1fsupp.0 0 = (0g𝑅)
Assertion
Ref Expression
mptcoe1fsupp ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑘 ∈ ℕ0 ↦ ((coe1𝑀)‘𝑘)) finSupp 0 )
Distinct variable groups:   𝐵,𝑘   𝑘,𝑀   𝑅,𝑘
Allowed substitution hints:   𝑃(𝑘)   0 (𝑘)

Proof of Theorem mptcoe1fsupp
Dummy variables 𝑠 𝑥 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mptcoe1fsupp.0 . . . 4 0 = (0g𝑅)
21fvexi 6673 . . 3 0 ∈ V
32a1i 11 . 2 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → 0 ∈ V)
4 eqid 2759 . . . 4 (coe1𝑀) = (coe1𝑀)
5 mptcoe1fsupp.b . . . 4 𝐵 = (Base‘𝑃)
6 mptcoe1fsupp.p . . . 4 𝑃 = (Poly1𝑅)
7 eqid 2759 . . . 4 (Base‘𝑅) = (Base‘𝑅)
84, 5, 6, 7coe1fvalcl 20937 . . 3 ((𝑀𝐵𝑘 ∈ ℕ0) → ((coe1𝑀)‘𝑘) ∈ (Base‘𝑅))
98adantll 714 . 2 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑘 ∈ ℕ0) → ((coe1𝑀)‘𝑘) ∈ (Base‘𝑅))
10 simpr 489 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝑀𝐵)
114, 5, 6, 1, 7coe1fsupp 20939 . . . . . 6 (𝑀𝐵 → (coe1𝑀) ∈ {𝑐 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑐 finSupp 0 })
12 elrabi 3597 . . . . . 6 ((coe1𝑀) ∈ {𝑐 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑐 finSupp 0 } → (coe1𝑀) ∈ ((Base‘𝑅) ↑m0))
1310, 11, 123syl 18 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (coe1𝑀) ∈ ((Base‘𝑅) ↑m0))
1413, 2jctir 525 . . . 4 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ((coe1𝑀) ∈ ((Base‘𝑅) ↑m0) ∧ 0 ∈ V))
154, 5, 6, 1coe1sfi 20938 . . . . 5 (𝑀𝐵 → (coe1𝑀) finSupp 0 )
1615adantl 486 . . . 4 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (coe1𝑀) finSupp 0 )
17 fsuppmapnn0ub 13413 . . . 4 (((coe1𝑀) ∈ ((Base‘𝑅) ↑m0) ∧ 0 ∈ V) → ((coe1𝑀) finSupp 0 → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑀)‘𝑥) = 0 )))
1814, 16, 17sylc 65 . . 3 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑀)‘𝑥) = 0 ))
19 csbfv 6704 . . . . . . . 8 𝑥 / 𝑘((coe1𝑀)‘𝑘) = ((coe1𝑀)‘𝑥)
20 simpr 489 . . . . . . . 8 ((((((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑠 < 𝑥) ∧ ((coe1𝑀)‘𝑥) = 0 ) → ((coe1𝑀)‘𝑥) = 0 )
2119, 20syl5eq 2806 . . . . . . 7 ((((((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑠 < 𝑥) ∧ ((coe1𝑀)‘𝑥) = 0 ) → 𝑥 / 𝑘((coe1𝑀)‘𝑘) = 0 )
2221exp31 424 . . . . . 6 ((((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → (𝑠 < 𝑥 → (((coe1𝑀)‘𝑥) = 0𝑥 / 𝑘((coe1𝑀)‘𝑘) = 0 )))
2322a2d 29 . . . . 5 ((((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ((𝑠 < 𝑥 → ((coe1𝑀)‘𝑥) = 0 ) → (𝑠 < 𝑥𝑥 / 𝑘((coe1𝑀)‘𝑘) = 0 )))
2423ralimdva 3109 . . . 4 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) → (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑀)‘𝑥) = 0 ) → ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘((coe1𝑀)‘𝑘) = 0 )))
2524reximdva 3199 . . 3 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑀)‘𝑥) = 0 ) → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘((coe1𝑀)‘𝑘) = 0 )))
2618, 25mpd 15 . 2 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘((coe1𝑀)‘𝑘) = 0 ))
273, 9, 26mptnn0fsupp 13415 1 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑘 ∈ ℕ0 ↦ ((coe1𝑀)‘𝑘)) finSupp 0 )
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 400   = wceq 1539   ∈ wcel 2112  ∀wral 3071  ∃wrex 3072  {crab 3075  Vcvv 3410  ⦋csb 3806   class class class wbr 5033   ↦ cmpt 5113  ‘cfv 6336  (class class class)co 7151   ↑m cmap 8417   finSupp cfsupp 8867   < clt 10714  ℕ0cn0 11935  Basecbs 16542  0gc0g 16772  Ringcrg 19366  Poly1cpl1 20902  coe1cco1 20903 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5235  ax-pr 5299  ax-un 7460  ax-cnex 10632  ax-resscn 10633  ax-1cn 10634  ax-icn 10635  ax-addcl 10636  ax-addrcl 10637  ax-mulcl 10638  ax-mulrcl 10639  ax-mulcom 10640  ax-addass 10641  ax-mulass 10642  ax-distr 10643  ax-i2m1 10644  ax-1ne0 10645  ax-1rid 10646  ax-rnegex 10647  ax-rrecex 10648  ax-cnre 10649  ax-pre-lttri 10650  ax-pre-lttrn 10651  ax-pre-ltadd 10652  ax-pre-mulgt0 10653 This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rmo 3079  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-pss 3878  df-nul 4227  df-if 4422  df-pw 4497  df-sn 4524  df-pr 4526  df-tp 4528  df-op 4530  df-uni 4800  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5431  df-eprel 5436  df-po 5444  df-so 5445  df-fr 5484  df-we 5486  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6127  df-ord 6173  df-on 6174  df-lim 6175  df-suc 6176  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-of 7406  df-om 7581  df-1st 7694  df-2nd 7695  df-supp 7837  df-wrecs 7958  df-recs 8019  df-rdg 8057  df-1o 8113  df-er 8300  df-map 8419  df-en 8529  df-dom 8530  df-sdom 8531  df-fin 8532  df-fsupp 8868  df-pnf 10716  df-mnf 10717  df-xr 10718  df-ltxr 10719  df-le 10720  df-sub 10911  df-neg 10912  df-nn 11676  df-2 11738  df-3 11739  df-4 11740  df-5 11741  df-6 11742  df-7 11743  df-8 11744  df-9 11745  df-n0 11936  df-z 12022  df-dec 12139  df-uz 12284  df-fz 12941  df-struct 16544  df-ndx 16545  df-slot 16546  df-base 16548  df-sets 16549  df-ress 16550  df-plusg 16637  df-mulr 16638  df-sca 16640  df-vsca 16641  df-tset 16643  df-ple 16644  df-psr 20672  df-mpl 20674  df-opsr 20676  df-psr1 20905  df-ply1 20907  df-coe1 20908 This theorem is referenced by:  mp2pm2mplem5  21511  cpmidpmatlem3  21573  chcoeffeqlem  21586
 Copyright terms: Public domain W3C validator