Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mptcoe1fsupp | Structured version Visualization version GIF version |
Description: A mapping involving coefficients of polynomials is finitely supported. (Contributed by AV, 12-Oct-2019.) |
Ref | Expression |
---|---|
mptcoe1fsupp.p | ⊢ 𝑃 = (Poly1‘𝑅) |
mptcoe1fsupp.b | ⊢ 𝐵 = (Base‘𝑃) |
mptcoe1fsupp.0 | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
mptcoe1fsupp | ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑘 ∈ ℕ0 ↦ ((coe1‘𝑀)‘𝑘)) finSupp 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mptcoe1fsupp.0 | . . . 4 ⊢ 0 = (0g‘𝑅) | |
2 | 1 | fvexi 6673 | . . 3 ⊢ 0 ∈ V |
3 | 2 | a1i 11 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → 0 ∈ V) |
4 | eqid 2759 | . . . 4 ⊢ (coe1‘𝑀) = (coe1‘𝑀) | |
5 | mptcoe1fsupp.b | . . . 4 ⊢ 𝐵 = (Base‘𝑃) | |
6 | mptcoe1fsupp.p | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
7 | eqid 2759 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
8 | 4, 5, 6, 7 | coe1fvalcl 20937 | . . 3 ⊢ ((𝑀 ∈ 𝐵 ∧ 𝑘 ∈ ℕ0) → ((coe1‘𝑀)‘𝑘) ∈ (Base‘𝑅)) |
9 | 8 | adantll 714 | . 2 ⊢ (((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) → ((coe1‘𝑀)‘𝑘) ∈ (Base‘𝑅)) |
10 | simpr 489 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → 𝑀 ∈ 𝐵) | |
11 | 4, 5, 6, 1, 7 | coe1fsupp 20939 | . . . . . 6 ⊢ (𝑀 ∈ 𝐵 → (coe1‘𝑀) ∈ {𝑐 ∈ ((Base‘𝑅) ↑m ℕ0) ∣ 𝑐 finSupp 0 }) |
12 | elrabi 3597 | . . . . . 6 ⊢ ((coe1‘𝑀) ∈ {𝑐 ∈ ((Base‘𝑅) ↑m ℕ0) ∣ 𝑐 finSupp 0 } → (coe1‘𝑀) ∈ ((Base‘𝑅) ↑m ℕ0)) | |
13 | 10, 11, 12 | 3syl 18 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (coe1‘𝑀) ∈ ((Base‘𝑅) ↑m ℕ0)) |
14 | 13, 2 | jctir 525 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ((coe1‘𝑀) ∈ ((Base‘𝑅) ↑m ℕ0) ∧ 0 ∈ V)) |
15 | 4, 5, 6, 1 | coe1sfi 20938 | . . . . 5 ⊢ (𝑀 ∈ 𝐵 → (coe1‘𝑀) finSupp 0 ) |
16 | 15 | adantl 486 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (coe1‘𝑀) finSupp 0 ) |
17 | fsuppmapnn0ub 13413 | . . . 4 ⊢ (((coe1‘𝑀) ∈ ((Base‘𝑅) ↑m ℕ0) ∧ 0 ∈ V) → ((coe1‘𝑀) finSupp 0 → ∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1‘𝑀)‘𝑥) = 0 ))) | |
18 | 14, 16, 17 | sylc 65 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1‘𝑀)‘𝑥) = 0 )) |
19 | csbfv 6704 | . . . . . . . 8 ⊢ ⦋𝑥 / 𝑘⦌((coe1‘𝑀)‘𝑘) = ((coe1‘𝑀)‘𝑥) | |
20 | simpr 489 | . . . . . . . 8 ⊢ ((((((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑠 < 𝑥) ∧ ((coe1‘𝑀)‘𝑥) = 0 ) → ((coe1‘𝑀)‘𝑥) = 0 ) | |
21 | 19, 20 | syl5eq 2806 | . . . . . . 7 ⊢ ((((((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑠 < 𝑥) ∧ ((coe1‘𝑀)‘𝑥) = 0 ) → ⦋𝑥 / 𝑘⦌((coe1‘𝑀)‘𝑘) = 0 ) |
22 | 21 | exp31 424 | . . . . . 6 ⊢ ((((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → (𝑠 < 𝑥 → (((coe1‘𝑀)‘𝑥) = 0 → ⦋𝑥 / 𝑘⦌((coe1‘𝑀)‘𝑘) = 0 ))) |
23 | 22 | a2d 29 | . . . . 5 ⊢ ((((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ((𝑠 < 𝑥 → ((coe1‘𝑀)‘𝑥) = 0 ) → (𝑠 < 𝑥 → ⦋𝑥 / 𝑘⦌((coe1‘𝑀)‘𝑘) = 0 ))) |
24 | 23 | ralimdva 3109 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ0) → (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1‘𝑀)‘𝑥) = 0 ) → ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ⦋𝑥 / 𝑘⦌((coe1‘𝑀)‘𝑘) = 0 ))) |
25 | 24 | reximdva 3199 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1‘𝑀)‘𝑥) = 0 ) → ∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ⦋𝑥 / 𝑘⦌((coe1‘𝑀)‘𝑘) = 0 ))) |
26 | 18, 25 | mpd 15 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ⦋𝑥 / 𝑘⦌((coe1‘𝑀)‘𝑘) = 0 )) |
27 | 3, 9, 26 | mptnn0fsupp 13415 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑘 ∈ ℕ0 ↦ ((coe1‘𝑀)‘𝑘)) finSupp 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 400 = wceq 1539 ∈ wcel 2112 ∀wral 3071 ∃wrex 3072 {crab 3075 Vcvv 3410 ⦋csb 3806 class class class wbr 5033 ↦ cmpt 5113 ‘cfv 6336 (class class class)co 7151 ↑m cmap 8417 finSupp cfsupp 8867 < clt 10714 ℕ0cn0 11935 Basecbs 16542 0gc0g 16772 Ringcrg 19366 Poly1cpl1 20902 coe1cco1 20903 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5157 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 ax-cnex 10632 ax-resscn 10633 ax-1cn 10634 ax-icn 10635 ax-addcl 10636 ax-addrcl 10637 ax-mulcl 10638 ax-mulrcl 10639 ax-mulcom 10640 ax-addass 10641 ax-mulass 10642 ax-distr 10643 ax-i2m1 10644 ax-1ne0 10645 ax-1rid 10646 ax-rnegex 10647 ax-rrecex 10648 ax-cnre 10649 ax-pre-lttri 10650 ax-pre-lttrn 10651 ax-pre-ltadd 10652 ax-pre-mulgt0 10653 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rmo 3079 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-tp 4528 df-op 4530 df-uni 4800 df-iun 4886 df-br 5034 df-opab 5096 df-mpt 5114 df-tr 5140 df-id 5431 df-eprel 5436 df-po 5444 df-so 5445 df-fr 5484 df-we 5486 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6127 df-ord 6173 df-on 6174 df-lim 6175 df-suc 6176 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-riota 7109 df-ov 7154 df-oprab 7155 df-mpo 7156 df-of 7406 df-om 7581 df-1st 7694 df-2nd 7695 df-supp 7837 df-wrecs 7958 df-recs 8019 df-rdg 8057 df-1o 8113 df-er 8300 df-map 8419 df-en 8529 df-dom 8530 df-sdom 8531 df-fin 8532 df-fsupp 8868 df-pnf 10716 df-mnf 10717 df-xr 10718 df-ltxr 10719 df-le 10720 df-sub 10911 df-neg 10912 df-nn 11676 df-2 11738 df-3 11739 df-4 11740 df-5 11741 df-6 11742 df-7 11743 df-8 11744 df-9 11745 df-n0 11936 df-z 12022 df-dec 12139 df-uz 12284 df-fz 12941 df-struct 16544 df-ndx 16545 df-slot 16546 df-base 16548 df-sets 16549 df-ress 16550 df-plusg 16637 df-mulr 16638 df-sca 16640 df-vsca 16641 df-tset 16643 df-ple 16644 df-psr 20672 df-mpl 20674 df-opsr 20676 df-psr1 20905 df-ply1 20907 df-coe1 20908 |
This theorem is referenced by: mp2pm2mplem5 21511 cpmidpmatlem3 21573 chcoeffeqlem 21586 |
Copyright terms: Public domain | W3C validator |