MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptcoe1fsupp Structured version   Visualization version   GIF version

Theorem mptcoe1fsupp 22138
Description: A mapping involving coefficients of polynomials is finitely supported. (Contributed by AV, 12-Oct-2019.)
Hypotheses
Ref Expression
mptcoe1fsupp.p 𝑃 = (Poly1𝑅)
mptcoe1fsupp.b 𝐵 = (Base‘𝑃)
mptcoe1fsupp.0 0 = (0g𝑅)
Assertion
Ref Expression
mptcoe1fsupp ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑘 ∈ ℕ0 ↦ ((coe1𝑀)‘𝑘)) finSupp 0 )
Distinct variable groups:   𝐵,𝑘   𝑘,𝑀   𝑅,𝑘
Allowed substitution hints:   𝑃(𝑘)   0 (𝑘)

Proof of Theorem mptcoe1fsupp
Dummy variables 𝑠 𝑥 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mptcoe1fsupp.0 . . . 4 0 = (0g𝑅)
21fvexi 6904 . . 3 0 ∈ V
32a1i 11 . 2 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → 0 ∈ V)
4 eqid 2725 . . . 4 (coe1𝑀) = (coe1𝑀)
5 mptcoe1fsupp.b . . . 4 𝐵 = (Base‘𝑃)
6 mptcoe1fsupp.p . . . 4 𝑃 = (Poly1𝑅)
7 eqid 2725 . . . 4 (Base‘𝑅) = (Base‘𝑅)
84, 5, 6, 7coe1fvalcl 22135 . . 3 ((𝑀𝐵𝑘 ∈ ℕ0) → ((coe1𝑀)‘𝑘) ∈ (Base‘𝑅))
98adantll 712 . 2 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑘 ∈ ℕ0) → ((coe1𝑀)‘𝑘) ∈ (Base‘𝑅))
10 simpr 483 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝑀𝐵)
114, 5, 6, 1, 7coe1fsupp 22137 . . . . . 6 (𝑀𝐵 → (coe1𝑀) ∈ {𝑐 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑐 finSupp 0 })
12 elrabi 3670 . . . . . 6 ((coe1𝑀) ∈ {𝑐 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑐 finSupp 0 } → (coe1𝑀) ∈ ((Base‘𝑅) ↑m0))
1310, 11, 123syl 18 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (coe1𝑀) ∈ ((Base‘𝑅) ↑m0))
1413, 2jctir 519 . . . 4 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ((coe1𝑀) ∈ ((Base‘𝑅) ↑m0) ∧ 0 ∈ V))
154, 5, 6, 1coe1sfi 22136 . . . . 5 (𝑀𝐵 → (coe1𝑀) finSupp 0 )
1615adantl 480 . . . 4 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (coe1𝑀) finSupp 0 )
17 fsuppmapnn0ub 13987 . . . 4 (((coe1𝑀) ∈ ((Base‘𝑅) ↑m0) ∧ 0 ∈ V) → ((coe1𝑀) finSupp 0 → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑀)‘𝑥) = 0 )))
1814, 16, 17sylc 65 . . 3 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑀)‘𝑥) = 0 ))
19 csbfv 6940 . . . . . . . 8 𝑥 / 𝑘((coe1𝑀)‘𝑘) = ((coe1𝑀)‘𝑥)
20 simpr 483 . . . . . . . 8 ((((((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑠 < 𝑥) ∧ ((coe1𝑀)‘𝑥) = 0 ) → ((coe1𝑀)‘𝑥) = 0 )
2119, 20eqtrid 2777 . . . . . . 7 ((((((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑠 < 𝑥) ∧ ((coe1𝑀)‘𝑥) = 0 ) → 𝑥 / 𝑘((coe1𝑀)‘𝑘) = 0 )
2221exp31 418 . . . . . 6 ((((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → (𝑠 < 𝑥 → (((coe1𝑀)‘𝑥) = 0𝑥 / 𝑘((coe1𝑀)‘𝑘) = 0 )))
2322a2d 29 . . . . 5 ((((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ((𝑠 < 𝑥 → ((coe1𝑀)‘𝑥) = 0 ) → (𝑠 < 𝑥𝑥 / 𝑘((coe1𝑀)‘𝑘) = 0 )))
2423ralimdva 3157 . . . 4 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) → (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑀)‘𝑥) = 0 ) → ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘((coe1𝑀)‘𝑘) = 0 )))
2524reximdva 3158 . . 3 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑀)‘𝑥) = 0 ) → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘((coe1𝑀)‘𝑘) = 0 )))
2618, 25mpd 15 . 2 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘((coe1𝑀)‘𝑘) = 0 ))
273, 9, 26mptnn0fsupp 13989 1 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑘 ∈ ℕ0 ↦ ((coe1𝑀)‘𝑘)) finSupp 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  wral 3051  wrex 3060  {crab 3419  Vcvv 3463  csb 3886   class class class wbr 5144  cmpt 5227  cfv 6543  (class class class)co 7413  m cmap 8838   finSupp cfsupp 9380   < clt 11273  0cn0 12497  Basecbs 17174  0gc0g 17415  Ringcrg 20172  Poly1cpl1 22099  coe1cco1 22100
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-cnex 11189  ax-resscn 11190  ax-1cn 11191  ax-icn 11192  ax-addcl 11193  ax-addrcl 11194  ax-mulcl 11195  ax-mulrcl 11196  ax-mulcom 11197  ax-addass 11198  ax-mulass 11199  ax-distr 11200  ax-i2m1 11201  ax-1ne0 11202  ax-1rid 11203  ax-rnegex 11204  ax-rrecex 11205  ax-cnre 11206  ax-pre-lttri 11207  ax-pre-lttrn 11208  ax-pre-ltadd 11209  ax-pre-mulgt0 11210
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3961  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4905  df-iun 4994  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-of 7679  df-om 7866  df-1st 7987  df-2nd 7988  df-supp 8159  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-map 8840  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fsupp 9381  df-pnf 11275  df-mnf 11276  df-xr 11277  df-ltxr 11278  df-le 11279  df-sub 11471  df-neg 11472  df-nn 12238  df-2 12300  df-3 12301  df-4 12302  df-5 12303  df-6 12304  df-7 12305  df-8 12306  df-9 12307  df-n0 12498  df-z 12584  df-dec 12703  df-uz 12848  df-fz 13512  df-struct 17110  df-sets 17127  df-slot 17145  df-ndx 17157  df-base 17175  df-ress 17204  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-tset 17246  df-ple 17247  df-psr 21841  df-mpl 21843  df-opsr 21845  df-psr1 22102  df-ply1 22104  df-coe1 22105
This theorem is referenced by:  mp2pm2mplem5  22725  cpmidpmatlem3  22787  chcoeffeqlem  22800  evls1fldgencl  33411
  Copyright terms: Public domain W3C validator