MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptcoe1fsupp Structured version   Visualization version   GIF version

Theorem mptcoe1fsupp 22238
Description: A mapping involving coefficients of polynomials is finitely supported. (Contributed by AV, 12-Oct-2019.)
Hypotheses
Ref Expression
mptcoe1fsupp.p 𝑃 = (Poly1𝑅)
mptcoe1fsupp.b 𝐵 = (Base‘𝑃)
mptcoe1fsupp.0 0 = (0g𝑅)
Assertion
Ref Expression
mptcoe1fsupp ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑘 ∈ ℕ0 ↦ ((coe1𝑀)‘𝑘)) finSupp 0 )
Distinct variable groups:   𝐵,𝑘   𝑘,𝑀   𝑅,𝑘
Allowed substitution hints:   𝑃(𝑘)   0 (𝑘)

Proof of Theorem mptcoe1fsupp
Dummy variables 𝑠 𝑥 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mptcoe1fsupp.0 . . . 4 0 = (0g𝑅)
21fvexi 6934 . . 3 0 ∈ V
32a1i 11 . 2 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → 0 ∈ V)
4 eqid 2740 . . . 4 (coe1𝑀) = (coe1𝑀)
5 mptcoe1fsupp.b . . . 4 𝐵 = (Base‘𝑃)
6 mptcoe1fsupp.p . . . 4 𝑃 = (Poly1𝑅)
7 eqid 2740 . . . 4 (Base‘𝑅) = (Base‘𝑅)
84, 5, 6, 7coe1fvalcl 22235 . . 3 ((𝑀𝐵𝑘 ∈ ℕ0) → ((coe1𝑀)‘𝑘) ∈ (Base‘𝑅))
98adantll 713 . 2 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑘 ∈ ℕ0) → ((coe1𝑀)‘𝑘) ∈ (Base‘𝑅))
10 simpr 484 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝑀𝐵)
114, 5, 6, 1, 7coe1fsupp 22237 . . . . . 6 (𝑀𝐵 → (coe1𝑀) ∈ {𝑐 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑐 finSupp 0 })
12 elrabi 3703 . . . . . 6 ((coe1𝑀) ∈ {𝑐 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑐 finSupp 0 } → (coe1𝑀) ∈ ((Base‘𝑅) ↑m0))
1310, 11, 123syl 18 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (coe1𝑀) ∈ ((Base‘𝑅) ↑m0))
1413, 2jctir 520 . . . 4 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ((coe1𝑀) ∈ ((Base‘𝑅) ↑m0) ∧ 0 ∈ V))
154, 5, 6, 1coe1sfi 22236 . . . . 5 (𝑀𝐵 → (coe1𝑀) finSupp 0 )
1615adantl 481 . . . 4 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (coe1𝑀) finSupp 0 )
17 fsuppmapnn0ub 14046 . . . 4 (((coe1𝑀) ∈ ((Base‘𝑅) ↑m0) ∧ 0 ∈ V) → ((coe1𝑀) finSupp 0 → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑀)‘𝑥) = 0 )))
1814, 16, 17sylc 65 . . 3 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑀)‘𝑥) = 0 ))
19 csbfv 6970 . . . . . . . 8 𝑥 / 𝑘((coe1𝑀)‘𝑘) = ((coe1𝑀)‘𝑥)
20 simpr 484 . . . . . . . 8 ((((((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑠 < 𝑥) ∧ ((coe1𝑀)‘𝑥) = 0 ) → ((coe1𝑀)‘𝑥) = 0 )
2119, 20eqtrid 2792 . . . . . . 7 ((((((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑠 < 𝑥) ∧ ((coe1𝑀)‘𝑥) = 0 ) → 𝑥 / 𝑘((coe1𝑀)‘𝑘) = 0 )
2221exp31 419 . . . . . 6 ((((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → (𝑠 < 𝑥 → (((coe1𝑀)‘𝑥) = 0𝑥 / 𝑘((coe1𝑀)‘𝑘) = 0 )))
2322a2d 29 . . . . 5 ((((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ((𝑠 < 𝑥 → ((coe1𝑀)‘𝑥) = 0 ) → (𝑠 < 𝑥𝑥 / 𝑘((coe1𝑀)‘𝑘) = 0 )))
2423ralimdva 3173 . . . 4 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) → (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑀)‘𝑥) = 0 ) → ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘((coe1𝑀)‘𝑘) = 0 )))
2524reximdva 3174 . . 3 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1𝑀)‘𝑥) = 0 ) → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘((coe1𝑀)‘𝑘) = 0 )))
2618, 25mpd 15 . 2 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥 / 𝑘((coe1𝑀)‘𝑘) = 0 ))
273, 9, 26mptnn0fsupp 14048 1 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑘 ∈ ℕ0 ↦ ((coe1𝑀)‘𝑘)) finSupp 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  wrex 3076  {crab 3443  Vcvv 3488  csb 3921   class class class wbr 5166  cmpt 5249  cfv 6573  (class class class)co 7448  m cmap 8884   finSupp cfsupp 9431   < clt 11324  0cn0 12553  Basecbs 17258  0gc0g 17499  Ringcrg 20260  Poly1cpl1 22199  coe1cco1 22200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-tset 17330  df-ple 17331  df-psr 21952  df-mpl 21954  df-opsr 21956  df-psr1 22202  df-ply1 22204  df-coe1 22205
This theorem is referenced by:  mp2pm2mplem5  22837  cpmidpmatlem3  22899  chcoeffeqlem  22912  evls1fldgencl  33680
  Copyright terms: Public domain W3C validator