| Step | Hyp | Ref
| Expression |
| 1 | | cpmidpmat.g |
. 2
⊢ 𝐺 = (𝑘 ∈ ℕ0 ↦
(((coe1‘𝐾)‘𝑘) ∗ 𝑂)) |
| 2 | | fvexd 6921 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (0g‘𝐴) ∈ V) |
| 3 | | ovexd 7466 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) →
(((coe1‘𝐾)‘𝑘) ∗ 𝑂) ∈ V) |
| 4 | | fveq2 6906 |
. . . 4
⊢ (𝑘 = 𝑙 → ((coe1‘𝐾)‘𝑘) = ((coe1‘𝐾)‘𝑙)) |
| 5 | 4 | oveq1d 7446 |
. . 3
⊢ (𝑘 = 𝑙 → (((coe1‘𝐾)‘𝑘) ∗ 𝑂) = (((coe1‘𝐾)‘𝑙) ∗ 𝑂)) |
| 6 | | fvexd 6921 |
. . . . 5
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (0g‘𝑅) ∈ V) |
| 7 | | cpmidgsum.k |
. . . . . . 7
⊢ 𝐾 = (𝐶‘𝑀) |
| 8 | | cpmidgsum.c |
. . . . . . . 8
⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) |
| 9 | | cpmidgsum.a |
. . . . . . . 8
⊢ 𝐴 = (𝑁 Mat 𝑅) |
| 10 | | cpmidgsum.b |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝐴) |
| 11 | | cpmidgsum.p |
. . . . . . . 8
⊢ 𝑃 = (Poly1‘𝑅) |
| 12 | | eqid 2737 |
. . . . . . . 8
⊢
(Base‘𝑃) =
(Base‘𝑃) |
| 13 | 8, 9, 10, 11, 12 | chpmatply1 22838 |
. . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝐶‘𝑀) ∈ (Base‘𝑃)) |
| 14 | 7, 13 | eqeltrid 2845 |
. . . . . 6
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝐾 ∈ (Base‘𝑃)) |
| 15 | | eqid 2737 |
. . . . . . 7
⊢
(coe1‘𝐾) = (coe1‘𝐾) |
| 16 | | eqid 2737 |
. . . . . . 7
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 17 | 15, 12, 11, 16 | coe1fvalcl 22214 |
. . . . . 6
⊢ ((𝐾 ∈ (Base‘𝑃) ∧ 𝑛 ∈ ℕ0) →
((coe1‘𝐾)‘𝑛) ∈ (Base‘𝑅)) |
| 18 | 14, 17 | sylan 580 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) →
((coe1‘𝐾)‘𝑛) ∈ (Base‘𝑅)) |
| 19 | | crngring 20242 |
. . . . . . 7
⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) |
| 20 | 19 | 3ad2ant2 1135 |
. . . . . 6
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑅 ∈ Ring) |
| 21 | | eqid 2737 |
. . . . . . 7
⊢
(0g‘𝑅) = (0g‘𝑅) |
| 22 | 11, 12, 21 | mptcoe1fsupp 22217 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ (Base‘𝑃)) → (𝑛 ∈ ℕ0 ↦
((coe1‘𝐾)‘𝑛)) finSupp (0g‘𝑅)) |
| 23 | 20, 14, 22 | syl2anc 584 |
. . . . 5
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑛 ∈ ℕ0 ↦
((coe1‘𝐾)‘𝑛)) finSupp (0g‘𝑅)) |
| 24 | 6, 18, 23 | mptnn0fsuppr 14040 |
. . . 4
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ∃𝑠 ∈ ℕ0 ∀𝑙 ∈ ℕ0
(𝑠 < 𝑙 → ⦋𝑙 / 𝑛⦌((coe1‘𝐾)‘𝑛) = (0g‘𝑅))) |
| 25 | | csbfv 6956 |
. . . . . . . . . . . . . 14
⊢
⦋𝑙 /
𝑛⦌((coe1‘𝐾)‘𝑛) = ((coe1‘𝐾)‘𝑙) |
| 26 | 25 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑙 ∈ ℕ0) →
⦋𝑙 / 𝑛⦌((coe1‘𝐾)‘𝑛) = ((coe1‘𝐾)‘𝑙)) |
| 27 | 26 | eqeq1d 2739 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑙 ∈ ℕ0) →
(⦋𝑙 / 𝑛⦌((coe1‘𝐾)‘𝑛) = (0g‘𝑅) ↔ ((coe1‘𝐾)‘𝑙) = (0g‘𝑅))) |
| 28 | 27 | biimpa 476 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑙 ∈ ℕ0) ∧
⦋𝑙 / 𝑛⦌((coe1‘𝐾)‘𝑛) = (0g‘𝑅)) → ((coe1‘𝐾)‘𝑙) = (0g‘𝑅)) |
| 29 | 9 | matsca2 22426 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑅 = (Scalar‘𝐴)) |
| 30 | 29 | 3adant3 1133 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑅 = (Scalar‘𝐴)) |
| 31 | 30 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑙 ∈ ℕ0) ∧
⦋𝑙 / 𝑛⦌((coe1‘𝐾)‘𝑛) = (0g‘𝑅)) → 𝑅 = (Scalar‘𝐴)) |
| 32 | 31 | fveq2d 6910 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑙 ∈ ℕ0) ∧
⦋𝑙 / 𝑛⦌((coe1‘𝐾)‘𝑛) = (0g‘𝑅)) → (0g‘𝑅) =
(0g‘(Scalar‘𝐴))) |
| 33 | 28, 32 | eqtrd 2777 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑙 ∈ ℕ0) ∧
⦋𝑙 / 𝑛⦌((coe1‘𝐾)‘𝑛) = (0g‘𝑅)) → ((coe1‘𝐾)‘𝑙) = (0g‘(Scalar‘𝐴))) |
| 34 | 33 | oveq1d 7446 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑙 ∈ ℕ0) ∧
⦋𝑙 / 𝑛⦌((coe1‘𝐾)‘𝑛) = (0g‘𝑅)) → (((coe1‘𝐾)‘𝑙) ∗ 𝑂) =
((0g‘(Scalar‘𝐴)) ∗ 𝑂)) |
| 35 | 9 | matlmod 22435 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ LMod) |
| 36 | 19, 35 | sylan2 593 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝐴 ∈ LMod) |
| 37 | 36 | 3adant3 1133 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝐴 ∈ LMod) |
| 38 | 9 | matring 22449 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring) |
| 39 | 19, 38 | sylan2 593 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝐴 ∈ Ring) |
| 40 | | cpmidgsumm2pm.o |
. . . . . . . . . . . . . 14
⊢ 𝑂 = (1r‘𝐴) |
| 41 | 10, 40 | ringidcl 20262 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ Ring → 𝑂 ∈ 𝐵) |
| 42 | 39, 41 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑂 ∈ 𝐵) |
| 43 | 42 | 3adant3 1133 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑂 ∈ 𝐵) |
| 44 | | eqid 2737 |
. . . . . . . . . . . 12
⊢
(Scalar‘𝐴) =
(Scalar‘𝐴) |
| 45 | | cpmidgsumm2pm.m |
. . . . . . . . . . . 12
⊢ ∗ = (
·𝑠 ‘𝐴) |
| 46 | | eqid 2737 |
. . . . . . . . . . . 12
⊢
(0g‘(Scalar‘𝐴)) =
(0g‘(Scalar‘𝐴)) |
| 47 | | eqid 2737 |
. . . . . . . . . . . 12
⊢
(0g‘𝐴) = (0g‘𝐴) |
| 48 | 10, 44, 45, 46, 47 | lmod0vs 20893 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ LMod ∧ 𝑂 ∈ 𝐵) →
((0g‘(Scalar‘𝐴)) ∗ 𝑂) = (0g‘𝐴)) |
| 49 | 37, 43, 48 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) →
((0g‘(Scalar‘𝐴)) ∗ 𝑂) = (0g‘𝐴)) |
| 50 | 49 | ad2antrr 726 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑙 ∈ ℕ0) ∧
⦋𝑙 / 𝑛⦌((coe1‘𝐾)‘𝑛) = (0g‘𝑅)) →
((0g‘(Scalar‘𝐴)) ∗ 𝑂) = (0g‘𝐴)) |
| 51 | 34, 50 | eqtrd 2777 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑙 ∈ ℕ0) ∧
⦋𝑙 / 𝑛⦌((coe1‘𝐾)‘𝑛) = (0g‘𝑅)) → (((coe1‘𝐾)‘𝑙) ∗ 𝑂) = (0g‘𝐴)) |
| 52 | 51 | ex 412 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑙 ∈ ℕ0) →
(⦋𝑙 / 𝑛⦌((coe1‘𝐾)‘𝑛) = (0g‘𝑅) → (((coe1‘𝐾)‘𝑙) ∗ 𝑂) = (0g‘𝐴))) |
| 53 | 52 | imim2d 57 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑙 ∈ ℕ0) → ((𝑠 < 𝑙 → ⦋𝑙 / 𝑛⦌((coe1‘𝐾)‘𝑛) = (0g‘𝑅)) → (𝑠 < 𝑙 → (((coe1‘𝐾)‘𝑙) ∗ 𝑂) = (0g‘𝐴)))) |
| 54 | 53 | ralimdva 3167 |
. . . . 5
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (∀𝑙 ∈ ℕ0 (𝑠 < 𝑙 → ⦋𝑙 / 𝑛⦌((coe1‘𝐾)‘𝑛) = (0g‘𝑅)) → ∀𝑙 ∈ ℕ0 (𝑠 < 𝑙 → (((coe1‘𝐾)‘𝑙) ∗ 𝑂) = (0g‘𝐴)))) |
| 55 | 54 | reximdv 3170 |
. . . 4
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (∃𝑠 ∈ ℕ0 ∀𝑙 ∈ ℕ0
(𝑠 < 𝑙 → ⦋𝑙 / 𝑛⦌((coe1‘𝐾)‘𝑛) = (0g‘𝑅)) → ∃𝑠 ∈ ℕ0 ∀𝑙 ∈ ℕ0
(𝑠 < 𝑙 → (((coe1‘𝐾)‘𝑙) ∗ 𝑂) = (0g‘𝐴)))) |
| 56 | 24, 55 | mpd 15 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ∃𝑠 ∈ ℕ0 ∀𝑙 ∈ ℕ0
(𝑠 < 𝑙 → (((coe1‘𝐾)‘𝑙) ∗ 𝑂) = (0g‘𝐴))) |
| 57 | 2, 3, 5, 56 | mptnn0fsuppd 14039 |
. 2
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑘 ∈ ℕ0 ↦
(((coe1‘𝐾)‘𝑘) ∗ 𝑂)) finSupp (0g‘𝐴)) |
| 58 | 1, 57 | eqbrtrid 5178 |
1
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝐺 finSupp (0g‘𝐴)) |