Step | Hyp | Ref
| Expression |
1 | | cpmidpmat.g |
. 2
⊢ 𝐺 = (𝑘 ∈ ℕ0 ↦
(((coe1‘𝐾)‘𝑘) ∗ 𝑂)) |
2 | | fvexd 6771 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (0g‘𝐴) ∈ V) |
3 | | ovexd 7290 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑘 ∈ ℕ0) →
(((coe1‘𝐾)‘𝑘) ∗ 𝑂) ∈ V) |
4 | | fveq2 6756 |
. . . 4
⊢ (𝑘 = 𝑙 → ((coe1‘𝐾)‘𝑘) = ((coe1‘𝐾)‘𝑙)) |
5 | 4 | oveq1d 7270 |
. . 3
⊢ (𝑘 = 𝑙 → (((coe1‘𝐾)‘𝑘) ∗ 𝑂) = (((coe1‘𝐾)‘𝑙) ∗ 𝑂)) |
6 | | fvexd 6771 |
. . . . 5
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (0g‘𝑅) ∈ V) |
7 | | cpmidgsum.k |
. . . . . . 7
⊢ 𝐾 = (𝐶‘𝑀) |
8 | | cpmidgsum.c |
. . . . . . . 8
⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) |
9 | | cpmidgsum.a |
. . . . . . . 8
⊢ 𝐴 = (𝑁 Mat 𝑅) |
10 | | cpmidgsum.b |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝐴) |
11 | | cpmidgsum.p |
. . . . . . . 8
⊢ 𝑃 = (Poly1‘𝑅) |
12 | | eqid 2738 |
. . . . . . . 8
⊢
(Base‘𝑃) =
(Base‘𝑃) |
13 | 8, 9, 10, 11, 12 | chpmatply1 21889 |
. . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝐶‘𝑀) ∈ (Base‘𝑃)) |
14 | 7, 13 | eqeltrid 2843 |
. . . . . 6
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝐾 ∈ (Base‘𝑃)) |
15 | | eqid 2738 |
. . . . . . 7
⊢
(coe1‘𝐾) = (coe1‘𝐾) |
16 | | eqid 2738 |
. . . . . . 7
⊢
(Base‘𝑅) =
(Base‘𝑅) |
17 | 15, 12, 11, 16 | coe1fvalcl 21293 |
. . . . . 6
⊢ ((𝐾 ∈ (Base‘𝑃) ∧ 𝑛 ∈ ℕ0) →
((coe1‘𝐾)‘𝑛) ∈ (Base‘𝑅)) |
18 | 14, 17 | sylan 579 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) →
((coe1‘𝐾)‘𝑛) ∈ (Base‘𝑅)) |
19 | | crngring 19710 |
. . . . . . 7
⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) |
20 | 19 | 3ad2ant2 1132 |
. . . . . 6
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑅 ∈ Ring) |
21 | | eqid 2738 |
. . . . . . 7
⊢
(0g‘𝑅) = (0g‘𝑅) |
22 | 11, 12, 21 | mptcoe1fsupp 21296 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ (Base‘𝑃)) → (𝑛 ∈ ℕ0 ↦
((coe1‘𝐾)‘𝑛)) finSupp (0g‘𝑅)) |
23 | 20, 14, 22 | syl2anc 583 |
. . . . 5
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑛 ∈ ℕ0 ↦
((coe1‘𝐾)‘𝑛)) finSupp (0g‘𝑅)) |
24 | 6, 18, 23 | mptnn0fsuppr 13647 |
. . . 4
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ∃𝑠 ∈ ℕ0 ∀𝑙 ∈ ℕ0
(𝑠 < 𝑙 → ⦋𝑙 / 𝑛⦌((coe1‘𝐾)‘𝑛) = (0g‘𝑅))) |
25 | | csbfv 6801 |
. . . . . . . . . . . . . 14
⊢
⦋𝑙 /
𝑛⦌((coe1‘𝐾)‘𝑛) = ((coe1‘𝐾)‘𝑙) |
26 | 25 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑙 ∈ ℕ0) →
⦋𝑙 / 𝑛⦌((coe1‘𝐾)‘𝑛) = ((coe1‘𝐾)‘𝑙)) |
27 | 26 | eqeq1d 2740 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑙 ∈ ℕ0) →
(⦋𝑙 / 𝑛⦌((coe1‘𝐾)‘𝑛) = (0g‘𝑅) ↔ ((coe1‘𝐾)‘𝑙) = (0g‘𝑅))) |
28 | 27 | biimpa 476 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑙 ∈ ℕ0) ∧
⦋𝑙 / 𝑛⦌((coe1‘𝐾)‘𝑛) = (0g‘𝑅)) → ((coe1‘𝐾)‘𝑙) = (0g‘𝑅)) |
29 | 9 | matsca2 21477 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑅 = (Scalar‘𝐴)) |
30 | 29 | 3adant3 1130 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑅 = (Scalar‘𝐴)) |
31 | 30 | ad2antrr 722 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑙 ∈ ℕ0) ∧
⦋𝑙 / 𝑛⦌((coe1‘𝐾)‘𝑛) = (0g‘𝑅)) → 𝑅 = (Scalar‘𝐴)) |
32 | 31 | fveq2d 6760 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑙 ∈ ℕ0) ∧
⦋𝑙 / 𝑛⦌((coe1‘𝐾)‘𝑛) = (0g‘𝑅)) → (0g‘𝑅) =
(0g‘(Scalar‘𝐴))) |
33 | 28, 32 | eqtrd 2778 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑙 ∈ ℕ0) ∧
⦋𝑙 / 𝑛⦌((coe1‘𝐾)‘𝑛) = (0g‘𝑅)) → ((coe1‘𝐾)‘𝑙) = (0g‘(Scalar‘𝐴))) |
34 | 33 | oveq1d 7270 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑙 ∈ ℕ0) ∧
⦋𝑙 / 𝑛⦌((coe1‘𝐾)‘𝑛) = (0g‘𝑅)) → (((coe1‘𝐾)‘𝑙) ∗ 𝑂) =
((0g‘(Scalar‘𝐴)) ∗ 𝑂)) |
35 | 9 | matlmod 21486 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ LMod) |
36 | 19, 35 | sylan2 592 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝐴 ∈ LMod) |
37 | 36 | 3adant3 1130 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝐴 ∈ LMod) |
38 | 9 | matring 21500 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring) |
39 | 19, 38 | sylan2 592 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝐴 ∈ Ring) |
40 | | cpmidgsumm2pm.o |
. . . . . . . . . . . . . 14
⊢ 𝑂 = (1r‘𝐴) |
41 | 10, 40 | ringidcl 19722 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ Ring → 𝑂 ∈ 𝐵) |
42 | 39, 41 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑂 ∈ 𝐵) |
43 | 42 | 3adant3 1130 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑂 ∈ 𝐵) |
44 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(Scalar‘𝐴) =
(Scalar‘𝐴) |
45 | | cpmidgsumm2pm.m |
. . . . . . . . . . . 12
⊢ ∗ = (
·𝑠 ‘𝐴) |
46 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(0g‘(Scalar‘𝐴)) =
(0g‘(Scalar‘𝐴)) |
47 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(0g‘𝐴) = (0g‘𝐴) |
48 | 10, 44, 45, 46, 47 | lmod0vs 20071 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ LMod ∧ 𝑂 ∈ 𝐵) →
((0g‘(Scalar‘𝐴)) ∗ 𝑂) = (0g‘𝐴)) |
49 | 37, 43, 48 | syl2anc 583 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) →
((0g‘(Scalar‘𝐴)) ∗ 𝑂) = (0g‘𝐴)) |
50 | 49 | ad2antrr 722 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑙 ∈ ℕ0) ∧
⦋𝑙 / 𝑛⦌((coe1‘𝐾)‘𝑛) = (0g‘𝑅)) →
((0g‘(Scalar‘𝐴)) ∗ 𝑂) = (0g‘𝐴)) |
51 | 34, 50 | eqtrd 2778 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑙 ∈ ℕ0) ∧
⦋𝑙 / 𝑛⦌((coe1‘𝐾)‘𝑛) = (0g‘𝑅)) → (((coe1‘𝐾)‘𝑙) ∗ 𝑂) = (0g‘𝐴)) |
52 | 51 | ex 412 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑙 ∈ ℕ0) →
(⦋𝑙 / 𝑛⦌((coe1‘𝐾)‘𝑛) = (0g‘𝑅) → (((coe1‘𝐾)‘𝑙) ∗ 𝑂) = (0g‘𝐴))) |
53 | 52 | imim2d 57 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑙 ∈ ℕ0) → ((𝑠 < 𝑙 → ⦋𝑙 / 𝑛⦌((coe1‘𝐾)‘𝑛) = (0g‘𝑅)) → (𝑠 < 𝑙 → (((coe1‘𝐾)‘𝑙) ∗ 𝑂) = (0g‘𝐴)))) |
54 | 53 | ralimdva 3102 |
. . . . 5
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (∀𝑙 ∈ ℕ0 (𝑠 < 𝑙 → ⦋𝑙 / 𝑛⦌((coe1‘𝐾)‘𝑛) = (0g‘𝑅)) → ∀𝑙 ∈ ℕ0 (𝑠 < 𝑙 → (((coe1‘𝐾)‘𝑙) ∗ 𝑂) = (0g‘𝐴)))) |
55 | 54 | reximdv 3201 |
. . . 4
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (∃𝑠 ∈ ℕ0 ∀𝑙 ∈ ℕ0
(𝑠 < 𝑙 → ⦋𝑙 / 𝑛⦌((coe1‘𝐾)‘𝑛) = (0g‘𝑅)) → ∃𝑠 ∈ ℕ0 ∀𝑙 ∈ ℕ0
(𝑠 < 𝑙 → (((coe1‘𝐾)‘𝑙) ∗ 𝑂) = (0g‘𝐴)))) |
56 | 24, 55 | mpd 15 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ∃𝑠 ∈ ℕ0 ∀𝑙 ∈ ℕ0
(𝑠 < 𝑙 → (((coe1‘𝐾)‘𝑙) ∗ 𝑂) = (0g‘𝐴))) |
57 | 2, 3, 5, 56 | mptnn0fsuppd 13646 |
. 2
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑘 ∈ ℕ0 ↦
(((coe1‘𝐾)‘𝑘) ∗ 𝑂)) finSupp (0g‘𝐴)) |
58 | 1, 57 | eqbrtrid 5105 |
1
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝐺 finSupp (0g‘𝐴)) |