MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cayleyhamilton1 Structured version   Visualization version   GIF version

Theorem cayleyhamilton1 22812
Description: The Cayley-Hamilton theorem: A matrix over a commutative ring "satisfies its own characteristic equation", or, in other words, a matrix over a commutative ring "inserted" into its characteristic polynomial results in zero. In this variant of cayleyhamilton 22810, the meaning of "inserted" is made more transparent: If the characteristic polynomial is a polynomial with coefficients (𝐹𝑛), then a matrix over a commutative ring "inserted" into its characteristic polynomial is the sum of these coefficients multiplied with the corresponding power of the matrix. (Contributed by AV, 25-Nov-2019.)
Hypotheses
Ref Expression
cayleyhamilton.a 𝐴 = (𝑁 Mat 𝑅)
cayleyhamilton.b 𝐵 = (Base‘𝐴)
cayleyhamilton.0 0 = (0g𝐴)
cayleyhamilton.c 𝐶 = (𝑁 CharPlyMat 𝑅)
cayleyhamilton.k 𝐾 = (coe1‘(𝐶𝑀))
cayleyhamilton.m = ( ·𝑠𝐴)
cayleyhamilton.e = (.g‘(mulGrp‘𝐴))
cayleyhamilton1.l 𝐿 = (Base‘𝑅)
cayleyhamilton1.x 𝑋 = (var1𝑅)
cayleyhamilton1.p 𝑃 = (Poly1𝑅)
cayleyhamilton1.m · = ( ·𝑠𝑃)
cayleyhamilton1.e 𝐸 = (.g‘(mulGrp‘𝑃))
cayleyhamilton1.z 𝑍 = (0g𝑅)
Assertion
Ref Expression
cayleyhamilton1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍)) → ((𝐶𝑀) = (𝑃 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) · (𝑛𝐸𝑋)))) → (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) (𝑛 𝑀)))) = 0 ))
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛   𝐶,𝑛   𝑛,𝑀   𝑛,𝑁   𝑅,𝑛   ,𝑛   ,𝑛   𝑛,𝐸   𝑛,𝐹   𝑛,𝐿   𝑃,𝑛   𝑛,𝑋   𝑛,𝑍   · ,𝑛
Allowed substitution hints:   𝐾(𝑛)   0 (𝑛)

Proof of Theorem cayleyhamilton1
Dummy variables 𝑚 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cayleyhamilton.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
2 cayleyhamilton.b . . . 4 𝐵 = (Base‘𝐴)
3 cayleyhamilton.0 . . . 4 0 = (0g𝐴)
4 cayleyhamilton.c . . . 4 𝐶 = (𝑁 CharPlyMat 𝑅)
5 cayleyhamilton.k . . . 4 𝐾 = (coe1‘(𝐶𝑀))
6 cayleyhamilton.m . . . 4 = ( ·𝑠𝐴)
7 cayleyhamilton.e . . . 4 = (.g‘(mulGrp‘𝐴))
81, 2, 3, 4, 5, 6, 7cayleyhamilton 22810 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐾𝑛) (𝑛 𝑀)))) = 0 )
98adantr 480 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍)) → (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐾𝑛) (𝑛 𝑀)))) = 0 )
10 nfv 1914 . . . . . . . 8 𝑛((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍))
11 nfcv 2891 . . . . . . . . . 10 𝑛𝑃
12 nfcv 2891 . . . . . . . . . 10 𝑛 Σg
13 nfmpt1 5201 . . . . . . . . . 10 𝑛(𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) · (𝑛𝐸𝑋)))
1411, 12, 13nfov 7399 . . . . . . . . 9 𝑛(𝑃 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) · (𝑛𝐸𝑋))))
1514nfeq2 2909 . . . . . . . 8 𝑛(𝐶𝑀) = (𝑃 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) · (𝑛𝐸𝑋))))
1610, 15nfan 1899 . . . . . . 7 𝑛(((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍)) ∧ (𝐶𝑀) = (𝑃 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) · (𝑛𝐸𝑋)))))
17 crngring 20165 . . . . . . . . . . . . 13 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
18173ad2ant2 1134 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑅 ∈ Ring)
1918adantr 480 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍)) → 𝑅 ∈ Ring)
20 cayleyhamilton1.p . . . . . . . . . . . . 13 𝑃 = (Poly1𝑅)
21 eqid 2729 . . . . . . . . . . . . 13 (Base‘𝑃) = (Base‘𝑃)
224, 1, 2, 20, 21chpmatply1 22752 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝐶𝑀) ∈ (Base‘𝑃))
2322adantr 480 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍)) → (𝐶𝑀) ∈ (Base‘𝑃))
24 cayleyhamilton1.x . . . . . . . . . . . 12 𝑋 = (var1𝑅)
25 cayleyhamilton1.e . . . . . . . . . . . 12 𝐸 = (.g‘(mulGrp‘𝑃))
26 cayleyhamilton1.l . . . . . . . . . . . 12 𝐿 = (Base‘𝑅)
27 cayleyhamilton1.m . . . . . . . . . . . 12 · = ( ·𝑠𝑃)
28 eqid 2729 . . . . . . . . . . . 12 (0g𝑅) = (0g𝑅)
29 elmapi 8799 . . . . . . . . . . . . . 14 (𝐹 ∈ (𝐿m0) → 𝐹:ℕ0𝐿)
30 ffvelcdm 7035 . . . . . . . . . . . . . . 15 ((𝐹:ℕ0𝐿𝑛 ∈ ℕ0) → (𝐹𝑛) ∈ 𝐿)
3130ralrimiva 3125 . . . . . . . . . . . . . 14 (𝐹:ℕ0𝐿 → ∀𝑛 ∈ ℕ0 (𝐹𝑛) ∈ 𝐿)
3229, 31syl 17 . . . . . . . . . . . . 13 (𝐹 ∈ (𝐿m0) → ∀𝑛 ∈ ℕ0 (𝐹𝑛) ∈ 𝐿)
3332ad2antrl 728 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍)) → ∀𝑛 ∈ ℕ0 (𝐹𝑛) ∈ 𝐿)
3429feqmptd 6911 . . . . . . . . . . . . . . 15 (𝐹 ∈ (𝐿m0) → 𝐹 = (𝑛 ∈ ℕ0 ↦ (𝐹𝑛)))
35 cayleyhamilton1.z . . . . . . . . . . . . . . . 16 𝑍 = (0g𝑅)
3635a1i 11 . . . . . . . . . . . . . . 15 (𝐹 ∈ (𝐿m0) → 𝑍 = (0g𝑅))
3734, 36breq12d 5115 . . . . . . . . . . . . . 14 (𝐹 ∈ (𝐿m0) → (𝐹 finSupp 𝑍 ↔ (𝑛 ∈ ℕ0 ↦ (𝐹𝑛)) finSupp (0g𝑅)))
3837biimpa 476 . . . . . . . . . . . . 13 ((𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍) → (𝑛 ∈ ℕ0 ↦ (𝐹𝑛)) finSupp (0g𝑅))
3938adantl 481 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍)) → (𝑛 ∈ ℕ0 ↦ (𝐹𝑛)) finSupp (0g𝑅))
4020, 21, 24, 25, 19, 26, 27, 28, 33, 39gsumsmonply1 22227 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍)) → (𝑃 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) · (𝑛𝐸𝑋)))) ∈ (Base‘𝑃))
41 fveq2 6840 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑛 → (𝐹𝑖) = (𝐹𝑛))
42 oveq1 7376 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑛 → (𝑖𝐸𝑋) = (𝑛𝐸𝑋))
4341, 42oveq12d 7387 . . . . . . . . . . . . . . 15 (𝑖 = 𝑛 → ((𝐹𝑖) · (𝑖𝐸𝑋)) = ((𝐹𝑛) · (𝑛𝐸𝑋)))
4443cbvmptv 5206 . . . . . . . . . . . . . 14 (𝑖 ∈ ℕ0 ↦ ((𝐹𝑖) · (𝑖𝐸𝑋))) = (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) · (𝑛𝐸𝑋)))
4544oveq2i 7380 . . . . . . . . . . . . 13 (𝑃 Σg (𝑖 ∈ ℕ0 ↦ ((𝐹𝑖) · (𝑖𝐸𝑋)))) = (𝑃 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) · (𝑛𝐸𝑋))))
4645fveq2i 6843 . . . . . . . . . . . 12 (coe1‘(𝑃 Σg (𝑖 ∈ ℕ0 ↦ ((𝐹𝑖) · (𝑖𝐸𝑋))))) = (coe1‘(𝑃 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) · (𝑛𝐸𝑋)))))
4720, 21, 5, 46ply1coe1eq 22220 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ (𝐶𝑀) ∈ (Base‘𝑃) ∧ (𝑃 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) · (𝑛𝐸𝑋)))) ∈ (Base‘𝑃)) → (∀𝑚 ∈ ℕ0 (𝐾𝑚) = ((coe1‘(𝑃 Σg (𝑖 ∈ ℕ0 ↦ ((𝐹𝑖) · (𝑖𝐸𝑋)))))‘𝑚) ↔ (𝐶𝑀) = (𝑃 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) · (𝑛𝐸𝑋))))))
4819, 23, 40, 47syl3anc 1373 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍)) → (∀𝑚 ∈ ℕ0 (𝐾𝑚) = ((coe1‘(𝑃 Σg (𝑖 ∈ ℕ0 ↦ ((𝐹𝑖) · (𝑖𝐸𝑋)))))‘𝑚) ↔ (𝐶𝑀) = (𝑃 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) · (𝑛𝐸𝑋))))))
49 fveq2 6840 . . . . . . . . . . . . . . 15 (𝑚 = 𝑛 → (𝐾𝑚) = (𝐾𝑛))
50 fveq2 6840 . . . . . . . . . . . . . . 15 (𝑚 = 𝑛 → ((coe1‘(𝑃 Σg (𝑖 ∈ ℕ0 ↦ ((𝐹𝑖) · (𝑖𝐸𝑋)))))‘𝑚) = ((coe1‘(𝑃 Σg (𝑖 ∈ ℕ0 ↦ ((𝐹𝑖) · (𝑖𝐸𝑋)))))‘𝑛))
5149, 50eqeq12d 2745 . . . . . . . . . . . . . 14 (𝑚 = 𝑛 → ((𝐾𝑚) = ((coe1‘(𝑃 Σg (𝑖 ∈ ℕ0 ↦ ((𝐹𝑖) · (𝑖𝐸𝑋)))))‘𝑚) ↔ (𝐾𝑛) = ((coe1‘(𝑃 Σg (𝑖 ∈ ℕ0 ↦ ((𝐹𝑖) · (𝑖𝐸𝑋)))))‘𝑛)))
5251rspcva 3583 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝐾𝑚) = ((coe1‘(𝑃 Σg (𝑖 ∈ ℕ0 ↦ ((𝐹𝑖) · (𝑖𝐸𝑋)))))‘𝑚)) → (𝐾𝑛) = ((coe1‘(𝑃 Σg (𝑖 ∈ ℕ0 ↦ ((𝐹𝑖) · (𝑖𝐸𝑋)))))‘𝑛))
53 simpl 482 . . . . . . . . . . . . . . . . 17 (((𝐾𝑛) = ((coe1‘(𝑃 Σg (𝑖 ∈ ℕ0 ↦ ((𝐹𝑖) · (𝑖𝐸𝑋)))))‘𝑛) ∧ (𝑛 ∈ ℕ0 ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍)))) → (𝐾𝑛) = ((coe1‘(𝑃 Σg (𝑖 ∈ ℕ0 ↦ ((𝐹𝑖) · (𝑖𝐸𝑋)))))‘𝑛))
5418ad2antrl 728 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℕ0 ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍))) → 𝑅 ∈ Ring)
55 ffvelcdm 7035 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐹:ℕ0𝐿𝑖 ∈ ℕ0) → (𝐹𝑖) ∈ 𝐿)
5655ralrimiva 3125 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹:ℕ0𝐿 → ∀𝑖 ∈ ℕ0 (𝐹𝑖) ∈ 𝐿)
5729, 56syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝐹 ∈ (𝐿m0) → ∀𝑖 ∈ ℕ0 (𝐹𝑖) ∈ 𝐿)
5857ad2antrl 728 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍)) → ∀𝑖 ∈ ℕ0 (𝐹𝑖) ∈ 𝐿)
5958adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℕ0 ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍))) → ∀𝑖 ∈ ℕ0 (𝐹𝑖) ∈ 𝐿)
6029feqmptd 6911 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐹 ∈ (𝐿m0) → 𝐹 = (𝑖 ∈ ℕ0 ↦ (𝐹𝑖)))
6160breq1d 5112 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹 ∈ (𝐿m0) → (𝐹 finSupp 𝑍 ↔ (𝑖 ∈ ℕ0 ↦ (𝐹𝑖)) finSupp 𝑍))
6261biimpa 476 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍) → (𝑖 ∈ ℕ0 ↦ (𝐹𝑖)) finSupp 𝑍)
6362adantl 481 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍)) → (𝑖 ∈ ℕ0 ↦ (𝐹𝑖)) finSupp 𝑍)
6463adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℕ0 ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍))) → (𝑖 ∈ ℕ0 ↦ (𝐹𝑖)) finSupp 𝑍)
65 simpl 482 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℕ0 ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍))) → 𝑛 ∈ ℕ0)
6620, 21, 24, 25, 54, 26, 27, 35, 59, 64, 65gsummoncoe1 22228 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ℕ0 ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍))) → ((coe1‘(𝑃 Σg (𝑖 ∈ ℕ0 ↦ ((𝐹𝑖) · (𝑖𝐸𝑋)))))‘𝑛) = 𝑛 / 𝑖(𝐹𝑖))
67 csbfv 6890 . . . . . . . . . . . . . . . . . . 19 𝑛 / 𝑖(𝐹𝑖) = (𝐹𝑛)
6866, 67eqtrdi 2780 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℕ0 ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍))) → ((coe1‘(𝑃 Σg (𝑖 ∈ ℕ0 ↦ ((𝐹𝑖) · (𝑖𝐸𝑋)))))‘𝑛) = (𝐹𝑛))
6968adantl 481 . . . . . . . . . . . . . . . . 17 (((𝐾𝑛) = ((coe1‘(𝑃 Σg (𝑖 ∈ ℕ0 ↦ ((𝐹𝑖) · (𝑖𝐸𝑋)))))‘𝑛) ∧ (𝑛 ∈ ℕ0 ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍)))) → ((coe1‘(𝑃 Σg (𝑖 ∈ ℕ0 ↦ ((𝐹𝑖) · (𝑖𝐸𝑋)))))‘𝑛) = (𝐹𝑛))
7053, 69eqtrd 2764 . . . . . . . . . . . . . . . 16 (((𝐾𝑛) = ((coe1‘(𝑃 Σg (𝑖 ∈ ℕ0 ↦ ((𝐹𝑖) · (𝑖𝐸𝑋)))))‘𝑛) ∧ (𝑛 ∈ ℕ0 ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍)))) → (𝐾𝑛) = (𝐹𝑛))
7170exp32 420 . . . . . . . . . . . . . . 15 ((𝐾𝑛) = ((coe1‘(𝑃 Σg (𝑖 ∈ ℕ0 ↦ ((𝐹𝑖) · (𝑖𝐸𝑋)))))‘𝑛) → (𝑛 ∈ ℕ0 → (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍)) → (𝐾𝑛) = (𝐹𝑛))))
7271com12 32 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ0 → ((𝐾𝑛) = ((coe1‘(𝑃 Σg (𝑖 ∈ ℕ0 ↦ ((𝐹𝑖) · (𝑖𝐸𝑋)))))‘𝑛) → (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍)) → (𝐾𝑛) = (𝐹𝑛))))
7372adantr 480 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝐾𝑚) = ((coe1‘(𝑃 Σg (𝑖 ∈ ℕ0 ↦ ((𝐹𝑖) · (𝑖𝐸𝑋)))))‘𝑚)) → ((𝐾𝑛) = ((coe1‘(𝑃 Σg (𝑖 ∈ ℕ0 ↦ ((𝐹𝑖) · (𝑖𝐸𝑋)))))‘𝑛) → (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍)) → (𝐾𝑛) = (𝐹𝑛))))
7452, 73mpd 15 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝐾𝑚) = ((coe1‘(𝑃 Σg (𝑖 ∈ ℕ0 ↦ ((𝐹𝑖) · (𝑖𝐸𝑋)))))‘𝑚)) → (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍)) → (𝐾𝑛) = (𝐹𝑛)))
7574com12 32 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍)) → ((𝑛 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝐾𝑚) = ((coe1‘(𝑃 Σg (𝑖 ∈ ℕ0 ↦ ((𝐹𝑖) · (𝑖𝐸𝑋)))))‘𝑚)) → (𝐾𝑛) = (𝐹𝑛)))
7675expcomd 416 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍)) → (∀𝑚 ∈ ℕ0 (𝐾𝑚) = ((coe1‘(𝑃 Σg (𝑖 ∈ ℕ0 ↦ ((𝐹𝑖) · (𝑖𝐸𝑋)))))‘𝑚) → (𝑛 ∈ ℕ0 → (𝐾𝑛) = (𝐹𝑛))))
7748, 76sylbird 260 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍)) → ((𝐶𝑀) = (𝑃 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) · (𝑛𝐸𝑋)))) → (𝑛 ∈ ℕ0 → (𝐾𝑛) = (𝐹𝑛))))
7877imp31 417 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍)) ∧ (𝐶𝑀) = (𝑃 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) · (𝑛𝐸𝑋))))) ∧ 𝑛 ∈ ℕ0) → (𝐾𝑛) = (𝐹𝑛))
7978oveq1d 7384 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍)) ∧ (𝐶𝑀) = (𝑃 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) · (𝑛𝐸𝑋))))) ∧ 𝑛 ∈ ℕ0) → ((𝐾𝑛) (𝑛 𝑀)) = ((𝐹𝑛) (𝑛 𝑀)))
8016, 79mpteq2da 5194 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍)) ∧ (𝐶𝑀) = (𝑃 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) · (𝑛𝐸𝑋))))) → (𝑛 ∈ ℕ0 ↦ ((𝐾𝑛) (𝑛 𝑀))) = (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) (𝑛 𝑀))))
8180oveq2d 7385 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍)) ∧ (𝐶𝑀) = (𝑃 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) · (𝑛𝐸𝑋))))) → (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐾𝑛) (𝑛 𝑀)))) = (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) (𝑛 𝑀)))))
8281eqeq1d 2731 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍)) ∧ (𝐶𝑀) = (𝑃 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) · (𝑛𝐸𝑋))))) → ((𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐾𝑛) (𝑛 𝑀)))) = 0 ↔ (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) (𝑛 𝑀)))) = 0 ))
8382biimpd 229 . . 3 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍)) ∧ (𝐶𝑀) = (𝑃 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) · (𝑛𝐸𝑋))))) → ((𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐾𝑛) (𝑛 𝑀)))) = 0 → (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) (𝑛 𝑀)))) = 0 ))
8483ex 412 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍)) → ((𝐶𝑀) = (𝑃 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) · (𝑛𝐸𝑋)))) → ((𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐾𝑛) (𝑛 𝑀)))) = 0 → (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) (𝑛 𝑀)))) = 0 )))
859, 84mpid 44 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍)) → ((𝐶𝑀) = (𝑃 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) · (𝑛𝐸𝑋)))) → (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) (𝑛 𝑀)))) = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  csb 3859   class class class wbr 5102  cmpt 5183  wf 6495  cfv 6499  (class class class)co 7369  m cmap 8776  Fincfn 8895   finSupp cfsupp 9288  0cn0 12418  Basecbs 17155   ·𝑠 cvsca 17200  0gc0g 17378   Σg cgsu 17379  .gcmg 18981  mulGrpcmgp 20060  Ringcrg 20153  CRingccrg 20154  var1cv1 22093  Poly1cpl1 22094  coe1cco1 22095   Mat cmat 22327   CharPlyMat cchpmat 22746
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-addf 11123  ax-mulf 11124
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1512  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-ot 4594  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-ofr 7634  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-tpos 8182  df-cur 8223  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-sup 9369  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-xnn0 12492  df-z 12506  df-dec 12626  df-uz 12770  df-rp 12928  df-fz 13445  df-fzo 13592  df-seq 13943  df-exp 14003  df-hash 14272  df-word 14455  df-lsw 14504  df-concat 14512  df-s1 14537  df-substr 14582  df-pfx 14612  df-splice 14691  df-reverse 14700  df-s2 14790  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-0g 17380  df-gsum 17381  df-prds 17386  df-pws 17388  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-mhm 18692  df-submnd 18693  df-efmnd 18778  df-grp 18850  df-minusg 18851  df-sbg 18852  df-mulg 18982  df-subg 19037  df-ghm 19127  df-gim 19173  df-cntz 19231  df-oppg 19260  df-symg 19284  df-pmtr 19356  df-psgn 19405  df-evpm 19406  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-srg 20107  df-ring 20155  df-cring 20156  df-oppr 20257  df-dvdsr 20277  df-unit 20278  df-invr 20308  df-dvr 20321  df-rhm 20392  df-subrng 20466  df-subrg 20490  df-drng 20651  df-lmod 20800  df-lss 20870  df-sra 21112  df-rgmod 21113  df-cnfld 21297  df-zring 21389  df-zrh 21445  df-dsmm 21674  df-frlm 21689  df-assa 21795  df-ascl 21797  df-psr 21851  df-mvr 21852  df-mpl 21853  df-opsr 21855  df-psr1 22097  df-vr1 22098  df-ply1 22099  df-coe1 22100  df-mamu 22311  df-mat 22328  df-mdet 22505  df-madu 22554  df-cpmat 22626  df-mat2pmat 22627  df-cpmat2mat 22628  df-decpmat 22683  df-pm2mp 22713  df-chpmat 22747
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator