| Step | Hyp | Ref
| Expression |
| 1 | | cayleyhamilton.a |
. . . 4
⊢ 𝐴 = (𝑁 Mat 𝑅) |
| 2 | | cayleyhamilton.b |
. . . 4
⊢ 𝐵 = (Base‘𝐴) |
| 3 | | cayleyhamilton.0 |
. . . 4
⊢ 0 =
(0g‘𝐴) |
| 4 | | cayleyhamilton.c |
. . . 4
⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) |
| 5 | | cayleyhamilton.k |
. . . 4
⊢ 𝐾 = (coe1‘(𝐶‘𝑀)) |
| 6 | | cayleyhamilton.m |
. . . 4
⊢ ∗ = (
·𝑠 ‘𝐴) |
| 7 | | cayleyhamilton.e |
. . . 4
⊢ ↑ =
(.g‘(mulGrp‘𝐴)) |
| 8 | 1, 2, 3, 4, 5, 6, 7 | cayleyhamilton 22896 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝐴 Σg (𝑛 ∈ ℕ0
↦ ((𝐾‘𝑛) ∗ (𝑛 ↑ 𝑀)))) = 0 ) |
| 9 | 8 | adantr 480 |
. 2
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐹 ∈ (𝐿 ↑m ℕ0)
∧ 𝐹 finSupp 𝑍)) → (𝐴 Σg (𝑛 ∈ ℕ0
↦ ((𝐾‘𝑛) ∗ (𝑛 ↑ 𝑀)))) = 0 ) |
| 10 | | nfv 1914 |
. . . . . . . 8
⊢
Ⅎ𝑛((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐹 ∈ (𝐿 ↑m ℕ0)
∧ 𝐹 finSupp 𝑍)) |
| 11 | | nfcv 2905 |
. . . . . . . . . 10
⊢
Ⅎ𝑛𝑃 |
| 12 | | nfcv 2905 |
. . . . . . . . . 10
⊢
Ⅎ𝑛
Σg |
| 13 | | nfmpt1 5250 |
. . . . . . . . . 10
⊢
Ⅎ𝑛(𝑛 ∈ ℕ0 ↦ ((𝐹‘𝑛) · (𝑛𝐸𝑋))) |
| 14 | 11, 12, 13 | nfov 7461 |
. . . . . . . . 9
⊢
Ⅎ𝑛(𝑃 Σg (𝑛 ∈ ℕ0
↦ ((𝐹‘𝑛) · (𝑛𝐸𝑋)))) |
| 15 | 14 | nfeq2 2923 |
. . . . . . . 8
⊢
Ⅎ𝑛(𝐶‘𝑀) = (𝑃 Σg (𝑛 ∈ ℕ0
↦ ((𝐹‘𝑛) · (𝑛𝐸𝑋)))) |
| 16 | 10, 15 | nfan 1899 |
. . . . . . 7
⊢
Ⅎ𝑛(((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐹 ∈ (𝐿 ↑m ℕ0)
∧ 𝐹 finSupp 𝑍)) ∧ (𝐶‘𝑀) = (𝑃 Σg (𝑛 ∈ ℕ0
↦ ((𝐹‘𝑛) · (𝑛𝐸𝑋))))) |
| 17 | | crngring 20242 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) |
| 18 | 17 | 3ad2ant2 1135 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑅 ∈ Ring) |
| 19 | 18 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐹 ∈ (𝐿 ↑m ℕ0)
∧ 𝐹 finSupp 𝑍)) → 𝑅 ∈ Ring) |
| 20 | | cayleyhamilton1.p |
. . . . . . . . . . . . 13
⊢ 𝑃 = (Poly1‘𝑅) |
| 21 | | eqid 2737 |
. . . . . . . . . . . . 13
⊢
(Base‘𝑃) =
(Base‘𝑃) |
| 22 | 4, 1, 2, 20, 21 | chpmatply1 22838 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝐶‘𝑀) ∈ (Base‘𝑃)) |
| 23 | 22 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐹 ∈ (𝐿 ↑m ℕ0)
∧ 𝐹 finSupp 𝑍)) → (𝐶‘𝑀) ∈ (Base‘𝑃)) |
| 24 | | cayleyhamilton1.x |
. . . . . . . . . . . 12
⊢ 𝑋 = (var1‘𝑅) |
| 25 | | cayleyhamilton1.e |
. . . . . . . . . . . 12
⊢ 𝐸 =
(.g‘(mulGrp‘𝑃)) |
| 26 | | cayleyhamilton1.l |
. . . . . . . . . . . 12
⊢ 𝐿 = (Base‘𝑅) |
| 27 | | cayleyhamilton1.m |
. . . . . . . . . . . 12
⊢ · = (
·𝑠 ‘𝑃) |
| 28 | | eqid 2737 |
. . . . . . . . . . . 12
⊢
(0g‘𝑅) = (0g‘𝑅) |
| 29 | | elmapi 8889 |
. . . . . . . . . . . . . 14
⊢ (𝐹 ∈ (𝐿 ↑m ℕ0)
→ 𝐹:ℕ0⟶𝐿) |
| 30 | | ffvelcdm 7101 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹:ℕ0⟶𝐿 ∧ 𝑛 ∈ ℕ0) → (𝐹‘𝑛) ∈ 𝐿) |
| 31 | 30 | ralrimiva 3146 |
. . . . . . . . . . . . . 14
⊢ (𝐹:ℕ0⟶𝐿 → ∀𝑛 ∈ ℕ0
(𝐹‘𝑛) ∈ 𝐿) |
| 32 | 29, 31 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝐹 ∈ (𝐿 ↑m ℕ0)
→ ∀𝑛 ∈
ℕ0 (𝐹‘𝑛) ∈ 𝐿) |
| 33 | 32 | ad2antrl 728 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐹 ∈ (𝐿 ↑m ℕ0)
∧ 𝐹 finSupp 𝑍)) → ∀𝑛 ∈ ℕ0
(𝐹‘𝑛) ∈ 𝐿) |
| 34 | 29 | feqmptd 6977 |
. . . . . . . . . . . . . . 15
⊢ (𝐹 ∈ (𝐿 ↑m ℕ0)
→ 𝐹 = (𝑛 ∈ ℕ0
↦ (𝐹‘𝑛))) |
| 35 | | cayleyhamilton1.z |
. . . . . . . . . . . . . . . 16
⊢ 𝑍 = (0g‘𝑅) |
| 36 | 35 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (𝐹 ∈ (𝐿 ↑m ℕ0)
→ 𝑍 =
(0g‘𝑅)) |
| 37 | 34, 36 | breq12d 5156 |
. . . . . . . . . . . . . 14
⊢ (𝐹 ∈ (𝐿 ↑m ℕ0)
→ (𝐹 finSupp 𝑍 ↔ (𝑛 ∈ ℕ0 ↦ (𝐹‘𝑛)) finSupp (0g‘𝑅))) |
| 38 | 37 | biimpa 476 |
. . . . . . . . . . . . 13
⊢ ((𝐹 ∈ (𝐿 ↑m ℕ0)
∧ 𝐹 finSupp 𝑍) → (𝑛 ∈ ℕ0 ↦ (𝐹‘𝑛)) finSupp (0g‘𝑅)) |
| 39 | 38 | adantl 481 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐹 ∈ (𝐿 ↑m ℕ0)
∧ 𝐹 finSupp 𝑍)) → (𝑛 ∈ ℕ0 ↦ (𝐹‘𝑛)) finSupp (0g‘𝑅)) |
| 40 | 20, 21, 24, 25, 19, 26, 27, 28, 33, 39 | gsumsmonply1 22311 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐹 ∈ (𝐿 ↑m ℕ0)
∧ 𝐹 finSupp 𝑍)) → (𝑃 Σg (𝑛 ∈ ℕ0
↦ ((𝐹‘𝑛) · (𝑛𝐸𝑋)))) ∈ (Base‘𝑃)) |
| 41 | | fveq2 6906 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 = 𝑛 → (𝐹‘𝑖) = (𝐹‘𝑛)) |
| 42 | | oveq1 7438 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 = 𝑛 → (𝑖𝐸𝑋) = (𝑛𝐸𝑋)) |
| 43 | 41, 42 | oveq12d 7449 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 = 𝑛 → ((𝐹‘𝑖) · (𝑖𝐸𝑋)) = ((𝐹‘𝑛) · (𝑛𝐸𝑋))) |
| 44 | 43 | cbvmptv 5255 |
. . . . . . . . . . . . . 14
⊢ (𝑖 ∈ ℕ0
↦ ((𝐹‘𝑖) · (𝑖𝐸𝑋))) = (𝑛 ∈ ℕ0 ↦ ((𝐹‘𝑛) · (𝑛𝐸𝑋))) |
| 45 | 44 | oveq2i 7442 |
. . . . . . . . . . . . 13
⊢ (𝑃 Σg
(𝑖 ∈
ℕ0 ↦ ((𝐹‘𝑖) · (𝑖𝐸𝑋)))) = (𝑃 Σg (𝑛 ∈ ℕ0
↦ ((𝐹‘𝑛) · (𝑛𝐸𝑋)))) |
| 46 | 45 | fveq2i 6909 |
. . . . . . . . . . . 12
⊢
(coe1‘(𝑃 Σg (𝑖 ∈ ℕ0
↦ ((𝐹‘𝑖) · (𝑖𝐸𝑋))))) = (coe1‘(𝑃 Σg
(𝑛 ∈
ℕ0 ↦ ((𝐹‘𝑛) · (𝑛𝐸𝑋))))) |
| 47 | 20, 21, 5, 46 | ply1coe1eq 22304 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ Ring ∧ (𝐶‘𝑀) ∈ (Base‘𝑃) ∧ (𝑃 Σg (𝑛 ∈ ℕ0
↦ ((𝐹‘𝑛) · (𝑛𝐸𝑋)))) ∈ (Base‘𝑃)) → (∀𝑚 ∈ ℕ0 (𝐾‘𝑚) = ((coe1‘(𝑃 Σg
(𝑖 ∈
ℕ0 ↦ ((𝐹‘𝑖) · (𝑖𝐸𝑋)))))‘𝑚) ↔ (𝐶‘𝑀) = (𝑃 Σg (𝑛 ∈ ℕ0
↦ ((𝐹‘𝑛) · (𝑛𝐸𝑋)))))) |
| 48 | 19, 23, 40, 47 | syl3anc 1373 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐹 ∈ (𝐿 ↑m ℕ0)
∧ 𝐹 finSupp 𝑍)) → (∀𝑚 ∈ ℕ0
(𝐾‘𝑚) = ((coe1‘(𝑃 Σg
(𝑖 ∈
ℕ0 ↦ ((𝐹‘𝑖) · (𝑖𝐸𝑋)))))‘𝑚) ↔ (𝐶‘𝑀) = (𝑃 Σg (𝑛 ∈ ℕ0
↦ ((𝐹‘𝑛) · (𝑛𝐸𝑋)))))) |
| 49 | | fveq2 6906 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 = 𝑛 → (𝐾‘𝑚) = (𝐾‘𝑛)) |
| 50 | | fveq2 6906 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 = 𝑛 → ((coe1‘(𝑃 Σg
(𝑖 ∈
ℕ0 ↦ ((𝐹‘𝑖) · (𝑖𝐸𝑋)))))‘𝑚) = ((coe1‘(𝑃 Σg
(𝑖 ∈
ℕ0 ↦ ((𝐹‘𝑖) · (𝑖𝐸𝑋)))))‘𝑛)) |
| 51 | 49, 50 | eqeq12d 2753 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = 𝑛 → ((𝐾‘𝑚) = ((coe1‘(𝑃 Σg
(𝑖 ∈
ℕ0 ↦ ((𝐹‘𝑖) · (𝑖𝐸𝑋)))))‘𝑚) ↔ (𝐾‘𝑛) = ((coe1‘(𝑃 Σg
(𝑖 ∈
ℕ0 ↦ ((𝐹‘𝑖) · (𝑖𝐸𝑋)))))‘𝑛))) |
| 52 | 51 | rspcva 3620 |
. . . . . . . . . . . . 13
⊢ ((𝑛 ∈ ℕ0
∧ ∀𝑚 ∈
ℕ0 (𝐾‘𝑚) = ((coe1‘(𝑃 Σg
(𝑖 ∈
ℕ0 ↦ ((𝐹‘𝑖) · (𝑖𝐸𝑋)))))‘𝑚)) → (𝐾‘𝑛) = ((coe1‘(𝑃 Σg
(𝑖 ∈
ℕ0 ↦ ((𝐹‘𝑖) · (𝑖𝐸𝑋)))))‘𝑛)) |
| 53 | | simpl 482 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐾‘𝑛) = ((coe1‘(𝑃 Σg
(𝑖 ∈
ℕ0 ↦ ((𝐹‘𝑖) · (𝑖𝐸𝑋)))))‘𝑛) ∧ (𝑛 ∈ ℕ0 ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐹 ∈ (𝐿 ↑m ℕ0)
∧ 𝐹 finSupp 𝑍)))) → (𝐾‘𝑛) = ((coe1‘(𝑃 Σg
(𝑖 ∈
ℕ0 ↦ ((𝐹‘𝑖) · (𝑖𝐸𝑋)))))‘𝑛)) |
| 54 | 18 | ad2antrl 728 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑛 ∈ ℕ0
∧ ((𝑁 ∈ Fin ∧
𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐹 ∈ (𝐿 ↑m ℕ0)
∧ 𝐹 finSupp 𝑍))) → 𝑅 ∈ Ring) |
| 55 | | ffvelcdm 7101 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐹:ℕ0⟶𝐿 ∧ 𝑖 ∈ ℕ0) → (𝐹‘𝑖) ∈ 𝐿) |
| 56 | 55 | ralrimiva 3146 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐹:ℕ0⟶𝐿 → ∀𝑖 ∈ ℕ0
(𝐹‘𝑖) ∈ 𝐿) |
| 57 | 29, 56 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐹 ∈ (𝐿 ↑m ℕ0)
→ ∀𝑖 ∈
ℕ0 (𝐹‘𝑖) ∈ 𝐿) |
| 58 | 57 | ad2antrl 728 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐹 ∈ (𝐿 ↑m ℕ0)
∧ 𝐹 finSupp 𝑍)) → ∀𝑖 ∈ ℕ0
(𝐹‘𝑖) ∈ 𝐿) |
| 59 | 58 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑛 ∈ ℕ0
∧ ((𝑁 ∈ Fin ∧
𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐹 ∈ (𝐿 ↑m ℕ0)
∧ 𝐹 finSupp 𝑍))) → ∀𝑖 ∈ ℕ0
(𝐹‘𝑖) ∈ 𝐿) |
| 60 | 29 | feqmptd 6977 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝐹 ∈ (𝐿 ↑m ℕ0)
→ 𝐹 = (𝑖 ∈ ℕ0
↦ (𝐹‘𝑖))) |
| 61 | 60 | breq1d 5153 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐹 ∈ (𝐿 ↑m ℕ0)
→ (𝐹 finSupp 𝑍 ↔ (𝑖 ∈ ℕ0 ↦ (𝐹‘𝑖)) finSupp 𝑍)) |
| 62 | 61 | biimpa 476 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐹 ∈ (𝐿 ↑m ℕ0)
∧ 𝐹 finSupp 𝑍) → (𝑖 ∈ ℕ0 ↦ (𝐹‘𝑖)) finSupp 𝑍) |
| 63 | 62 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐹 ∈ (𝐿 ↑m ℕ0)
∧ 𝐹 finSupp 𝑍)) → (𝑖 ∈ ℕ0 ↦ (𝐹‘𝑖)) finSupp 𝑍) |
| 64 | 63 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑛 ∈ ℕ0
∧ ((𝑁 ∈ Fin ∧
𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐹 ∈ (𝐿 ↑m ℕ0)
∧ 𝐹 finSupp 𝑍))) → (𝑖 ∈ ℕ0 ↦ (𝐹‘𝑖)) finSupp 𝑍) |
| 65 | | simpl 482 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑛 ∈ ℕ0
∧ ((𝑁 ∈ Fin ∧
𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐹 ∈ (𝐿 ↑m ℕ0)
∧ 𝐹 finSupp 𝑍))) → 𝑛 ∈ ℕ0) |
| 66 | 20, 21, 24, 25, 54, 26, 27, 35, 59, 64, 65 | gsummoncoe1 22312 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑛 ∈ ℕ0
∧ ((𝑁 ∈ Fin ∧
𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐹 ∈ (𝐿 ↑m ℕ0)
∧ 𝐹 finSupp 𝑍))) →
((coe1‘(𝑃
Σg (𝑖 ∈ ℕ0 ↦ ((𝐹‘𝑖) · (𝑖𝐸𝑋)))))‘𝑛) = ⦋𝑛 / 𝑖⦌(𝐹‘𝑖)) |
| 67 | | csbfv 6956 |
. . . . . . . . . . . . . . . . . . 19
⊢
⦋𝑛 /
𝑖⦌(𝐹‘𝑖) = (𝐹‘𝑛) |
| 68 | 66, 67 | eqtrdi 2793 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑛 ∈ ℕ0
∧ ((𝑁 ∈ Fin ∧
𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐹 ∈ (𝐿 ↑m ℕ0)
∧ 𝐹 finSupp 𝑍))) →
((coe1‘(𝑃
Σg (𝑖 ∈ ℕ0 ↦ ((𝐹‘𝑖) · (𝑖𝐸𝑋)))))‘𝑛) = (𝐹‘𝑛)) |
| 69 | 68 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐾‘𝑛) = ((coe1‘(𝑃 Σg
(𝑖 ∈
ℕ0 ↦ ((𝐹‘𝑖) · (𝑖𝐸𝑋)))))‘𝑛) ∧ (𝑛 ∈ ℕ0 ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐹 ∈ (𝐿 ↑m ℕ0)
∧ 𝐹 finSupp 𝑍)))) →
((coe1‘(𝑃
Σg (𝑖 ∈ ℕ0 ↦ ((𝐹‘𝑖) · (𝑖𝐸𝑋)))))‘𝑛) = (𝐹‘𝑛)) |
| 70 | 53, 69 | eqtrd 2777 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐾‘𝑛) = ((coe1‘(𝑃 Σg
(𝑖 ∈
ℕ0 ↦ ((𝐹‘𝑖) · (𝑖𝐸𝑋)))))‘𝑛) ∧ (𝑛 ∈ ℕ0 ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐹 ∈ (𝐿 ↑m ℕ0)
∧ 𝐹 finSupp 𝑍)))) → (𝐾‘𝑛) = (𝐹‘𝑛)) |
| 71 | 70 | exp32 420 |
. . . . . . . . . . . . . . 15
⊢ ((𝐾‘𝑛) = ((coe1‘(𝑃 Σg
(𝑖 ∈
ℕ0 ↦ ((𝐹‘𝑖) · (𝑖𝐸𝑋)))))‘𝑛) → (𝑛 ∈ ℕ0 → (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐹 ∈ (𝐿 ↑m ℕ0)
∧ 𝐹 finSupp 𝑍)) → (𝐾‘𝑛) = (𝐹‘𝑛)))) |
| 72 | 71 | com12 32 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ℕ0
→ ((𝐾‘𝑛) =
((coe1‘(𝑃
Σg (𝑖 ∈ ℕ0 ↦ ((𝐹‘𝑖) · (𝑖𝐸𝑋)))))‘𝑛) → (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐹 ∈ (𝐿 ↑m ℕ0)
∧ 𝐹 finSupp 𝑍)) → (𝐾‘𝑛) = (𝐹‘𝑛)))) |
| 73 | 72 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝑛 ∈ ℕ0
∧ ∀𝑚 ∈
ℕ0 (𝐾‘𝑚) = ((coe1‘(𝑃 Σg
(𝑖 ∈
ℕ0 ↦ ((𝐹‘𝑖) · (𝑖𝐸𝑋)))))‘𝑚)) → ((𝐾‘𝑛) = ((coe1‘(𝑃 Σg
(𝑖 ∈
ℕ0 ↦ ((𝐹‘𝑖) · (𝑖𝐸𝑋)))))‘𝑛) → (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐹 ∈ (𝐿 ↑m ℕ0)
∧ 𝐹 finSupp 𝑍)) → (𝐾‘𝑛) = (𝐹‘𝑛)))) |
| 74 | 52, 73 | mpd 15 |
. . . . . . . . . . . 12
⊢ ((𝑛 ∈ ℕ0
∧ ∀𝑚 ∈
ℕ0 (𝐾‘𝑚) = ((coe1‘(𝑃 Σg
(𝑖 ∈
ℕ0 ↦ ((𝐹‘𝑖) · (𝑖𝐸𝑋)))))‘𝑚)) → (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐹 ∈ (𝐿 ↑m ℕ0)
∧ 𝐹 finSupp 𝑍)) → (𝐾‘𝑛) = (𝐹‘𝑛))) |
| 75 | 74 | com12 32 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐹 ∈ (𝐿 ↑m ℕ0)
∧ 𝐹 finSupp 𝑍)) → ((𝑛 ∈ ℕ0 ∧
∀𝑚 ∈
ℕ0 (𝐾‘𝑚) = ((coe1‘(𝑃 Σg
(𝑖 ∈
ℕ0 ↦ ((𝐹‘𝑖) · (𝑖𝐸𝑋)))))‘𝑚)) → (𝐾‘𝑛) = (𝐹‘𝑛))) |
| 76 | 75 | expcomd 416 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐹 ∈ (𝐿 ↑m ℕ0)
∧ 𝐹 finSupp 𝑍)) → (∀𝑚 ∈ ℕ0
(𝐾‘𝑚) = ((coe1‘(𝑃 Σg
(𝑖 ∈
ℕ0 ↦ ((𝐹‘𝑖) · (𝑖𝐸𝑋)))))‘𝑚) → (𝑛 ∈ ℕ0 → (𝐾‘𝑛) = (𝐹‘𝑛)))) |
| 77 | 48, 76 | sylbird 260 |
. . . . . . . . 9
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐹 ∈ (𝐿 ↑m ℕ0)
∧ 𝐹 finSupp 𝑍)) → ((𝐶‘𝑀) = (𝑃 Σg (𝑛 ∈ ℕ0
↦ ((𝐹‘𝑛) · (𝑛𝐸𝑋)))) → (𝑛 ∈ ℕ0 → (𝐾‘𝑛) = (𝐹‘𝑛)))) |
| 78 | 77 | imp31 417 |
. . . . . . . 8
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ (𝐹 ∈ (𝐿 ↑m ℕ0)
∧ 𝐹 finSupp 𝑍)) ∧ (𝐶‘𝑀) = (𝑃 Σg (𝑛 ∈ ℕ0
↦ ((𝐹‘𝑛) · (𝑛𝐸𝑋))))) ∧ 𝑛 ∈ ℕ0) → (𝐾‘𝑛) = (𝐹‘𝑛)) |
| 79 | 78 | oveq1d 7446 |
. . . . . . 7
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ CRing ∧
𝑀 ∈ 𝐵) ∧ (𝐹 ∈ (𝐿 ↑m ℕ0)
∧ 𝐹 finSupp 𝑍)) ∧ (𝐶‘𝑀) = (𝑃 Σg (𝑛 ∈ ℕ0
↦ ((𝐹‘𝑛) · (𝑛𝐸𝑋))))) ∧ 𝑛 ∈ ℕ0) → ((𝐾‘𝑛) ∗ (𝑛 ↑ 𝑀)) = ((𝐹‘𝑛) ∗ (𝑛 ↑ 𝑀))) |
| 80 | 16, 79 | mpteq2da 5240 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐹 ∈ (𝐿 ↑m ℕ0)
∧ 𝐹 finSupp 𝑍)) ∧ (𝐶‘𝑀) = (𝑃 Σg (𝑛 ∈ ℕ0
↦ ((𝐹‘𝑛) · (𝑛𝐸𝑋))))) → (𝑛 ∈ ℕ0 ↦ ((𝐾‘𝑛) ∗ (𝑛 ↑ 𝑀))) = (𝑛 ∈ ℕ0 ↦ ((𝐹‘𝑛) ∗ (𝑛 ↑ 𝑀)))) |
| 81 | 80 | oveq2d 7447 |
. . . . 5
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐹 ∈ (𝐿 ↑m ℕ0)
∧ 𝐹 finSupp 𝑍)) ∧ (𝐶‘𝑀) = (𝑃 Σg (𝑛 ∈ ℕ0
↦ ((𝐹‘𝑛) · (𝑛𝐸𝑋))))) → (𝐴 Σg (𝑛 ∈ ℕ0
↦ ((𝐾‘𝑛) ∗ (𝑛 ↑ 𝑀)))) = (𝐴 Σg (𝑛 ∈ ℕ0
↦ ((𝐹‘𝑛) ∗ (𝑛 ↑ 𝑀))))) |
| 82 | 81 | eqeq1d 2739 |
. . . 4
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐹 ∈ (𝐿 ↑m ℕ0)
∧ 𝐹 finSupp 𝑍)) ∧ (𝐶‘𝑀) = (𝑃 Σg (𝑛 ∈ ℕ0
↦ ((𝐹‘𝑛) · (𝑛𝐸𝑋))))) → ((𝐴 Σg (𝑛 ∈ ℕ0
↦ ((𝐾‘𝑛) ∗ (𝑛 ↑ 𝑀)))) = 0 ↔ (𝐴 Σg (𝑛 ∈ ℕ0
↦ ((𝐹‘𝑛) ∗ (𝑛 ↑ 𝑀)))) = 0 )) |
| 83 | 82 | biimpd 229 |
. . 3
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐹 ∈ (𝐿 ↑m ℕ0)
∧ 𝐹 finSupp 𝑍)) ∧ (𝐶‘𝑀) = (𝑃 Σg (𝑛 ∈ ℕ0
↦ ((𝐹‘𝑛) · (𝑛𝐸𝑋))))) → ((𝐴 Σg (𝑛 ∈ ℕ0
↦ ((𝐾‘𝑛) ∗ (𝑛 ↑ 𝑀)))) = 0 → (𝐴 Σg (𝑛 ∈ ℕ0
↦ ((𝐹‘𝑛) ∗ (𝑛 ↑ 𝑀)))) = 0 )) |
| 84 | 83 | ex 412 |
. 2
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐹 ∈ (𝐿 ↑m ℕ0)
∧ 𝐹 finSupp 𝑍)) → ((𝐶‘𝑀) = (𝑃 Σg (𝑛 ∈ ℕ0
↦ ((𝐹‘𝑛) · (𝑛𝐸𝑋)))) → ((𝐴 Σg (𝑛 ∈ ℕ0
↦ ((𝐾‘𝑛) ∗ (𝑛 ↑ 𝑀)))) = 0 → (𝐴 Σg (𝑛 ∈ ℕ0
↦ ((𝐹‘𝑛) ∗ (𝑛 ↑ 𝑀)))) = 0 ))) |
| 85 | 9, 84 | mpid 44 |
1
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝐹 ∈ (𝐿 ↑m ℕ0)
∧ 𝐹 finSupp 𝑍)) → ((𝐶‘𝑀) = (𝑃 Σg (𝑛 ∈ ℕ0
↦ ((𝐹‘𝑛) · (𝑛𝐸𝑋)))) → (𝐴 Σg (𝑛 ∈ ℕ0
↦ ((𝐹‘𝑛) ∗ (𝑛 ↑ 𝑀)))) = 0 )) |