MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cayleyhamilton1 Structured version   Visualization version   GIF version

Theorem cayleyhamilton1 22898
Description: The Cayley-Hamilton theorem: A matrix over a commutative ring "satisfies its own characteristic equation", or, in other words, a matrix over a commutative ring "inserted" into its characteristic polynomial results in zero. In this variant of cayleyhamilton 22896, the meaning of "inserted" is made more transparent: If the characteristic polynomial is a polynomial with coefficients (𝐹𝑛), then a matrix over a commutative ring "inserted" into its characteristic polynomial is the sum of these coefficients multiplied with the corresponding power of the matrix. (Contributed by AV, 25-Nov-2019.)
Hypotheses
Ref Expression
cayleyhamilton.a 𝐴 = (𝑁 Mat 𝑅)
cayleyhamilton.b 𝐵 = (Base‘𝐴)
cayleyhamilton.0 0 = (0g𝐴)
cayleyhamilton.c 𝐶 = (𝑁 CharPlyMat 𝑅)
cayleyhamilton.k 𝐾 = (coe1‘(𝐶𝑀))
cayleyhamilton.m = ( ·𝑠𝐴)
cayleyhamilton.e = (.g‘(mulGrp‘𝐴))
cayleyhamilton1.l 𝐿 = (Base‘𝑅)
cayleyhamilton1.x 𝑋 = (var1𝑅)
cayleyhamilton1.p 𝑃 = (Poly1𝑅)
cayleyhamilton1.m · = ( ·𝑠𝑃)
cayleyhamilton1.e 𝐸 = (.g‘(mulGrp‘𝑃))
cayleyhamilton1.z 𝑍 = (0g𝑅)
Assertion
Ref Expression
cayleyhamilton1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍)) → ((𝐶𝑀) = (𝑃 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) · (𝑛𝐸𝑋)))) → (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) (𝑛 𝑀)))) = 0 ))
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛   𝐶,𝑛   𝑛,𝑀   𝑛,𝑁   𝑅,𝑛   ,𝑛   ,𝑛   𝑛,𝐸   𝑛,𝐹   𝑛,𝐿   𝑃,𝑛   𝑛,𝑋   𝑛,𝑍   · ,𝑛
Allowed substitution hints:   𝐾(𝑛)   0 (𝑛)

Proof of Theorem cayleyhamilton1
Dummy variables 𝑚 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cayleyhamilton.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
2 cayleyhamilton.b . . . 4 𝐵 = (Base‘𝐴)
3 cayleyhamilton.0 . . . 4 0 = (0g𝐴)
4 cayleyhamilton.c . . . 4 𝐶 = (𝑁 CharPlyMat 𝑅)
5 cayleyhamilton.k . . . 4 𝐾 = (coe1‘(𝐶𝑀))
6 cayleyhamilton.m . . . 4 = ( ·𝑠𝐴)
7 cayleyhamilton.e . . . 4 = (.g‘(mulGrp‘𝐴))
81, 2, 3, 4, 5, 6, 7cayleyhamilton 22896 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐾𝑛) (𝑛 𝑀)))) = 0 )
98adantr 480 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍)) → (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐾𝑛) (𝑛 𝑀)))) = 0 )
10 nfv 1914 . . . . . . . 8 𝑛((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍))
11 nfcv 2905 . . . . . . . . . 10 𝑛𝑃
12 nfcv 2905 . . . . . . . . . 10 𝑛 Σg
13 nfmpt1 5250 . . . . . . . . . 10 𝑛(𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) · (𝑛𝐸𝑋)))
1411, 12, 13nfov 7461 . . . . . . . . 9 𝑛(𝑃 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) · (𝑛𝐸𝑋))))
1514nfeq2 2923 . . . . . . . 8 𝑛(𝐶𝑀) = (𝑃 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) · (𝑛𝐸𝑋))))
1610, 15nfan 1899 . . . . . . 7 𝑛(((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍)) ∧ (𝐶𝑀) = (𝑃 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) · (𝑛𝐸𝑋)))))
17 crngring 20242 . . . . . . . . . . . . 13 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
18173ad2ant2 1135 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑅 ∈ Ring)
1918adantr 480 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍)) → 𝑅 ∈ Ring)
20 cayleyhamilton1.p . . . . . . . . . . . . 13 𝑃 = (Poly1𝑅)
21 eqid 2737 . . . . . . . . . . . . 13 (Base‘𝑃) = (Base‘𝑃)
224, 1, 2, 20, 21chpmatply1 22838 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝐶𝑀) ∈ (Base‘𝑃))
2322adantr 480 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍)) → (𝐶𝑀) ∈ (Base‘𝑃))
24 cayleyhamilton1.x . . . . . . . . . . . 12 𝑋 = (var1𝑅)
25 cayleyhamilton1.e . . . . . . . . . . . 12 𝐸 = (.g‘(mulGrp‘𝑃))
26 cayleyhamilton1.l . . . . . . . . . . . 12 𝐿 = (Base‘𝑅)
27 cayleyhamilton1.m . . . . . . . . . . . 12 · = ( ·𝑠𝑃)
28 eqid 2737 . . . . . . . . . . . 12 (0g𝑅) = (0g𝑅)
29 elmapi 8889 . . . . . . . . . . . . . 14 (𝐹 ∈ (𝐿m0) → 𝐹:ℕ0𝐿)
30 ffvelcdm 7101 . . . . . . . . . . . . . . 15 ((𝐹:ℕ0𝐿𝑛 ∈ ℕ0) → (𝐹𝑛) ∈ 𝐿)
3130ralrimiva 3146 . . . . . . . . . . . . . 14 (𝐹:ℕ0𝐿 → ∀𝑛 ∈ ℕ0 (𝐹𝑛) ∈ 𝐿)
3229, 31syl 17 . . . . . . . . . . . . 13 (𝐹 ∈ (𝐿m0) → ∀𝑛 ∈ ℕ0 (𝐹𝑛) ∈ 𝐿)
3332ad2antrl 728 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍)) → ∀𝑛 ∈ ℕ0 (𝐹𝑛) ∈ 𝐿)
3429feqmptd 6977 . . . . . . . . . . . . . . 15 (𝐹 ∈ (𝐿m0) → 𝐹 = (𝑛 ∈ ℕ0 ↦ (𝐹𝑛)))
35 cayleyhamilton1.z . . . . . . . . . . . . . . . 16 𝑍 = (0g𝑅)
3635a1i 11 . . . . . . . . . . . . . . 15 (𝐹 ∈ (𝐿m0) → 𝑍 = (0g𝑅))
3734, 36breq12d 5156 . . . . . . . . . . . . . 14 (𝐹 ∈ (𝐿m0) → (𝐹 finSupp 𝑍 ↔ (𝑛 ∈ ℕ0 ↦ (𝐹𝑛)) finSupp (0g𝑅)))
3837biimpa 476 . . . . . . . . . . . . 13 ((𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍) → (𝑛 ∈ ℕ0 ↦ (𝐹𝑛)) finSupp (0g𝑅))
3938adantl 481 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍)) → (𝑛 ∈ ℕ0 ↦ (𝐹𝑛)) finSupp (0g𝑅))
4020, 21, 24, 25, 19, 26, 27, 28, 33, 39gsumsmonply1 22311 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍)) → (𝑃 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) · (𝑛𝐸𝑋)))) ∈ (Base‘𝑃))
41 fveq2 6906 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑛 → (𝐹𝑖) = (𝐹𝑛))
42 oveq1 7438 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑛 → (𝑖𝐸𝑋) = (𝑛𝐸𝑋))
4341, 42oveq12d 7449 . . . . . . . . . . . . . . 15 (𝑖 = 𝑛 → ((𝐹𝑖) · (𝑖𝐸𝑋)) = ((𝐹𝑛) · (𝑛𝐸𝑋)))
4443cbvmptv 5255 . . . . . . . . . . . . . 14 (𝑖 ∈ ℕ0 ↦ ((𝐹𝑖) · (𝑖𝐸𝑋))) = (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) · (𝑛𝐸𝑋)))
4544oveq2i 7442 . . . . . . . . . . . . 13 (𝑃 Σg (𝑖 ∈ ℕ0 ↦ ((𝐹𝑖) · (𝑖𝐸𝑋)))) = (𝑃 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) · (𝑛𝐸𝑋))))
4645fveq2i 6909 . . . . . . . . . . . 12 (coe1‘(𝑃 Σg (𝑖 ∈ ℕ0 ↦ ((𝐹𝑖) · (𝑖𝐸𝑋))))) = (coe1‘(𝑃 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) · (𝑛𝐸𝑋)))))
4720, 21, 5, 46ply1coe1eq 22304 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ (𝐶𝑀) ∈ (Base‘𝑃) ∧ (𝑃 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) · (𝑛𝐸𝑋)))) ∈ (Base‘𝑃)) → (∀𝑚 ∈ ℕ0 (𝐾𝑚) = ((coe1‘(𝑃 Σg (𝑖 ∈ ℕ0 ↦ ((𝐹𝑖) · (𝑖𝐸𝑋)))))‘𝑚) ↔ (𝐶𝑀) = (𝑃 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) · (𝑛𝐸𝑋))))))
4819, 23, 40, 47syl3anc 1373 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍)) → (∀𝑚 ∈ ℕ0 (𝐾𝑚) = ((coe1‘(𝑃 Σg (𝑖 ∈ ℕ0 ↦ ((𝐹𝑖) · (𝑖𝐸𝑋)))))‘𝑚) ↔ (𝐶𝑀) = (𝑃 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) · (𝑛𝐸𝑋))))))
49 fveq2 6906 . . . . . . . . . . . . . . 15 (𝑚 = 𝑛 → (𝐾𝑚) = (𝐾𝑛))
50 fveq2 6906 . . . . . . . . . . . . . . 15 (𝑚 = 𝑛 → ((coe1‘(𝑃 Σg (𝑖 ∈ ℕ0 ↦ ((𝐹𝑖) · (𝑖𝐸𝑋)))))‘𝑚) = ((coe1‘(𝑃 Σg (𝑖 ∈ ℕ0 ↦ ((𝐹𝑖) · (𝑖𝐸𝑋)))))‘𝑛))
5149, 50eqeq12d 2753 . . . . . . . . . . . . . 14 (𝑚 = 𝑛 → ((𝐾𝑚) = ((coe1‘(𝑃 Σg (𝑖 ∈ ℕ0 ↦ ((𝐹𝑖) · (𝑖𝐸𝑋)))))‘𝑚) ↔ (𝐾𝑛) = ((coe1‘(𝑃 Σg (𝑖 ∈ ℕ0 ↦ ((𝐹𝑖) · (𝑖𝐸𝑋)))))‘𝑛)))
5251rspcva 3620 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝐾𝑚) = ((coe1‘(𝑃 Σg (𝑖 ∈ ℕ0 ↦ ((𝐹𝑖) · (𝑖𝐸𝑋)))))‘𝑚)) → (𝐾𝑛) = ((coe1‘(𝑃 Σg (𝑖 ∈ ℕ0 ↦ ((𝐹𝑖) · (𝑖𝐸𝑋)))))‘𝑛))
53 simpl 482 . . . . . . . . . . . . . . . . 17 (((𝐾𝑛) = ((coe1‘(𝑃 Σg (𝑖 ∈ ℕ0 ↦ ((𝐹𝑖) · (𝑖𝐸𝑋)))))‘𝑛) ∧ (𝑛 ∈ ℕ0 ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍)))) → (𝐾𝑛) = ((coe1‘(𝑃 Σg (𝑖 ∈ ℕ0 ↦ ((𝐹𝑖) · (𝑖𝐸𝑋)))))‘𝑛))
5418ad2antrl 728 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℕ0 ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍))) → 𝑅 ∈ Ring)
55 ffvelcdm 7101 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐹:ℕ0𝐿𝑖 ∈ ℕ0) → (𝐹𝑖) ∈ 𝐿)
5655ralrimiva 3146 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹:ℕ0𝐿 → ∀𝑖 ∈ ℕ0 (𝐹𝑖) ∈ 𝐿)
5729, 56syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝐹 ∈ (𝐿m0) → ∀𝑖 ∈ ℕ0 (𝐹𝑖) ∈ 𝐿)
5857ad2antrl 728 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍)) → ∀𝑖 ∈ ℕ0 (𝐹𝑖) ∈ 𝐿)
5958adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℕ0 ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍))) → ∀𝑖 ∈ ℕ0 (𝐹𝑖) ∈ 𝐿)
6029feqmptd 6977 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐹 ∈ (𝐿m0) → 𝐹 = (𝑖 ∈ ℕ0 ↦ (𝐹𝑖)))
6160breq1d 5153 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹 ∈ (𝐿m0) → (𝐹 finSupp 𝑍 ↔ (𝑖 ∈ ℕ0 ↦ (𝐹𝑖)) finSupp 𝑍))
6261biimpa 476 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍) → (𝑖 ∈ ℕ0 ↦ (𝐹𝑖)) finSupp 𝑍)
6362adantl 481 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍)) → (𝑖 ∈ ℕ0 ↦ (𝐹𝑖)) finSupp 𝑍)
6463adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℕ0 ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍))) → (𝑖 ∈ ℕ0 ↦ (𝐹𝑖)) finSupp 𝑍)
65 simpl 482 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℕ0 ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍))) → 𝑛 ∈ ℕ0)
6620, 21, 24, 25, 54, 26, 27, 35, 59, 64, 65gsummoncoe1 22312 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ℕ0 ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍))) → ((coe1‘(𝑃 Σg (𝑖 ∈ ℕ0 ↦ ((𝐹𝑖) · (𝑖𝐸𝑋)))))‘𝑛) = 𝑛 / 𝑖(𝐹𝑖))
67 csbfv 6956 . . . . . . . . . . . . . . . . . . 19 𝑛 / 𝑖(𝐹𝑖) = (𝐹𝑛)
6866, 67eqtrdi 2793 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℕ0 ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍))) → ((coe1‘(𝑃 Σg (𝑖 ∈ ℕ0 ↦ ((𝐹𝑖) · (𝑖𝐸𝑋)))))‘𝑛) = (𝐹𝑛))
6968adantl 481 . . . . . . . . . . . . . . . . 17 (((𝐾𝑛) = ((coe1‘(𝑃 Σg (𝑖 ∈ ℕ0 ↦ ((𝐹𝑖) · (𝑖𝐸𝑋)))))‘𝑛) ∧ (𝑛 ∈ ℕ0 ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍)))) → ((coe1‘(𝑃 Σg (𝑖 ∈ ℕ0 ↦ ((𝐹𝑖) · (𝑖𝐸𝑋)))))‘𝑛) = (𝐹𝑛))
7053, 69eqtrd 2777 . . . . . . . . . . . . . . . 16 (((𝐾𝑛) = ((coe1‘(𝑃 Σg (𝑖 ∈ ℕ0 ↦ ((𝐹𝑖) · (𝑖𝐸𝑋)))))‘𝑛) ∧ (𝑛 ∈ ℕ0 ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍)))) → (𝐾𝑛) = (𝐹𝑛))
7170exp32 420 . . . . . . . . . . . . . . 15 ((𝐾𝑛) = ((coe1‘(𝑃 Σg (𝑖 ∈ ℕ0 ↦ ((𝐹𝑖) · (𝑖𝐸𝑋)))))‘𝑛) → (𝑛 ∈ ℕ0 → (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍)) → (𝐾𝑛) = (𝐹𝑛))))
7271com12 32 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ0 → ((𝐾𝑛) = ((coe1‘(𝑃 Σg (𝑖 ∈ ℕ0 ↦ ((𝐹𝑖) · (𝑖𝐸𝑋)))))‘𝑛) → (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍)) → (𝐾𝑛) = (𝐹𝑛))))
7372adantr 480 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝐾𝑚) = ((coe1‘(𝑃 Σg (𝑖 ∈ ℕ0 ↦ ((𝐹𝑖) · (𝑖𝐸𝑋)))))‘𝑚)) → ((𝐾𝑛) = ((coe1‘(𝑃 Σg (𝑖 ∈ ℕ0 ↦ ((𝐹𝑖) · (𝑖𝐸𝑋)))))‘𝑛) → (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍)) → (𝐾𝑛) = (𝐹𝑛))))
7452, 73mpd 15 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝐾𝑚) = ((coe1‘(𝑃 Σg (𝑖 ∈ ℕ0 ↦ ((𝐹𝑖) · (𝑖𝐸𝑋)))))‘𝑚)) → (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍)) → (𝐾𝑛) = (𝐹𝑛)))
7574com12 32 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍)) → ((𝑛 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝐾𝑚) = ((coe1‘(𝑃 Σg (𝑖 ∈ ℕ0 ↦ ((𝐹𝑖) · (𝑖𝐸𝑋)))))‘𝑚)) → (𝐾𝑛) = (𝐹𝑛)))
7675expcomd 416 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍)) → (∀𝑚 ∈ ℕ0 (𝐾𝑚) = ((coe1‘(𝑃 Σg (𝑖 ∈ ℕ0 ↦ ((𝐹𝑖) · (𝑖𝐸𝑋)))))‘𝑚) → (𝑛 ∈ ℕ0 → (𝐾𝑛) = (𝐹𝑛))))
7748, 76sylbird 260 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍)) → ((𝐶𝑀) = (𝑃 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) · (𝑛𝐸𝑋)))) → (𝑛 ∈ ℕ0 → (𝐾𝑛) = (𝐹𝑛))))
7877imp31 417 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍)) ∧ (𝐶𝑀) = (𝑃 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) · (𝑛𝐸𝑋))))) ∧ 𝑛 ∈ ℕ0) → (𝐾𝑛) = (𝐹𝑛))
7978oveq1d 7446 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍)) ∧ (𝐶𝑀) = (𝑃 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) · (𝑛𝐸𝑋))))) ∧ 𝑛 ∈ ℕ0) → ((𝐾𝑛) (𝑛 𝑀)) = ((𝐹𝑛) (𝑛 𝑀)))
8016, 79mpteq2da 5240 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍)) ∧ (𝐶𝑀) = (𝑃 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) · (𝑛𝐸𝑋))))) → (𝑛 ∈ ℕ0 ↦ ((𝐾𝑛) (𝑛 𝑀))) = (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) (𝑛 𝑀))))
8180oveq2d 7447 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍)) ∧ (𝐶𝑀) = (𝑃 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) · (𝑛𝐸𝑋))))) → (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐾𝑛) (𝑛 𝑀)))) = (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) (𝑛 𝑀)))))
8281eqeq1d 2739 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍)) ∧ (𝐶𝑀) = (𝑃 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) · (𝑛𝐸𝑋))))) → ((𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐾𝑛) (𝑛 𝑀)))) = 0 ↔ (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) (𝑛 𝑀)))) = 0 ))
8382biimpd 229 . . 3 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍)) ∧ (𝐶𝑀) = (𝑃 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) · (𝑛𝐸𝑋))))) → ((𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐾𝑛) (𝑛 𝑀)))) = 0 → (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) (𝑛 𝑀)))) = 0 ))
8483ex 412 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍)) → ((𝐶𝑀) = (𝑃 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) · (𝑛𝐸𝑋)))) → ((𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐾𝑛) (𝑛 𝑀)))) = 0 → (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) (𝑛 𝑀)))) = 0 )))
859, 84mpid 44 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍)) → ((𝐶𝑀) = (𝑃 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) · (𝑛𝐸𝑋)))) → (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) (𝑛 𝑀)))) = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wral 3061  csb 3899   class class class wbr 5143  cmpt 5225  wf 6557  cfv 6561  (class class class)co 7431  m cmap 8866  Fincfn 8985   finSupp cfsupp 9401  0cn0 12526  Basecbs 17247   ·𝑠 cvsca 17301  0gc0g 17484   Σg cgsu 17485  .gcmg 19085  mulGrpcmgp 20137  Ringcrg 20230  CRingccrg 20231  var1cv1 22177  Poly1cpl1 22178  coe1cco1 22179   Mat cmat 22411   CharPlyMat cchpmat 22832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-addf 11234  ax-mulf 11235
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-xor 1512  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-ot 4635  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-tpos 8251  df-cur 8292  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-sup 9482  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-xnn0 12600  df-z 12614  df-dec 12734  df-uz 12879  df-rp 13035  df-fz 13548  df-fzo 13695  df-seq 14043  df-exp 14103  df-hash 14370  df-word 14553  df-lsw 14601  df-concat 14609  df-s1 14634  df-substr 14679  df-pfx 14709  df-splice 14788  df-reverse 14797  df-s2 14887  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-0g 17486  df-gsum 17487  df-prds 17492  df-pws 17494  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-mhm 18796  df-submnd 18797  df-efmnd 18882  df-grp 18954  df-minusg 18955  df-sbg 18956  df-mulg 19086  df-subg 19141  df-ghm 19231  df-gim 19277  df-cntz 19335  df-oppg 19364  df-symg 19387  df-pmtr 19460  df-psgn 19509  df-evpm 19510  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-srg 20184  df-ring 20232  df-cring 20233  df-oppr 20334  df-dvdsr 20357  df-unit 20358  df-invr 20388  df-dvr 20401  df-rhm 20472  df-subrng 20546  df-subrg 20570  df-drng 20731  df-lmod 20860  df-lss 20930  df-sra 21172  df-rgmod 21173  df-cnfld 21365  df-zring 21458  df-zrh 21514  df-dsmm 21752  df-frlm 21767  df-assa 21873  df-ascl 21875  df-psr 21929  df-mvr 21930  df-mpl 21931  df-opsr 21933  df-psr1 22181  df-vr1 22182  df-ply1 22183  df-coe1 22184  df-mamu 22395  df-mat 22412  df-mdet 22591  df-madu 22640  df-cpmat 22712  df-mat2pmat 22713  df-cpmat2mat 22714  df-decpmat 22769  df-pm2mp 22799  df-chpmat 22833
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator