MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cayleyhamilton1 Structured version   Visualization version   GIF version

Theorem cayleyhamilton1 20979
Description: The Cayley-Hamilton theorem: A matrix over a commutative ring "satisfies its own characteristic equation", or, in other words, a matrix over a commutative ring "inserted" into its characteristic polynomial results in zero. In this variant of cayleyhamilton 20977, the meaning of "inserted" is made more transparent: If the characteristic polynomial is a polynomial with coefficients (𝐹𝑛), then a matrix over a commutative ring "inserted" into its characteristic polynomial is the sum of these coefficients multiplied with the corresponding power of the matrix. (Contributed by AV, 25-Nov-2019.)
Hypotheses
Ref Expression
cayleyhamilton.a 𝐴 = (𝑁 Mat 𝑅)
cayleyhamilton.b 𝐵 = (Base‘𝐴)
cayleyhamilton.0 0 = (0g𝐴)
cayleyhamilton.c 𝐶 = (𝑁 CharPlyMat 𝑅)
cayleyhamilton.k 𝐾 = (coe1‘(𝐶𝑀))
cayleyhamilton.m = ( ·𝑠𝐴)
cayleyhamilton.e = (.g‘(mulGrp‘𝐴))
cayleyhamilton1.l 𝐿 = (Base‘𝑅)
cayleyhamilton1.x 𝑋 = (var1𝑅)
cayleyhamilton1.p 𝑃 = (Poly1𝑅)
cayleyhamilton1.m · = ( ·𝑠𝑃)
cayleyhamilton1.e 𝐸 = (.g‘(mulGrp‘𝑃))
cayleyhamilton1.z 𝑍 = (0g𝑅)
Assertion
Ref Expression
cayleyhamilton1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿𝑚0) ∧ 𝐹 finSupp 𝑍)) → ((𝐶𝑀) = (𝑃 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) · (𝑛𝐸𝑋)))) → (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) (𝑛 𝑀)))) = 0 ))
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛   𝐶,𝑛   𝑛,𝑀   𝑛,𝑁   𝑅,𝑛   ,𝑛   ,𝑛   𝑛,𝐸   𝑛,𝐹   𝑛,𝐿   𝑃,𝑛   𝑛,𝑋   𝑛,𝑍   · ,𝑛
Allowed substitution hints:   𝐾(𝑛)   0 (𝑛)

Proof of Theorem cayleyhamilton1
Dummy variables 𝑚 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cayleyhamilton.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
2 cayleyhamilton.b . . . 4 𝐵 = (Base‘𝐴)
3 cayleyhamilton.0 . . . 4 0 = (0g𝐴)
4 cayleyhamilton.c . . . 4 𝐶 = (𝑁 CharPlyMat 𝑅)
5 cayleyhamilton.k . . . 4 𝐾 = (coe1‘(𝐶𝑀))
6 cayleyhamilton.m . . . 4 = ( ·𝑠𝐴)
7 cayleyhamilton.e . . . 4 = (.g‘(mulGrp‘𝐴))
81, 2, 3, 4, 5, 6, 7cayleyhamilton 20977 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐾𝑛) (𝑛 𝑀)))) = 0 )
98adantr 472 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿𝑚0) ∧ 𝐹 finSupp 𝑍)) → (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐾𝑛) (𝑛 𝑀)))) = 0 )
10 nfv 2009 . . . . . . . 8 𝑛((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿𝑚0) ∧ 𝐹 finSupp 𝑍))
11 nfcv 2907 . . . . . . . . . 10 𝑛𝑃
12 nfcv 2907 . . . . . . . . . 10 𝑛 Σg
13 nfmpt1 4908 . . . . . . . . . 10 𝑛(𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) · (𝑛𝐸𝑋)))
1411, 12, 13nfov 6874 . . . . . . . . 9 𝑛(𝑃 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) · (𝑛𝐸𝑋))))
1514nfeq2 2923 . . . . . . . 8 𝑛(𝐶𝑀) = (𝑃 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) · (𝑛𝐸𝑋))))
1610, 15nfan 1998 . . . . . . 7 𝑛(((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿𝑚0) ∧ 𝐹 finSupp 𝑍)) ∧ (𝐶𝑀) = (𝑃 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) · (𝑛𝐸𝑋)))))
17 crngring 18828 . . . . . . . . . . . . 13 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
18173ad2ant2 1164 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑅 ∈ Ring)
1918adantr 472 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿𝑚0) ∧ 𝐹 finSupp 𝑍)) → 𝑅 ∈ Ring)
20 cayleyhamilton1.p . . . . . . . . . . . . 13 𝑃 = (Poly1𝑅)
21 eqid 2765 . . . . . . . . . . . . 13 (Base‘𝑃) = (Base‘𝑃)
224, 1, 2, 20, 21chpmatply1 20919 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝐶𝑀) ∈ (Base‘𝑃))
2322adantr 472 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿𝑚0) ∧ 𝐹 finSupp 𝑍)) → (𝐶𝑀) ∈ (Base‘𝑃))
24 cayleyhamilton1.x . . . . . . . . . . . 12 𝑋 = (var1𝑅)
25 cayleyhamilton1.e . . . . . . . . . . . 12 𝐸 = (.g‘(mulGrp‘𝑃))
26 cayleyhamilton1.l . . . . . . . . . . . 12 𝐿 = (Base‘𝑅)
27 cayleyhamilton1.m . . . . . . . . . . . 12 · = ( ·𝑠𝑃)
28 eqid 2765 . . . . . . . . . . . 12 (0g𝑅) = (0g𝑅)
29 elmapi 8084 . . . . . . . . . . . . . 14 (𝐹 ∈ (𝐿𝑚0) → 𝐹:ℕ0𝐿)
30 ffvelrn 6549 . . . . . . . . . . . . . . 15 ((𝐹:ℕ0𝐿𝑛 ∈ ℕ0) → (𝐹𝑛) ∈ 𝐿)
3130ralrimiva 3113 . . . . . . . . . . . . . 14 (𝐹:ℕ0𝐿 → ∀𝑛 ∈ ℕ0 (𝐹𝑛) ∈ 𝐿)
3229, 31syl 17 . . . . . . . . . . . . 13 (𝐹 ∈ (𝐿𝑚0) → ∀𝑛 ∈ ℕ0 (𝐹𝑛) ∈ 𝐿)
3332ad2antrl 719 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿𝑚0) ∧ 𝐹 finSupp 𝑍)) → ∀𝑛 ∈ ℕ0 (𝐹𝑛) ∈ 𝐿)
3429feqmptd 6440 . . . . . . . . . . . . . . 15 (𝐹 ∈ (𝐿𝑚0) → 𝐹 = (𝑛 ∈ ℕ0 ↦ (𝐹𝑛)))
35 cayleyhamilton1.z . . . . . . . . . . . . . . . 16 𝑍 = (0g𝑅)
3635a1i 11 . . . . . . . . . . . . . . 15 (𝐹 ∈ (𝐿𝑚0) → 𝑍 = (0g𝑅))
3734, 36breq12d 4824 . . . . . . . . . . . . . 14 (𝐹 ∈ (𝐿𝑚0) → (𝐹 finSupp 𝑍 ↔ (𝑛 ∈ ℕ0 ↦ (𝐹𝑛)) finSupp (0g𝑅)))
3837biimpa 468 . . . . . . . . . . . . 13 ((𝐹 ∈ (𝐿𝑚0) ∧ 𝐹 finSupp 𝑍) → (𝑛 ∈ ℕ0 ↦ (𝐹𝑛)) finSupp (0g𝑅))
3938adantl 473 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿𝑚0) ∧ 𝐹 finSupp 𝑍)) → (𝑛 ∈ ℕ0 ↦ (𝐹𝑛)) finSupp (0g𝑅))
4020, 21, 24, 25, 19, 26, 27, 28, 33, 39gsumsmonply1 19949 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿𝑚0) ∧ 𝐹 finSupp 𝑍)) → (𝑃 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) · (𝑛𝐸𝑋)))) ∈ (Base‘𝑃))
41 fveq2 6377 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑛 → (𝐹𝑖) = (𝐹𝑛))
42 oveq1 6851 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑛 → (𝑖𝐸𝑋) = (𝑛𝐸𝑋))
4341, 42oveq12d 6862 . . . . . . . . . . . . . . 15 (𝑖 = 𝑛 → ((𝐹𝑖) · (𝑖𝐸𝑋)) = ((𝐹𝑛) · (𝑛𝐸𝑋)))
4443cbvmptv 4911 . . . . . . . . . . . . . 14 (𝑖 ∈ ℕ0 ↦ ((𝐹𝑖) · (𝑖𝐸𝑋))) = (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) · (𝑛𝐸𝑋)))
4544oveq2i 6855 . . . . . . . . . . . . 13 (𝑃 Σg (𝑖 ∈ ℕ0 ↦ ((𝐹𝑖) · (𝑖𝐸𝑋)))) = (𝑃 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) · (𝑛𝐸𝑋))))
4645fveq2i 6380 . . . . . . . . . . . 12 (coe1‘(𝑃 Σg (𝑖 ∈ ℕ0 ↦ ((𝐹𝑖) · (𝑖𝐸𝑋))))) = (coe1‘(𝑃 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) · (𝑛𝐸𝑋)))))
4720, 21, 5, 46ply1coe1eq 19944 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ (𝐶𝑀) ∈ (Base‘𝑃) ∧ (𝑃 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) · (𝑛𝐸𝑋)))) ∈ (Base‘𝑃)) → (∀𝑚 ∈ ℕ0 (𝐾𝑚) = ((coe1‘(𝑃 Σg (𝑖 ∈ ℕ0 ↦ ((𝐹𝑖) · (𝑖𝐸𝑋)))))‘𝑚) ↔ (𝐶𝑀) = (𝑃 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) · (𝑛𝐸𝑋))))))
4819, 23, 40, 47syl3anc 1490 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿𝑚0) ∧ 𝐹 finSupp 𝑍)) → (∀𝑚 ∈ ℕ0 (𝐾𝑚) = ((coe1‘(𝑃 Σg (𝑖 ∈ ℕ0 ↦ ((𝐹𝑖) · (𝑖𝐸𝑋)))))‘𝑚) ↔ (𝐶𝑀) = (𝑃 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) · (𝑛𝐸𝑋))))))
49 fveq2 6377 . . . . . . . . . . . . . . 15 (𝑚 = 𝑛 → (𝐾𝑚) = (𝐾𝑛))
50 fveq2 6377 . . . . . . . . . . . . . . 15 (𝑚 = 𝑛 → ((coe1‘(𝑃 Σg (𝑖 ∈ ℕ0 ↦ ((𝐹𝑖) · (𝑖𝐸𝑋)))))‘𝑚) = ((coe1‘(𝑃 Σg (𝑖 ∈ ℕ0 ↦ ((𝐹𝑖) · (𝑖𝐸𝑋)))))‘𝑛))
5149, 50eqeq12d 2780 . . . . . . . . . . . . . 14 (𝑚 = 𝑛 → ((𝐾𝑚) = ((coe1‘(𝑃 Σg (𝑖 ∈ ℕ0 ↦ ((𝐹𝑖) · (𝑖𝐸𝑋)))))‘𝑚) ↔ (𝐾𝑛) = ((coe1‘(𝑃 Σg (𝑖 ∈ ℕ0 ↦ ((𝐹𝑖) · (𝑖𝐸𝑋)))))‘𝑛)))
5251rspcva 3460 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝐾𝑚) = ((coe1‘(𝑃 Σg (𝑖 ∈ ℕ0 ↦ ((𝐹𝑖) · (𝑖𝐸𝑋)))))‘𝑚)) → (𝐾𝑛) = ((coe1‘(𝑃 Σg (𝑖 ∈ ℕ0 ↦ ((𝐹𝑖) · (𝑖𝐸𝑋)))))‘𝑛))
53 simpl 474 . . . . . . . . . . . . . . . . 17 (((𝐾𝑛) = ((coe1‘(𝑃 Σg (𝑖 ∈ ℕ0 ↦ ((𝐹𝑖) · (𝑖𝐸𝑋)))))‘𝑛) ∧ (𝑛 ∈ ℕ0 ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿𝑚0) ∧ 𝐹 finSupp 𝑍)))) → (𝐾𝑛) = ((coe1‘(𝑃 Σg (𝑖 ∈ ℕ0 ↦ ((𝐹𝑖) · (𝑖𝐸𝑋)))))‘𝑛))
5418ad2antrl 719 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℕ0 ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿𝑚0) ∧ 𝐹 finSupp 𝑍))) → 𝑅 ∈ Ring)
55 ffvelrn 6549 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐹:ℕ0𝐿𝑖 ∈ ℕ0) → (𝐹𝑖) ∈ 𝐿)
5655ralrimiva 3113 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹:ℕ0𝐿 → ∀𝑖 ∈ ℕ0 (𝐹𝑖) ∈ 𝐿)
5729, 56syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝐹 ∈ (𝐿𝑚0) → ∀𝑖 ∈ ℕ0 (𝐹𝑖) ∈ 𝐿)
5857ad2antrl 719 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿𝑚0) ∧ 𝐹 finSupp 𝑍)) → ∀𝑖 ∈ ℕ0 (𝐹𝑖) ∈ 𝐿)
5958adantl 473 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℕ0 ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿𝑚0) ∧ 𝐹 finSupp 𝑍))) → ∀𝑖 ∈ ℕ0 (𝐹𝑖) ∈ 𝐿)
6029feqmptd 6440 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐹 ∈ (𝐿𝑚0) → 𝐹 = (𝑖 ∈ ℕ0 ↦ (𝐹𝑖)))
6160breq1d 4821 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹 ∈ (𝐿𝑚0) → (𝐹 finSupp 𝑍 ↔ (𝑖 ∈ ℕ0 ↦ (𝐹𝑖)) finSupp 𝑍))
6261biimpa 468 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹 ∈ (𝐿𝑚0) ∧ 𝐹 finSupp 𝑍) → (𝑖 ∈ ℕ0 ↦ (𝐹𝑖)) finSupp 𝑍)
6362adantl 473 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿𝑚0) ∧ 𝐹 finSupp 𝑍)) → (𝑖 ∈ ℕ0 ↦ (𝐹𝑖)) finSupp 𝑍)
6463adantl 473 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℕ0 ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿𝑚0) ∧ 𝐹 finSupp 𝑍))) → (𝑖 ∈ ℕ0 ↦ (𝐹𝑖)) finSupp 𝑍)
65 simpl 474 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℕ0 ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿𝑚0) ∧ 𝐹 finSupp 𝑍))) → 𝑛 ∈ ℕ0)
6620, 21, 24, 25, 54, 26, 27, 35, 59, 64, 65gsummoncoe1 19950 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ℕ0 ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿𝑚0) ∧ 𝐹 finSupp 𝑍))) → ((coe1‘(𝑃 Σg (𝑖 ∈ ℕ0 ↦ ((𝐹𝑖) · (𝑖𝐸𝑋)))))‘𝑛) = 𝑛 / 𝑖(𝐹𝑖))
67 csbfv 6423 . . . . . . . . . . . . . . . . . . 19 𝑛 / 𝑖(𝐹𝑖) = (𝐹𝑛)
6866, 67syl6eq 2815 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℕ0 ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿𝑚0) ∧ 𝐹 finSupp 𝑍))) → ((coe1‘(𝑃 Σg (𝑖 ∈ ℕ0 ↦ ((𝐹𝑖) · (𝑖𝐸𝑋)))))‘𝑛) = (𝐹𝑛))
6968adantl 473 . . . . . . . . . . . . . . . . 17 (((𝐾𝑛) = ((coe1‘(𝑃 Σg (𝑖 ∈ ℕ0 ↦ ((𝐹𝑖) · (𝑖𝐸𝑋)))))‘𝑛) ∧ (𝑛 ∈ ℕ0 ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿𝑚0) ∧ 𝐹 finSupp 𝑍)))) → ((coe1‘(𝑃 Σg (𝑖 ∈ ℕ0 ↦ ((𝐹𝑖) · (𝑖𝐸𝑋)))))‘𝑛) = (𝐹𝑛))
7053, 69eqtrd 2799 . . . . . . . . . . . . . . . 16 (((𝐾𝑛) = ((coe1‘(𝑃 Σg (𝑖 ∈ ℕ0 ↦ ((𝐹𝑖) · (𝑖𝐸𝑋)))))‘𝑛) ∧ (𝑛 ∈ ℕ0 ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿𝑚0) ∧ 𝐹 finSupp 𝑍)))) → (𝐾𝑛) = (𝐹𝑛))
7170exp32 411 . . . . . . . . . . . . . . 15 ((𝐾𝑛) = ((coe1‘(𝑃 Σg (𝑖 ∈ ℕ0 ↦ ((𝐹𝑖) · (𝑖𝐸𝑋)))))‘𝑛) → (𝑛 ∈ ℕ0 → (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿𝑚0) ∧ 𝐹 finSupp 𝑍)) → (𝐾𝑛) = (𝐹𝑛))))
7271com12 32 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ0 → ((𝐾𝑛) = ((coe1‘(𝑃 Σg (𝑖 ∈ ℕ0 ↦ ((𝐹𝑖) · (𝑖𝐸𝑋)))))‘𝑛) → (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿𝑚0) ∧ 𝐹 finSupp 𝑍)) → (𝐾𝑛) = (𝐹𝑛))))
7372adantr 472 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝐾𝑚) = ((coe1‘(𝑃 Σg (𝑖 ∈ ℕ0 ↦ ((𝐹𝑖) · (𝑖𝐸𝑋)))))‘𝑚)) → ((𝐾𝑛) = ((coe1‘(𝑃 Σg (𝑖 ∈ ℕ0 ↦ ((𝐹𝑖) · (𝑖𝐸𝑋)))))‘𝑛) → (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿𝑚0) ∧ 𝐹 finSupp 𝑍)) → (𝐾𝑛) = (𝐹𝑛))))
7452, 73mpd 15 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝐾𝑚) = ((coe1‘(𝑃 Σg (𝑖 ∈ ℕ0 ↦ ((𝐹𝑖) · (𝑖𝐸𝑋)))))‘𝑚)) → (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿𝑚0) ∧ 𝐹 finSupp 𝑍)) → (𝐾𝑛) = (𝐹𝑛)))
7574com12 32 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿𝑚0) ∧ 𝐹 finSupp 𝑍)) → ((𝑛 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝐾𝑚) = ((coe1‘(𝑃 Σg (𝑖 ∈ ℕ0 ↦ ((𝐹𝑖) · (𝑖𝐸𝑋)))))‘𝑚)) → (𝐾𝑛) = (𝐹𝑛)))
7675expcomd 406 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿𝑚0) ∧ 𝐹 finSupp 𝑍)) → (∀𝑚 ∈ ℕ0 (𝐾𝑚) = ((coe1‘(𝑃 Σg (𝑖 ∈ ℕ0 ↦ ((𝐹𝑖) · (𝑖𝐸𝑋)))))‘𝑚) → (𝑛 ∈ ℕ0 → (𝐾𝑛) = (𝐹𝑛))))
7748, 76sylbird 251 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿𝑚0) ∧ 𝐹 finSupp 𝑍)) → ((𝐶𝑀) = (𝑃 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) · (𝑛𝐸𝑋)))) → (𝑛 ∈ ℕ0 → (𝐾𝑛) = (𝐹𝑛))))
7877imp31 408 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿𝑚0) ∧ 𝐹 finSupp 𝑍)) ∧ (𝐶𝑀) = (𝑃 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) · (𝑛𝐸𝑋))))) ∧ 𝑛 ∈ ℕ0) → (𝐾𝑛) = (𝐹𝑛))
7978oveq1d 6859 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿𝑚0) ∧ 𝐹 finSupp 𝑍)) ∧ (𝐶𝑀) = (𝑃 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) · (𝑛𝐸𝑋))))) ∧ 𝑛 ∈ ℕ0) → ((𝐾𝑛) (𝑛 𝑀)) = ((𝐹𝑛) (𝑛 𝑀)))
8016, 79mpteq2da 4904 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿𝑚0) ∧ 𝐹 finSupp 𝑍)) ∧ (𝐶𝑀) = (𝑃 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) · (𝑛𝐸𝑋))))) → (𝑛 ∈ ℕ0 ↦ ((𝐾𝑛) (𝑛 𝑀))) = (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) (𝑛 𝑀))))
8180oveq2d 6860 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿𝑚0) ∧ 𝐹 finSupp 𝑍)) ∧ (𝐶𝑀) = (𝑃 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) · (𝑛𝐸𝑋))))) → (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐾𝑛) (𝑛 𝑀)))) = (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) (𝑛 𝑀)))))
8281eqeq1d 2767 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿𝑚0) ∧ 𝐹 finSupp 𝑍)) ∧ (𝐶𝑀) = (𝑃 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) · (𝑛𝐸𝑋))))) → ((𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐾𝑛) (𝑛 𝑀)))) = 0 ↔ (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) (𝑛 𝑀)))) = 0 ))
8382biimpd 220 . . 3 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿𝑚0) ∧ 𝐹 finSupp 𝑍)) ∧ (𝐶𝑀) = (𝑃 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) · (𝑛𝐸𝑋))))) → ((𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐾𝑛) (𝑛 𝑀)))) = 0 → (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) (𝑛 𝑀)))) = 0 ))
8483ex 401 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿𝑚0) ∧ 𝐹 finSupp 𝑍)) → ((𝐶𝑀) = (𝑃 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) · (𝑛𝐸𝑋)))) → ((𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐾𝑛) (𝑛 𝑀)))) = 0 → (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) (𝑛 𝑀)))) = 0 )))
859, 84mpid 44 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿𝑚0) ∧ 𝐹 finSupp 𝑍)) → ((𝐶𝑀) = (𝑃 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) · (𝑛𝐸𝑋)))) → (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) (𝑛 𝑀)))) = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  w3a 1107   = wceq 1652  wcel 2155  wral 3055  csb 3693   class class class wbr 4811  cmpt 4890  wf 6066  cfv 6070  (class class class)co 6844  𝑚 cmap 8062  Fincfn 8162   finSupp cfsupp 8484  0cn0 11540  Basecbs 16133   ·𝑠 cvsca 16221  0gc0g 16369   Σg cgsu 16370  .gcmg 17810  mulGrpcmgp 18759  Ringcrg 18817  CRingccrg 18818  var1cv1 19822  Poly1cpl1 19823  coe1cco1 19824   Mat cmat 20492   CharPlyMat cchpmat 20913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4932  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7149  ax-inf2 8755  ax-cnex 10247  ax-resscn 10248  ax-1cn 10249  ax-icn 10250  ax-addcl 10251  ax-addrcl 10252  ax-mulcl 10253  ax-mulrcl 10254  ax-mulcom 10255  ax-addass 10256  ax-mulass 10257  ax-distr 10258  ax-i2m1 10259  ax-1ne0 10260  ax-1rid 10261  ax-rnegex 10262  ax-rrecex 10263  ax-cnre 10264  ax-pre-lttri 10265  ax-pre-lttrn 10266  ax-pre-ltadd 10267  ax-pre-mulgt0 10268  ax-addf 10270  ax-mulf 10271
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-xor 1634  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-pss 3750  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-tp 4341  df-op 4343  df-ot 4345  df-uni 4597  df-int 4636  df-iun 4680  df-iin 4681  df-br 4812  df-opab 4874  df-mpt 4891  df-tr 4914  df-id 5187  df-eprel 5192  df-po 5200  df-so 5201  df-fr 5238  df-se 5239  df-we 5240  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-pred 5867  df-ord 5913  df-on 5914  df-lim 5915  df-suc 5916  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-isom 6079  df-riota 6805  df-ov 6847  df-oprab 6848  df-mpt2 6849  df-of 7097  df-ofr 7098  df-om 7266  df-1st 7368  df-2nd 7369  df-supp 7500  df-tpos 7557  df-cur 7598  df-wrecs 7612  df-recs 7674  df-rdg 7712  df-1o 7766  df-2o 7767  df-oadd 7770  df-er 7949  df-map 8064  df-pm 8065  df-ixp 8116  df-en 8163  df-dom 8164  df-sdom 8165  df-fin 8166  df-fsupp 8485  df-sup 8557  df-oi 8624  df-card 9018  df-pnf 10332  df-mnf 10333  df-xr 10334  df-ltxr 10335  df-le 10336  df-sub 10524  df-neg 10525  df-div 10941  df-nn 11277  df-2 11337  df-3 11338  df-4 11339  df-5 11340  df-6 11341  df-7 11342  df-8 11343  df-9 11344  df-n0 11541  df-xnn0 11613  df-z 11627  df-dec 11744  df-uz 11890  df-rp 12032  df-fz 12537  df-fzo 12677  df-seq 13012  df-exp 13071  df-hash 13325  df-word 13490  df-lsw 13537  df-concat 13545  df-s1 13570  df-substr 13620  df-pfx 13665  df-splice 13768  df-reverse 13786  df-s2 13880  df-struct 16135  df-ndx 16136  df-slot 16137  df-base 16139  df-sets 16140  df-ress 16141  df-plusg 16230  df-mulr 16231  df-starv 16232  df-sca 16233  df-vsca 16234  df-ip 16235  df-tset 16236  df-ple 16237  df-ds 16239  df-unif 16240  df-hom 16241  df-cco 16242  df-0g 16371  df-gsum 16372  df-prds 16377  df-pws 16379  df-mre 16515  df-mrc 16516  df-acs 16518  df-mgm 17511  df-sgrp 17553  df-mnd 17564  df-mhm 17604  df-submnd 17605  df-grp 17695  df-minusg 17696  df-sbg 17697  df-mulg 17811  df-subg 17858  df-ghm 17925  df-gim 17968  df-cntz 18016  df-oppg 18042  df-symg 18064  df-pmtr 18128  df-psgn 18177  df-evpm 18178  df-cmn 18464  df-abl 18465  df-mgp 18760  df-ur 18772  df-srg 18776  df-ring 18819  df-cring 18820  df-oppr 18893  df-dvdsr 18911  df-unit 18912  df-invr 18942  df-dvr 18953  df-rnghom 18987  df-drng 19021  df-subrg 19050  df-lmod 19137  df-lss 19205  df-sra 19449  df-rgmod 19450  df-assa 19589  df-ascl 19591  df-psr 19633  df-mvr 19634  df-mpl 19635  df-opsr 19637  df-psr1 19826  df-vr1 19827  df-ply1 19828  df-coe1 19829  df-cnfld 20023  df-zring 20095  df-zrh 20128  df-dsmm 20355  df-frlm 20370  df-mamu 20469  df-mat 20493  df-mdet 20671  df-madu 20720  df-cpmat 20793  df-mat2pmat 20794  df-cpmat2mat 20795  df-decpmat 20850  df-pm2mp 20880  df-chpmat 20914
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator