MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cayleyhamilton1 Structured version   Visualization version   GIF version

Theorem cayleyhamilton1 22817
Description: The Cayley-Hamilton theorem: A matrix over a commutative ring "satisfies its own characteristic equation", or, in other words, a matrix over a commutative ring "inserted" into its characteristic polynomial results in zero. In this variant of cayleyhamilton 22815, the meaning of "inserted" is made more transparent: If the characteristic polynomial is a polynomial with coefficients (𝐹𝑛), then a matrix over a commutative ring "inserted" into its characteristic polynomial is the sum of these coefficients multiplied with the corresponding power of the matrix. (Contributed by AV, 25-Nov-2019.)
Hypotheses
Ref Expression
cayleyhamilton.a 𝐴 = (𝑁 Mat 𝑅)
cayleyhamilton.b 𝐵 = (Base‘𝐴)
cayleyhamilton.0 0 = (0g𝐴)
cayleyhamilton.c 𝐶 = (𝑁 CharPlyMat 𝑅)
cayleyhamilton.k 𝐾 = (coe1‘(𝐶𝑀))
cayleyhamilton.m = ( ·𝑠𝐴)
cayleyhamilton.e = (.g‘(mulGrp‘𝐴))
cayleyhamilton1.l 𝐿 = (Base‘𝑅)
cayleyhamilton1.x 𝑋 = (var1𝑅)
cayleyhamilton1.p 𝑃 = (Poly1𝑅)
cayleyhamilton1.m · = ( ·𝑠𝑃)
cayleyhamilton1.e 𝐸 = (.g‘(mulGrp‘𝑃))
cayleyhamilton1.z 𝑍 = (0g𝑅)
Assertion
Ref Expression
cayleyhamilton1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍)) → ((𝐶𝑀) = (𝑃 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) · (𝑛𝐸𝑋)))) → (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) (𝑛 𝑀)))) = 0 ))
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛   𝐶,𝑛   𝑛,𝑀   𝑛,𝑁   𝑅,𝑛   ,𝑛   ,𝑛   𝑛,𝐸   𝑛,𝐹   𝑛,𝐿   𝑃,𝑛   𝑛,𝑋   𝑛,𝑍   · ,𝑛
Allowed substitution hints:   𝐾(𝑛)   0 (𝑛)

Proof of Theorem cayleyhamilton1
Dummy variables 𝑚 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cayleyhamilton.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
2 cayleyhamilton.b . . . 4 𝐵 = (Base‘𝐴)
3 cayleyhamilton.0 . . . 4 0 = (0g𝐴)
4 cayleyhamilton.c . . . 4 𝐶 = (𝑁 CharPlyMat 𝑅)
5 cayleyhamilton.k . . . 4 𝐾 = (coe1‘(𝐶𝑀))
6 cayleyhamilton.m . . . 4 = ( ·𝑠𝐴)
7 cayleyhamilton.e . . . 4 = (.g‘(mulGrp‘𝐴))
81, 2, 3, 4, 5, 6, 7cayleyhamilton 22815 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐾𝑛) (𝑛 𝑀)))) = 0 )
98adantr 480 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍)) → (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐾𝑛) (𝑛 𝑀)))) = 0 )
10 nfv 1913 . . . . . . . 8 𝑛((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍))
11 nfcv 2897 . . . . . . . . . 10 𝑛𝑃
12 nfcv 2897 . . . . . . . . . 10 𝑛 Σg
13 nfmpt1 5218 . . . . . . . . . 10 𝑛(𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) · (𝑛𝐸𝑋)))
1411, 12, 13nfov 7430 . . . . . . . . 9 𝑛(𝑃 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) · (𝑛𝐸𝑋))))
1514nfeq2 2915 . . . . . . . 8 𝑛(𝐶𝑀) = (𝑃 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) · (𝑛𝐸𝑋))))
1610, 15nfan 1898 . . . . . . 7 𝑛(((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍)) ∧ (𝐶𝑀) = (𝑃 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) · (𝑛𝐸𝑋)))))
17 crngring 20192 . . . . . . . . . . . . 13 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
18173ad2ant2 1134 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑅 ∈ Ring)
1918adantr 480 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍)) → 𝑅 ∈ Ring)
20 cayleyhamilton1.p . . . . . . . . . . . . 13 𝑃 = (Poly1𝑅)
21 eqid 2734 . . . . . . . . . . . . 13 (Base‘𝑃) = (Base‘𝑃)
224, 1, 2, 20, 21chpmatply1 22757 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝐶𝑀) ∈ (Base‘𝑃))
2322adantr 480 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍)) → (𝐶𝑀) ∈ (Base‘𝑃))
24 cayleyhamilton1.x . . . . . . . . . . . 12 𝑋 = (var1𝑅)
25 cayleyhamilton1.e . . . . . . . . . . . 12 𝐸 = (.g‘(mulGrp‘𝑃))
26 cayleyhamilton1.l . . . . . . . . . . . 12 𝐿 = (Base‘𝑅)
27 cayleyhamilton1.m . . . . . . . . . . . 12 · = ( ·𝑠𝑃)
28 eqid 2734 . . . . . . . . . . . 12 (0g𝑅) = (0g𝑅)
29 elmapi 8858 . . . . . . . . . . . . . 14 (𝐹 ∈ (𝐿m0) → 𝐹:ℕ0𝐿)
30 ffvelcdm 7068 . . . . . . . . . . . . . . 15 ((𝐹:ℕ0𝐿𝑛 ∈ ℕ0) → (𝐹𝑛) ∈ 𝐿)
3130ralrimiva 3130 . . . . . . . . . . . . . 14 (𝐹:ℕ0𝐿 → ∀𝑛 ∈ ℕ0 (𝐹𝑛) ∈ 𝐿)
3229, 31syl 17 . . . . . . . . . . . . 13 (𝐹 ∈ (𝐿m0) → ∀𝑛 ∈ ℕ0 (𝐹𝑛) ∈ 𝐿)
3332ad2antrl 728 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍)) → ∀𝑛 ∈ ℕ0 (𝐹𝑛) ∈ 𝐿)
3429feqmptd 6944 . . . . . . . . . . . . . . 15 (𝐹 ∈ (𝐿m0) → 𝐹 = (𝑛 ∈ ℕ0 ↦ (𝐹𝑛)))
35 cayleyhamilton1.z . . . . . . . . . . . . . . . 16 𝑍 = (0g𝑅)
3635a1i 11 . . . . . . . . . . . . . . 15 (𝐹 ∈ (𝐿m0) → 𝑍 = (0g𝑅))
3734, 36breq12d 5130 . . . . . . . . . . . . . 14 (𝐹 ∈ (𝐿m0) → (𝐹 finSupp 𝑍 ↔ (𝑛 ∈ ℕ0 ↦ (𝐹𝑛)) finSupp (0g𝑅)))
3837biimpa 476 . . . . . . . . . . . . 13 ((𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍) → (𝑛 ∈ ℕ0 ↦ (𝐹𝑛)) finSupp (0g𝑅))
3938adantl 481 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍)) → (𝑛 ∈ ℕ0 ↦ (𝐹𝑛)) finSupp (0g𝑅))
4020, 21, 24, 25, 19, 26, 27, 28, 33, 39gsumsmonply1 22232 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍)) → (𝑃 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) · (𝑛𝐸𝑋)))) ∈ (Base‘𝑃))
41 fveq2 6873 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑛 → (𝐹𝑖) = (𝐹𝑛))
42 oveq1 7407 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑛 → (𝑖𝐸𝑋) = (𝑛𝐸𝑋))
4341, 42oveq12d 7418 . . . . . . . . . . . . . . 15 (𝑖 = 𝑛 → ((𝐹𝑖) · (𝑖𝐸𝑋)) = ((𝐹𝑛) · (𝑛𝐸𝑋)))
4443cbvmptv 5223 . . . . . . . . . . . . . 14 (𝑖 ∈ ℕ0 ↦ ((𝐹𝑖) · (𝑖𝐸𝑋))) = (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) · (𝑛𝐸𝑋)))
4544oveq2i 7411 . . . . . . . . . . . . 13 (𝑃 Σg (𝑖 ∈ ℕ0 ↦ ((𝐹𝑖) · (𝑖𝐸𝑋)))) = (𝑃 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) · (𝑛𝐸𝑋))))
4645fveq2i 6876 . . . . . . . . . . . 12 (coe1‘(𝑃 Σg (𝑖 ∈ ℕ0 ↦ ((𝐹𝑖) · (𝑖𝐸𝑋))))) = (coe1‘(𝑃 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) · (𝑛𝐸𝑋)))))
4720, 21, 5, 46ply1coe1eq 22225 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ (𝐶𝑀) ∈ (Base‘𝑃) ∧ (𝑃 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) · (𝑛𝐸𝑋)))) ∈ (Base‘𝑃)) → (∀𝑚 ∈ ℕ0 (𝐾𝑚) = ((coe1‘(𝑃 Σg (𝑖 ∈ ℕ0 ↦ ((𝐹𝑖) · (𝑖𝐸𝑋)))))‘𝑚) ↔ (𝐶𝑀) = (𝑃 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) · (𝑛𝐸𝑋))))))
4819, 23, 40, 47syl3anc 1372 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍)) → (∀𝑚 ∈ ℕ0 (𝐾𝑚) = ((coe1‘(𝑃 Σg (𝑖 ∈ ℕ0 ↦ ((𝐹𝑖) · (𝑖𝐸𝑋)))))‘𝑚) ↔ (𝐶𝑀) = (𝑃 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) · (𝑛𝐸𝑋))))))
49 fveq2 6873 . . . . . . . . . . . . . . 15 (𝑚 = 𝑛 → (𝐾𝑚) = (𝐾𝑛))
50 fveq2 6873 . . . . . . . . . . . . . . 15 (𝑚 = 𝑛 → ((coe1‘(𝑃 Σg (𝑖 ∈ ℕ0 ↦ ((𝐹𝑖) · (𝑖𝐸𝑋)))))‘𝑚) = ((coe1‘(𝑃 Σg (𝑖 ∈ ℕ0 ↦ ((𝐹𝑖) · (𝑖𝐸𝑋)))))‘𝑛))
5149, 50eqeq12d 2750 . . . . . . . . . . . . . 14 (𝑚 = 𝑛 → ((𝐾𝑚) = ((coe1‘(𝑃 Σg (𝑖 ∈ ℕ0 ↦ ((𝐹𝑖) · (𝑖𝐸𝑋)))))‘𝑚) ↔ (𝐾𝑛) = ((coe1‘(𝑃 Σg (𝑖 ∈ ℕ0 ↦ ((𝐹𝑖) · (𝑖𝐸𝑋)))))‘𝑛)))
5251rspcva 3597 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝐾𝑚) = ((coe1‘(𝑃 Σg (𝑖 ∈ ℕ0 ↦ ((𝐹𝑖) · (𝑖𝐸𝑋)))))‘𝑚)) → (𝐾𝑛) = ((coe1‘(𝑃 Σg (𝑖 ∈ ℕ0 ↦ ((𝐹𝑖) · (𝑖𝐸𝑋)))))‘𝑛))
53 simpl 482 . . . . . . . . . . . . . . . . 17 (((𝐾𝑛) = ((coe1‘(𝑃 Σg (𝑖 ∈ ℕ0 ↦ ((𝐹𝑖) · (𝑖𝐸𝑋)))))‘𝑛) ∧ (𝑛 ∈ ℕ0 ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍)))) → (𝐾𝑛) = ((coe1‘(𝑃 Σg (𝑖 ∈ ℕ0 ↦ ((𝐹𝑖) · (𝑖𝐸𝑋)))))‘𝑛))
5418ad2antrl 728 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℕ0 ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍))) → 𝑅 ∈ Ring)
55 ffvelcdm 7068 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐹:ℕ0𝐿𝑖 ∈ ℕ0) → (𝐹𝑖) ∈ 𝐿)
5655ralrimiva 3130 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹:ℕ0𝐿 → ∀𝑖 ∈ ℕ0 (𝐹𝑖) ∈ 𝐿)
5729, 56syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝐹 ∈ (𝐿m0) → ∀𝑖 ∈ ℕ0 (𝐹𝑖) ∈ 𝐿)
5857ad2antrl 728 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍)) → ∀𝑖 ∈ ℕ0 (𝐹𝑖) ∈ 𝐿)
5958adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℕ0 ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍))) → ∀𝑖 ∈ ℕ0 (𝐹𝑖) ∈ 𝐿)
6029feqmptd 6944 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐹 ∈ (𝐿m0) → 𝐹 = (𝑖 ∈ ℕ0 ↦ (𝐹𝑖)))
6160breq1d 5127 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐹 ∈ (𝐿m0) → (𝐹 finSupp 𝑍 ↔ (𝑖 ∈ ℕ0 ↦ (𝐹𝑖)) finSupp 𝑍))
6261biimpa 476 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍) → (𝑖 ∈ ℕ0 ↦ (𝐹𝑖)) finSupp 𝑍)
6362adantl 481 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍)) → (𝑖 ∈ ℕ0 ↦ (𝐹𝑖)) finSupp 𝑍)
6463adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℕ0 ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍))) → (𝑖 ∈ ℕ0 ↦ (𝐹𝑖)) finSupp 𝑍)
65 simpl 482 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℕ0 ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍))) → 𝑛 ∈ ℕ0)
6620, 21, 24, 25, 54, 26, 27, 35, 59, 64, 65gsummoncoe1 22233 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ℕ0 ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍))) → ((coe1‘(𝑃 Σg (𝑖 ∈ ℕ0 ↦ ((𝐹𝑖) · (𝑖𝐸𝑋)))))‘𝑛) = 𝑛 / 𝑖(𝐹𝑖))
67 csbfv 6923 . . . . . . . . . . . . . . . . . . 19 𝑛 / 𝑖(𝐹𝑖) = (𝐹𝑛)
6866, 67eqtrdi 2785 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℕ0 ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍))) → ((coe1‘(𝑃 Σg (𝑖 ∈ ℕ0 ↦ ((𝐹𝑖) · (𝑖𝐸𝑋)))))‘𝑛) = (𝐹𝑛))
6968adantl 481 . . . . . . . . . . . . . . . . 17 (((𝐾𝑛) = ((coe1‘(𝑃 Σg (𝑖 ∈ ℕ0 ↦ ((𝐹𝑖) · (𝑖𝐸𝑋)))))‘𝑛) ∧ (𝑛 ∈ ℕ0 ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍)))) → ((coe1‘(𝑃 Σg (𝑖 ∈ ℕ0 ↦ ((𝐹𝑖) · (𝑖𝐸𝑋)))))‘𝑛) = (𝐹𝑛))
7053, 69eqtrd 2769 . . . . . . . . . . . . . . . 16 (((𝐾𝑛) = ((coe1‘(𝑃 Σg (𝑖 ∈ ℕ0 ↦ ((𝐹𝑖) · (𝑖𝐸𝑋)))))‘𝑛) ∧ (𝑛 ∈ ℕ0 ∧ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍)))) → (𝐾𝑛) = (𝐹𝑛))
7170exp32 420 . . . . . . . . . . . . . . 15 ((𝐾𝑛) = ((coe1‘(𝑃 Σg (𝑖 ∈ ℕ0 ↦ ((𝐹𝑖) · (𝑖𝐸𝑋)))))‘𝑛) → (𝑛 ∈ ℕ0 → (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍)) → (𝐾𝑛) = (𝐹𝑛))))
7271com12 32 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ0 → ((𝐾𝑛) = ((coe1‘(𝑃 Σg (𝑖 ∈ ℕ0 ↦ ((𝐹𝑖) · (𝑖𝐸𝑋)))))‘𝑛) → (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍)) → (𝐾𝑛) = (𝐹𝑛))))
7372adantr 480 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝐾𝑚) = ((coe1‘(𝑃 Σg (𝑖 ∈ ℕ0 ↦ ((𝐹𝑖) · (𝑖𝐸𝑋)))))‘𝑚)) → ((𝐾𝑛) = ((coe1‘(𝑃 Σg (𝑖 ∈ ℕ0 ↦ ((𝐹𝑖) · (𝑖𝐸𝑋)))))‘𝑛) → (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍)) → (𝐾𝑛) = (𝐹𝑛))))
7452, 73mpd 15 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝐾𝑚) = ((coe1‘(𝑃 Σg (𝑖 ∈ ℕ0 ↦ ((𝐹𝑖) · (𝑖𝐸𝑋)))))‘𝑚)) → (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍)) → (𝐾𝑛) = (𝐹𝑛)))
7574com12 32 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍)) → ((𝑛 ∈ ℕ0 ∧ ∀𝑚 ∈ ℕ0 (𝐾𝑚) = ((coe1‘(𝑃 Σg (𝑖 ∈ ℕ0 ↦ ((𝐹𝑖) · (𝑖𝐸𝑋)))))‘𝑚)) → (𝐾𝑛) = (𝐹𝑛)))
7675expcomd 416 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍)) → (∀𝑚 ∈ ℕ0 (𝐾𝑚) = ((coe1‘(𝑃 Σg (𝑖 ∈ ℕ0 ↦ ((𝐹𝑖) · (𝑖𝐸𝑋)))))‘𝑚) → (𝑛 ∈ ℕ0 → (𝐾𝑛) = (𝐹𝑛))))
7748, 76sylbird 260 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍)) → ((𝐶𝑀) = (𝑃 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) · (𝑛𝐸𝑋)))) → (𝑛 ∈ ℕ0 → (𝐾𝑛) = (𝐹𝑛))))
7877imp31 417 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍)) ∧ (𝐶𝑀) = (𝑃 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) · (𝑛𝐸𝑋))))) ∧ 𝑛 ∈ ℕ0) → (𝐾𝑛) = (𝐹𝑛))
7978oveq1d 7415 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍)) ∧ (𝐶𝑀) = (𝑃 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) · (𝑛𝐸𝑋))))) ∧ 𝑛 ∈ ℕ0) → ((𝐾𝑛) (𝑛 𝑀)) = ((𝐹𝑛) (𝑛 𝑀)))
8016, 79mpteq2da 5211 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍)) ∧ (𝐶𝑀) = (𝑃 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) · (𝑛𝐸𝑋))))) → (𝑛 ∈ ℕ0 ↦ ((𝐾𝑛) (𝑛 𝑀))) = (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) (𝑛 𝑀))))
8180oveq2d 7416 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍)) ∧ (𝐶𝑀) = (𝑃 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) · (𝑛𝐸𝑋))))) → (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐾𝑛) (𝑛 𝑀)))) = (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) (𝑛 𝑀)))))
8281eqeq1d 2736 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍)) ∧ (𝐶𝑀) = (𝑃 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) · (𝑛𝐸𝑋))))) → ((𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐾𝑛) (𝑛 𝑀)))) = 0 ↔ (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) (𝑛 𝑀)))) = 0 ))
8382biimpd 229 . . 3 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍)) ∧ (𝐶𝑀) = (𝑃 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) · (𝑛𝐸𝑋))))) → ((𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐾𝑛) (𝑛 𝑀)))) = 0 → (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) (𝑛 𝑀)))) = 0 ))
8483ex 412 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍)) → ((𝐶𝑀) = (𝑃 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) · (𝑛𝐸𝑋)))) → ((𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐾𝑛) (𝑛 𝑀)))) = 0 → (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) (𝑛 𝑀)))) = 0 )))
859, 84mpid 44 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝐹 ∈ (𝐿m0) ∧ 𝐹 finSupp 𝑍)) → ((𝐶𝑀) = (𝑃 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) · (𝑛𝐸𝑋)))) → (𝐴 Σg (𝑛 ∈ ℕ0 ↦ ((𝐹𝑛) (𝑛 𝑀)))) = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  wral 3050  csb 3872   class class class wbr 5117  cmpt 5199  wf 6524  cfv 6528  (class class class)co 7400  m cmap 8835  Fincfn 8954   finSupp cfsupp 9368  0cn0 12494  Basecbs 17215   ·𝑠 cvsca 17262  0gc0g 17440   Σg cgsu 17441  .gcmg 19037  mulGrpcmgp 20087  Ringcrg 20180  CRingccrg 20181  var1cv1 22098  Poly1cpl1 22099  coe1cco1 22100   Mat cmat 22332   CharPlyMat cchpmat 22751
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5247  ax-sep 5264  ax-nul 5274  ax-pow 5333  ax-pr 5400  ax-un 7724  ax-cnex 11178  ax-resscn 11179  ax-1cn 11180  ax-icn 11181  ax-addcl 11182  ax-addrcl 11183  ax-mulcl 11184  ax-mulrcl 11185  ax-mulcom 11186  ax-addass 11187  ax-mulass 11188  ax-distr 11189  ax-i2m1 11190  ax-1ne0 11191  ax-1rid 11192  ax-rnegex 11193  ax-rrecex 11194  ax-cnre 11195  ax-pre-lttri 11196  ax-pre-lttrn 11197  ax-pre-ltadd 11198  ax-pre-mulgt0 11199  ax-addf 11201  ax-mulf 11202
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1511  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-tp 4604  df-op 4606  df-ot 4608  df-uni 4882  df-int 4921  df-iun 4967  df-iin 4968  df-br 5118  df-opab 5180  df-mpt 5200  df-tr 5228  df-id 5546  df-eprel 5551  df-po 5559  df-so 5560  df-fr 5604  df-se 5605  df-we 5606  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-pred 6288  df-ord 6353  df-on 6354  df-lim 6355  df-suc 6356  df-iota 6481  df-fun 6530  df-fn 6531  df-f 6532  df-f1 6533  df-fo 6534  df-f1o 6535  df-fv 6536  df-isom 6537  df-riota 7357  df-ov 7403  df-oprab 7404  df-mpo 7405  df-of 7666  df-ofr 7667  df-om 7857  df-1st 7983  df-2nd 7984  df-supp 8155  df-tpos 8220  df-cur 8261  df-frecs 8275  df-wrecs 8306  df-recs 8380  df-rdg 8419  df-1o 8475  df-2o 8476  df-er 8714  df-map 8837  df-pm 8838  df-ixp 8907  df-en 8955  df-dom 8956  df-sdom 8957  df-fin 8958  df-fsupp 9369  df-sup 9449  df-oi 9517  df-card 9946  df-pnf 11264  df-mnf 11265  df-xr 11266  df-ltxr 11267  df-le 11268  df-sub 11461  df-neg 11462  df-div 11888  df-nn 12234  df-2 12296  df-3 12297  df-4 12298  df-5 12299  df-6 12300  df-7 12301  df-8 12302  df-9 12303  df-n0 12495  df-xnn0 12568  df-z 12582  df-dec 12702  df-uz 12846  df-rp 13002  df-fz 13515  df-fzo 13662  df-seq 14010  df-exp 14070  df-hash 14339  df-word 14522  df-lsw 14570  df-concat 14578  df-s1 14603  df-substr 14648  df-pfx 14678  df-splice 14757  df-reverse 14766  df-s2 14856  df-struct 17153  df-sets 17170  df-slot 17188  df-ndx 17200  df-base 17216  df-ress 17239  df-plusg 17271  df-mulr 17272  df-starv 17273  df-sca 17274  df-vsca 17275  df-ip 17276  df-tset 17277  df-ple 17278  df-ds 17280  df-unif 17281  df-hom 17282  df-cco 17283  df-0g 17442  df-gsum 17443  df-prds 17448  df-pws 17450  df-mre 17585  df-mrc 17586  df-acs 17588  df-mgm 18605  df-sgrp 18684  df-mnd 18700  df-mhm 18748  df-submnd 18749  df-efmnd 18834  df-grp 18906  df-minusg 18907  df-sbg 18908  df-mulg 19038  df-subg 19093  df-ghm 19183  df-gim 19229  df-cntz 19287  df-oppg 19316  df-symg 19338  df-pmtr 19410  df-psgn 19459  df-evpm 19460  df-cmn 19750  df-abl 19751  df-mgp 20088  df-rng 20100  df-ur 20129  df-srg 20134  df-ring 20182  df-cring 20183  df-oppr 20284  df-dvdsr 20304  df-unit 20305  df-invr 20335  df-dvr 20348  df-rhm 20419  df-subrng 20493  df-subrg 20517  df-drng 20678  df-lmod 20806  df-lss 20876  df-sra 21118  df-rgmod 21119  df-cnfld 21303  df-zring 21395  df-zrh 21451  df-dsmm 21679  df-frlm 21694  df-assa 21800  df-ascl 21802  df-psr 21856  df-mvr 21857  df-mpl 21858  df-opsr 21860  df-psr1 22102  df-vr1 22103  df-ply1 22104  df-coe1 22105  df-mamu 22316  df-mat 22333  df-mdet 22510  df-madu 22559  df-cpmat 22631  df-mat2pmat 22632  df-cpmat2mat 22633  df-decpmat 22688  df-pm2mp 22718  df-chpmat 22752
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator