Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mccllem Structured version   Visualization version   GIF version

Theorem mccllem 42282
 Description: * Induction step for mccl 42283. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
mccllem.a (𝜑𝐴 ∈ Fin)
mccllem.c (𝜑𝐶𝐴)
mccllem.d (𝜑𝐷 ∈ (𝐴𝐶))
mccllem.b (𝜑𝐵 ∈ (ℕ0m (𝐶 ∪ {𝐷})))
mccllem.6 (𝜑 → ∀𝑏 ∈ (ℕ0m 𝐶)((!‘Σ𝑘𝐶 (𝑏𝑘)) / ∏𝑘𝐶 (!‘(𝑏𝑘))) ∈ ℕ)
Assertion
Ref Expression
mccllem (𝜑 → ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / ∏𝑘 ∈ (𝐶 ∪ {𝐷})(!‘(𝐵𝑘))) ∈ ℕ)
Distinct variable groups:   𝐴,𝑘   𝐵,𝑏,𝑘   𝐶,𝑏,𝑘   𝐷,𝑘   𝜑,𝑘
Allowed substitution hints:   𝜑(𝑏)   𝐴(𝑏)   𝐷(𝑏)

Proof of Theorem mccllem
StepHypRef Expression
1 nfv 1915 . . . . 5 𝑘𝜑
2 nfcv 2955 . . . . 5 𝑘(!‘(𝐵𝐷))
3 mccllem.a . . . . . 6 (𝜑𝐴 ∈ Fin)
4 mccllem.c . . . . . 6 (𝜑𝐶𝐴)
5 ssfi 8725 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐶𝐴) → 𝐶 ∈ Fin)
63, 4, 5syl2anc 587 . . . . 5 (𝜑𝐶 ∈ Fin)
7 mccllem.d . . . . 5 (𝜑𝐷 ∈ (𝐴𝐶))
8 eldifn 4055 . . . . . 6 (𝐷 ∈ (𝐴𝐶) → ¬ 𝐷𝐶)
97, 8syl 17 . . . . 5 (𝜑 → ¬ 𝐷𝐶)
10 mccllem.b . . . . . . . . . 10 (𝜑𝐵 ∈ (ℕ0m (𝐶 ∪ {𝐷})))
11 elmapi 8414 . . . . . . . . . 10 (𝐵 ∈ (ℕ0m (𝐶 ∪ {𝐷})) → 𝐵:(𝐶 ∪ {𝐷})⟶ℕ0)
1210, 11syl 17 . . . . . . . . 9 (𝜑𝐵:(𝐶 ∪ {𝐷})⟶ℕ0)
1312adantr 484 . . . . . . . 8 ((𝜑𝑘𝐶) → 𝐵:(𝐶 ∪ {𝐷})⟶ℕ0)
14 elun1 4103 . . . . . . . . 9 (𝑘𝐶𝑘 ∈ (𝐶 ∪ {𝐷}))
1514adantl 485 . . . . . . . 8 ((𝜑𝑘𝐶) → 𝑘 ∈ (𝐶 ∪ {𝐷}))
1613, 15ffvelrnd 6830 . . . . . . 7 ((𝜑𝑘𝐶) → (𝐵𝑘) ∈ ℕ0)
1716faccld 13643 . . . . . 6 ((𝜑𝑘𝐶) → (!‘(𝐵𝑘)) ∈ ℕ)
1817nncnd 11644 . . . . 5 ((𝜑𝑘𝐶) → (!‘(𝐵𝑘)) ∈ ℂ)
19 2fveq3 6651 . . . . 5 (𝑘 = 𝐷 → (!‘(𝐵𝑘)) = (!‘(𝐵𝐷)))
20 snidg 4559 . . . . . . . . . 10 (𝐷 ∈ (𝐴𝐶) → 𝐷 ∈ {𝐷})
217, 20syl 17 . . . . . . . . 9 (𝜑𝐷 ∈ {𝐷})
22 elun2 4104 . . . . . . . . 9 (𝐷 ∈ {𝐷} → 𝐷 ∈ (𝐶 ∪ {𝐷}))
2321, 22syl 17 . . . . . . . 8 (𝜑𝐷 ∈ (𝐶 ∪ {𝐷}))
2412, 23ffvelrnd 6830 . . . . . . 7 (𝜑 → (𝐵𝐷) ∈ ℕ0)
2524faccld 13643 . . . . . 6 (𝜑 → (!‘(𝐵𝐷)) ∈ ℕ)
2625nncnd 11644 . . . . 5 (𝜑 → (!‘(𝐵𝐷)) ∈ ℂ)
271, 2, 6, 7, 9, 18, 19, 26fprodsplitsn 15338 . . . 4 (𝜑 → ∏𝑘 ∈ (𝐶 ∪ {𝐷})(!‘(𝐵𝑘)) = (∏𝑘𝐶 (!‘(𝐵𝑘)) · (!‘(𝐵𝐷))))
2827oveq2d 7152 . . 3 (𝜑 → ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / ∏𝑘 ∈ (𝐶 ∪ {𝐷})(!‘(𝐵𝑘))) = ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (∏𝑘𝐶 (!‘(𝐵𝑘)) · (!‘(𝐵𝐷)))))
297eldifad 3893 . . . . . . . . . . . 12 (𝜑𝐷𝐴)
30 snssi 4701 . . . . . . . . . . . 12 (𝐷𝐴 → {𝐷} ⊆ 𝐴)
3129, 30syl 17 . . . . . . . . . . 11 (𝜑 → {𝐷} ⊆ 𝐴)
324, 31unssd 4113 . . . . . . . . . 10 (𝜑 → (𝐶 ∪ {𝐷}) ⊆ 𝐴)
33 ssfi 8725 . . . . . . . . . 10 ((𝐴 ∈ Fin ∧ (𝐶 ∪ {𝐷}) ⊆ 𝐴) → (𝐶 ∪ {𝐷}) ∈ Fin)
343, 32, 33syl2anc 587 . . . . . . . . 9 (𝜑 → (𝐶 ∪ {𝐷}) ∈ Fin)
3512ffvelrnda 6829 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝐶 ∪ {𝐷})) → (𝐵𝑘) ∈ ℕ0)
3634, 35fsumnn0cl 15088 . . . . . . . 8 (𝜑 → Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘) ∈ ℕ0)
3736faccld 13643 . . . . . . 7 (𝜑 → (!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) ∈ ℕ)
3837nncnd 11644 . . . . . 6 (𝜑 → (!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) ∈ ℂ)
391, 6, 18fprodclf 15341 . . . . . . 7 (𝜑 → ∏𝑘𝐶 (!‘(𝐵𝑘)) ∈ ℂ)
4039, 26mulcld 10653 . . . . . 6 (𝜑 → (∏𝑘𝐶 (!‘(𝐵𝑘)) · (!‘(𝐵𝐷))) ∈ ℂ)
4117nnne0d 11678 . . . . . . . 8 ((𝜑𝑘𝐶) → (!‘(𝐵𝑘)) ≠ 0)
426, 18, 41fprodn0 15328 . . . . . . 7 (𝜑 → ∏𝑘𝐶 (!‘(𝐵𝑘)) ≠ 0)
4325nnne0d 11678 . . . . . . 7 (𝜑 → (!‘(𝐵𝐷)) ≠ 0)
4439, 26, 42, 43mulne0d 11284 . . . . . 6 (𝜑 → (∏𝑘𝐶 (!‘(𝐵𝑘)) · (!‘(𝐵𝐷))) ≠ 0)
4538, 40, 44divcld 11408 . . . . 5 (𝜑 → ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (∏𝑘𝐶 (!‘(𝐵𝑘)) · (!‘(𝐵𝐷)))) ∈ ℂ)
4645mulid2d 10651 . . . 4 (𝜑 → (1 · ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (∏𝑘𝐶 (!‘(𝐵𝑘)) · (!‘(𝐵𝐷))))) = ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (∏𝑘𝐶 (!‘(𝐵𝑘)) · (!‘(𝐵𝐷)))))
4746eqcomd 2804 . . 3 (𝜑 → ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (∏𝑘𝐶 (!‘(𝐵𝑘)) · (!‘(𝐵𝐷)))) = (1 · ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (∏𝑘𝐶 (!‘(𝐵𝑘)) · (!‘(𝐵𝐷))))))
486, 16fsumnn0cl 15088 . . . . . . . . 9 (𝜑 → Σ𝑘𝐶 (𝐵𝑘) ∈ ℕ0)
4948faccld 13643 . . . . . . . 8 (𝜑 → (!‘Σ𝑘𝐶 (𝐵𝑘)) ∈ ℕ)
5049nncnd 11644 . . . . . . 7 (𝜑 → (!‘Σ𝑘𝐶 (𝐵𝑘)) ∈ ℂ)
51 nnne0 11662 . . . . . . . 8 ((!‘Σ𝑘𝐶 (𝐵𝑘)) ∈ ℕ → (!‘Σ𝑘𝐶 (𝐵𝑘)) ≠ 0)
5249, 51syl 17 . . . . . . 7 (𝜑 → (!‘Σ𝑘𝐶 (𝐵𝑘)) ≠ 0)
5350, 52dividd 11406 . . . . . 6 (𝜑 → ((!‘Σ𝑘𝐶 (𝐵𝑘)) / (!‘Σ𝑘𝐶 (𝐵𝑘))) = 1)
5453eqcomd 2804 . . . . 5 (𝜑 → 1 = ((!‘Σ𝑘𝐶 (𝐵𝑘)) / (!‘Σ𝑘𝐶 (𝐵𝑘))))
5539, 26mulcomd 10654 . . . . . . 7 (𝜑 → (∏𝑘𝐶 (!‘(𝐵𝑘)) · (!‘(𝐵𝐷))) = ((!‘(𝐵𝐷)) · ∏𝑘𝐶 (!‘(𝐵𝑘))))
5655oveq2d 7152 . . . . . 6 (𝜑 → ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (∏𝑘𝐶 (!‘(𝐵𝑘)) · (!‘(𝐵𝐷)))) = ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / ((!‘(𝐵𝐷)) · ∏𝑘𝐶 (!‘(𝐵𝑘)))))
5738, 26, 39, 43, 42divdiv1d 11439 . . . . . . 7 (𝜑 → (((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (!‘(𝐵𝐷))) / ∏𝑘𝐶 (!‘(𝐵𝑘))) = ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / ((!‘(𝐵𝐷)) · ∏𝑘𝐶 (!‘(𝐵𝑘)))))
5857eqcomd 2804 . . . . . 6 (𝜑 → ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / ((!‘(𝐵𝐷)) · ∏𝑘𝐶 (!‘(𝐵𝑘)))) = (((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (!‘(𝐵𝐷))) / ∏𝑘𝐶 (!‘(𝐵𝑘))))
5956, 58eqtrd 2833 . . . . 5 (𝜑 → ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (∏𝑘𝐶 (!‘(𝐵𝑘)) · (!‘(𝐵𝐷)))) = (((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (!‘(𝐵𝐷))) / ∏𝑘𝐶 (!‘(𝐵𝑘))))
6054, 59oveq12d 7154 . . . 4 (𝜑 → (1 · ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (∏𝑘𝐶 (!‘(𝐵𝑘)) · (!‘(𝐵𝐷))))) = (((!‘Σ𝑘𝐶 (𝐵𝑘)) / (!‘Σ𝑘𝐶 (𝐵𝑘))) · (((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (!‘(𝐵𝐷))) / ∏𝑘𝐶 (!‘(𝐵𝑘)))))
6138, 26, 43divcld 11408 . . . . 5 (𝜑 → ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (!‘(𝐵𝐷))) ∈ ℂ)
6250, 50, 61, 39, 52, 42divmul13d 11450 . . . 4 (𝜑 → (((!‘Σ𝑘𝐶 (𝐵𝑘)) / (!‘Σ𝑘𝐶 (𝐵𝑘))) · (((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (!‘(𝐵𝐷))) / ∏𝑘𝐶 (!‘(𝐵𝑘)))) = ((((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (!‘(𝐵𝐷))) / (!‘Σ𝑘𝐶 (𝐵𝑘))) · ((!‘Σ𝑘𝐶 (𝐵𝑘)) / ∏𝑘𝐶 (!‘(𝐵𝑘)))))
6360, 62eqtrd 2833 . . 3 (𝜑 → (1 · ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (∏𝑘𝐶 (!‘(𝐵𝑘)) · (!‘(𝐵𝐷))))) = ((((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (!‘(𝐵𝐷))) / (!‘Σ𝑘𝐶 (𝐵𝑘))) · ((!‘Σ𝑘𝐶 (𝐵𝑘)) / ∏𝑘𝐶 (!‘(𝐵𝑘)))))
6428, 47, 633eqtrd 2837 . 2 (𝜑 → ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / ∏𝑘 ∈ (𝐶 ∪ {𝐷})(!‘(𝐵𝑘))) = ((((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (!‘(𝐵𝐷))) / (!‘Σ𝑘𝐶 (𝐵𝑘))) · ((!‘Σ𝑘𝐶 (𝐵𝑘)) / ∏𝑘𝐶 (!‘(𝐵𝑘)))))
6538, 26, 50, 43, 52divdiv1d 11439 . . . . 5 (𝜑 → (((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (!‘(𝐵𝐷))) / (!‘Σ𝑘𝐶 (𝐵𝑘))) = ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / ((!‘(𝐵𝐷)) · (!‘Σ𝑘𝐶 (𝐵𝑘)))))
66 nfcsb1v 3852 . . . . . . . . . . 11 𝑘𝐷 / 𝑘(𝐵𝑘)
6716nn0cnd 11948 . . . . . . . . . . 11 ((𝜑𝑘𝐶) → (𝐵𝑘) ∈ ℂ)
68 csbeq1a 3842 . . . . . . . . . . 11 (𝑘 = 𝐷 → (𝐵𝑘) = 𝐷 / 𝑘(𝐵𝑘))
69 csbfv 6691 . . . . . . . . . . . . 13 𝐷 / 𝑘(𝐵𝑘) = (𝐵𝐷)
7069a1i 11 . . . . . . . . . . . 12 (𝜑𝐷 / 𝑘(𝐵𝑘) = (𝐵𝐷))
7124nn0cnd 11948 . . . . . . . . . . . 12 (𝜑 → (𝐵𝐷) ∈ ℂ)
7270, 71eqeltrd 2890 . . . . . . . . . . 11 (𝜑𝐷 / 𝑘(𝐵𝑘) ∈ ℂ)
731, 66, 6, 29, 9, 67, 68, 72fsumsplitsn 15095 . . . . . . . . . 10 (𝜑 → Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘) = (Σ𝑘𝐶 (𝐵𝑘) + 𝐷 / 𝑘(𝐵𝑘)))
7473oveq1d 7151 . . . . . . . . 9 (𝜑 → (Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘) − Σ𝑘𝐶 (𝐵𝑘)) = ((Σ𝑘𝐶 (𝐵𝑘) + 𝐷 / 𝑘(𝐵𝑘)) − Σ𝑘𝐶 (𝐵𝑘)))
7548nn0cnd 11948 . . . . . . . . . 10 (𝜑 → Σ𝑘𝐶 (𝐵𝑘) ∈ ℂ)
7675, 72pncan2d 10991 . . . . . . . . 9 (𝜑 → ((Σ𝑘𝐶 (𝐵𝑘) + 𝐷 / 𝑘(𝐵𝑘)) − Σ𝑘𝐶 (𝐵𝑘)) = 𝐷 / 𝑘(𝐵𝑘))
7774, 76, 703eqtrrd 2838 . . . . . . . 8 (𝜑 → (𝐵𝐷) = (Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘) − Σ𝑘𝐶 (𝐵𝑘)))
7877fveq2d 6650 . . . . . . 7 (𝜑 → (!‘(𝐵𝐷)) = (!‘(Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘) − Σ𝑘𝐶 (𝐵𝑘))))
7978oveq1d 7151 . . . . . 6 (𝜑 → ((!‘(𝐵𝐷)) · (!‘Σ𝑘𝐶 (𝐵𝑘))) = ((!‘(Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘) − Σ𝑘𝐶 (𝐵𝑘))) · (!‘Σ𝑘𝐶 (𝐵𝑘))))
8079oveq2d 7152 . . . . 5 (𝜑 → ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / ((!‘(𝐵𝐷)) · (!‘Σ𝑘𝐶 (𝐵𝑘)))) = ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / ((!‘(Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘) − Σ𝑘𝐶 (𝐵𝑘))) · (!‘Σ𝑘𝐶 (𝐵𝑘)))))
81 0zd 11984 . . . . . . . . . 10 (𝜑 → 0 ∈ ℤ)
8236nn0zd 12076 . . . . . . . . . 10 (𝜑 → Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘) ∈ ℤ)
8348nn0zd 12076 . . . . . . . . . 10 (𝜑 → Σ𝑘𝐶 (𝐵𝑘) ∈ ℤ)
8481, 82, 833jca 1125 . . . . . . . . 9 (𝜑 → (0 ∈ ℤ ∧ Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘) ∈ ℤ ∧ Σ𝑘𝐶 (𝐵𝑘) ∈ ℤ))
8548nn0ge0d 11949 . . . . . . . . 9 (𝜑 → 0 ≤ Σ𝑘𝐶 (𝐵𝑘))
8624nn0ge0d 11949 . . . . . . . . . . . 12 (𝜑 → 0 ≤ (𝐵𝐷))
8770eqcomd 2804 . . . . . . . . . . . 12 (𝜑 → (𝐵𝐷) = 𝐷 / 𝑘(𝐵𝑘))
8886, 87breqtrd 5057 . . . . . . . . . . 11 (𝜑 → 0 ≤ 𝐷 / 𝑘(𝐵𝑘))
8948nn0red 11947 . . . . . . . . . . . 12 (𝜑 → Σ𝑘𝐶 (𝐵𝑘) ∈ ℝ)
9024nn0red 11947 . . . . . . . . . . . . 13 (𝜑 → (𝐵𝐷) ∈ ℝ)
9170, 90eqeltrd 2890 . . . . . . . . . . . 12 (𝜑𝐷 / 𝑘(𝐵𝑘) ∈ ℝ)
9289, 91addge01d 11220 . . . . . . . . . . 11 (𝜑 → (0 ≤ 𝐷 / 𝑘(𝐵𝑘) ↔ Σ𝑘𝐶 (𝐵𝑘) ≤ (Σ𝑘𝐶 (𝐵𝑘) + 𝐷 / 𝑘(𝐵𝑘))))
9388, 92mpbid 235 . . . . . . . . . 10 (𝜑 → Σ𝑘𝐶 (𝐵𝑘) ≤ (Σ𝑘𝐶 (𝐵𝑘) + 𝐷 / 𝑘(𝐵𝑘)))
9473eqcomd 2804 . . . . . . . . . 10 (𝜑 → (Σ𝑘𝐶 (𝐵𝑘) + 𝐷 / 𝑘(𝐵𝑘)) = Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘))
9593, 94breqtrd 5057 . . . . . . . . 9 (𝜑 → Σ𝑘𝐶 (𝐵𝑘) ≤ Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘))
9684, 85, 95jca32 519 . . . . . . . 8 (𝜑 → ((0 ∈ ℤ ∧ Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘) ∈ ℤ ∧ Σ𝑘𝐶 (𝐵𝑘) ∈ ℤ) ∧ (0 ≤ Σ𝑘𝐶 (𝐵𝑘) ∧ Σ𝑘𝐶 (𝐵𝑘) ≤ Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘))))
97 elfz2 12895 . . . . . . . 8 𝑘𝐶 (𝐵𝑘) ∈ (0...Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) ↔ ((0 ∈ ℤ ∧ Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘) ∈ ℤ ∧ Σ𝑘𝐶 (𝐵𝑘) ∈ ℤ) ∧ (0 ≤ Σ𝑘𝐶 (𝐵𝑘) ∧ Σ𝑘𝐶 (𝐵𝑘) ≤ Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘))))
9896, 97sylibr 237 . . . . . . 7 (𝜑 → Σ𝑘𝐶 (𝐵𝑘) ∈ (0...Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)))
99 bcval2 13664 . . . . . . 7 𝑘𝐶 (𝐵𝑘) ∈ (0...Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) → (Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)CΣ𝑘𝐶 (𝐵𝑘)) = ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / ((!‘(Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘) − Σ𝑘𝐶 (𝐵𝑘))) · (!‘Σ𝑘𝐶 (𝐵𝑘)))))
10098, 99syl 17 . . . . . 6 (𝜑 → (Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)CΣ𝑘𝐶 (𝐵𝑘)) = ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / ((!‘(Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘) − Σ𝑘𝐶 (𝐵𝑘))) · (!‘Σ𝑘𝐶 (𝐵𝑘)))))
101100eqcomd 2804 . . . . 5 (𝜑 → ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / ((!‘(Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘) − Σ𝑘𝐶 (𝐵𝑘))) · (!‘Σ𝑘𝐶 (𝐵𝑘)))) = (Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)CΣ𝑘𝐶 (𝐵𝑘)))
10265, 80, 1013eqtrd 2837 . . . 4 (𝜑 → (((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (!‘(𝐵𝐷))) / (!‘Σ𝑘𝐶 (𝐵𝑘))) = (Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)CΣ𝑘𝐶 (𝐵𝑘)))
103 bccl2 13682 . . . . 5 𝑘𝐶 (𝐵𝑘) ∈ (0...Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) → (Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)CΣ𝑘𝐶 (𝐵𝑘)) ∈ ℕ)
10498, 103syl 17 . . . 4 (𝜑 → (Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)CΣ𝑘𝐶 (𝐵𝑘)) ∈ ℕ)
105102, 104eqeltrd 2890 . . 3 (𝜑 → (((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (!‘(𝐵𝐷))) / (!‘Σ𝑘𝐶 (𝐵𝑘))) ∈ ℕ)
106 mccllem.6 . . . 4 (𝜑 → ∀𝑏 ∈ (ℕ0m 𝐶)((!‘Σ𝑘𝐶 (𝑏𝑘)) / ∏𝑘𝐶 (!‘(𝑏𝑘))) ∈ ℕ)
107 ssun1 4099 . . . . . 6 𝐶 ⊆ (𝐶 ∪ {𝐷})
108107a1i 11 . . . . 5 (𝜑𝐶 ⊆ (𝐶 ∪ {𝐷}))
109 elmapssres 8417 . . . . 5 ((𝐵 ∈ (ℕ0m (𝐶 ∪ {𝐷})) ∧ 𝐶 ⊆ (𝐶 ∪ {𝐷})) → (𝐵𝐶) ∈ (ℕ0m 𝐶))
11010, 108, 109syl2anc 587 . . . 4 (𝜑 → (𝐵𝐶) ∈ (ℕ0m 𝐶))
111 fveq1 6645 . . . . . . . . . . 11 (𝑏 = (𝐵𝐶) → (𝑏𝑘) = ((𝐵𝐶)‘𝑘))
112111adantr 484 . . . . . . . . . 10 ((𝑏 = (𝐵𝐶) ∧ 𝑘𝐶) → (𝑏𝑘) = ((𝐵𝐶)‘𝑘))
113 fvres 6665 . . . . . . . . . . 11 (𝑘𝐶 → ((𝐵𝐶)‘𝑘) = (𝐵𝑘))
114113adantl 485 . . . . . . . . . 10 ((𝑏 = (𝐵𝐶) ∧ 𝑘𝐶) → ((𝐵𝐶)‘𝑘) = (𝐵𝑘))
115112, 114eqtrd 2833 . . . . . . . . 9 ((𝑏 = (𝐵𝐶) ∧ 𝑘𝐶) → (𝑏𝑘) = (𝐵𝑘))
116115sumeq2dv 15055 . . . . . . . 8 (𝑏 = (𝐵𝐶) → Σ𝑘𝐶 (𝑏𝑘) = Σ𝑘𝐶 (𝐵𝑘))
117116fveq2d 6650 . . . . . . 7 (𝑏 = (𝐵𝐶) → (!‘Σ𝑘𝐶 (𝑏𝑘)) = (!‘Σ𝑘𝐶 (𝐵𝑘)))
118115fveq2d 6650 . . . . . . . 8 ((𝑏 = (𝐵𝐶) ∧ 𝑘𝐶) → (!‘(𝑏𝑘)) = (!‘(𝐵𝑘)))
119118prodeq2dv 15272 . . . . . . 7 (𝑏 = (𝐵𝐶) → ∏𝑘𝐶 (!‘(𝑏𝑘)) = ∏𝑘𝐶 (!‘(𝐵𝑘)))
120117, 119oveq12d 7154 . . . . . 6 (𝑏 = (𝐵𝐶) → ((!‘Σ𝑘𝐶 (𝑏𝑘)) / ∏𝑘𝐶 (!‘(𝑏𝑘))) = ((!‘Σ𝑘𝐶 (𝐵𝑘)) / ∏𝑘𝐶 (!‘(𝐵𝑘))))
121120eleq1d 2874 . . . . 5 (𝑏 = (𝐵𝐶) → (((!‘Σ𝑘𝐶 (𝑏𝑘)) / ∏𝑘𝐶 (!‘(𝑏𝑘))) ∈ ℕ ↔ ((!‘Σ𝑘𝐶 (𝐵𝑘)) / ∏𝑘𝐶 (!‘(𝐵𝑘))) ∈ ℕ))
122121rspccva 3570 . . . 4 ((∀𝑏 ∈ (ℕ0m 𝐶)((!‘Σ𝑘𝐶 (𝑏𝑘)) / ∏𝑘𝐶 (!‘(𝑏𝑘))) ∈ ℕ ∧ (𝐵𝐶) ∈ (ℕ0m 𝐶)) → ((!‘Σ𝑘𝐶 (𝐵𝑘)) / ∏𝑘𝐶 (!‘(𝐵𝑘))) ∈ ℕ)
123106, 110, 122syl2anc 587 . . 3 (𝜑 → ((!‘Σ𝑘𝐶 (𝐵𝑘)) / ∏𝑘𝐶 (!‘(𝐵𝑘))) ∈ ℕ)
124105, 123nnmulcld 11681 . 2 (𝜑 → ((((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (!‘(𝐵𝐷))) / (!‘Σ𝑘𝐶 (𝐵𝑘))) · ((!‘Σ𝑘𝐶 (𝐵𝑘)) / ∏𝑘𝐶 (!‘(𝐵𝑘)))) ∈ ℕ)
12564, 124eqeltrd 2890 1 (𝜑 → ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / ∏𝑘 ∈ (𝐶 ∪ {𝐷})(!‘(𝐵𝑘))) ∈ ℕ)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111   ≠ wne 2987  ∀wral 3106  ⦋csb 3828   ∖ cdif 3878   ∪ cun 3879   ⊆ wss 3881  {csn 4525   class class class wbr 5031   ↾ cres 5522  ⟶wf 6321  ‘cfv 6325  (class class class)co 7136   ↑m cmap 8392  Fincfn 8495  ℂcc 10527  ℝcr 10528  0cc0 10529  1c1 10530   + caddc 10532   · cmul 10534   ≤ cle 10668   − cmin 10862   / cdiv 11289  ℕcn 11628  ℕ0cn0 11888  ℤcz 11972  ...cfz 12888  !cfa 13632  Ccbc 13661  Σcsu 15037  ∏cprod 15254 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5232  ax-pr 5296  ax-un 7444  ax-inf2 9091  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4840  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5426  df-eprel 5431  df-po 5439  df-so 5440  df-fr 5479  df-se 5480  df-we 5481  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-rn 5531  df-res 5532  df-ima 5533  df-pred 6117  df-ord 6163  df-on 6164  df-lim 6165  df-suc 6166  df-iota 6284  df-fun 6327  df-fn 6328  df-f 6329  df-f1 6330  df-fo 6331  df-f1o 6332  df-fv 6333  df-isom 6334  df-riota 7094  df-ov 7139  df-oprab 7140  df-mpo 7141  df-om 7564  df-1st 7674  df-2nd 7675  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-1o 8088  df-oadd 8092  df-er 8275  df-map 8394  df-en 8496  df-dom 8497  df-sdom 8498  df-fin 8499  df-sup 8893  df-oi 8961  df-card 9355  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11629  df-2 11691  df-3 11692  df-n0 11889  df-z 11973  df-uz 12235  df-rp 12381  df-fz 12889  df-fzo 13032  df-seq 13368  df-exp 13429  df-fac 13633  df-bc 13662  df-hash 13690  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-clim 14840  df-sum 15038  df-prod 15255 This theorem is referenced by:  mccl  42283
 Copyright terms: Public domain W3C validator