Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mccllem Structured version   Visualization version   GIF version

Theorem mccllem 41885
Description: * Induction step for mccl 41886. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
mccllem.a (𝜑𝐴 ∈ Fin)
mccllem.c (𝜑𝐶𝐴)
mccllem.d (𝜑𝐷 ∈ (𝐴𝐶))
mccllem.b (𝜑𝐵 ∈ (ℕ0m (𝐶 ∪ {𝐷})))
mccllem.6 (𝜑 → ∀𝑏 ∈ (ℕ0m 𝐶)((!‘Σ𝑘𝐶 (𝑏𝑘)) / ∏𝑘𝐶 (!‘(𝑏𝑘))) ∈ ℕ)
Assertion
Ref Expression
mccllem (𝜑 → ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / ∏𝑘 ∈ (𝐶 ∪ {𝐷})(!‘(𝐵𝑘))) ∈ ℕ)
Distinct variable groups:   𝐴,𝑘   𝐵,𝑏,𝑘   𝐶,𝑏,𝑘   𝐷,𝑘   𝜑,𝑘
Allowed substitution hints:   𝜑(𝑏)   𝐴(𝑏)   𝐷(𝑏)

Proof of Theorem mccllem
StepHypRef Expression
1 nfv 1915 . . . . 5 𝑘𝜑
2 nfcv 2979 . . . . 5 𝑘(!‘(𝐵𝐷))
3 mccllem.a . . . . . 6 (𝜑𝐴 ∈ Fin)
4 mccllem.c . . . . . 6 (𝜑𝐶𝐴)
5 ssfi 8740 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐶𝐴) → 𝐶 ∈ Fin)
63, 4, 5syl2anc 586 . . . . 5 (𝜑𝐶 ∈ Fin)
7 mccllem.d . . . . 5 (𝜑𝐷 ∈ (𝐴𝐶))
8 eldifn 4106 . . . . . 6 (𝐷 ∈ (𝐴𝐶) → ¬ 𝐷𝐶)
97, 8syl 17 . . . . 5 (𝜑 → ¬ 𝐷𝐶)
10 mccllem.b . . . . . . . . . 10 (𝜑𝐵 ∈ (ℕ0m (𝐶 ∪ {𝐷})))
11 elmapi 8430 . . . . . . . . . 10 (𝐵 ∈ (ℕ0m (𝐶 ∪ {𝐷})) → 𝐵:(𝐶 ∪ {𝐷})⟶ℕ0)
1210, 11syl 17 . . . . . . . . 9 (𝜑𝐵:(𝐶 ∪ {𝐷})⟶ℕ0)
1312adantr 483 . . . . . . . 8 ((𝜑𝑘𝐶) → 𝐵:(𝐶 ∪ {𝐷})⟶ℕ0)
14 elun1 4154 . . . . . . . . 9 (𝑘𝐶𝑘 ∈ (𝐶 ∪ {𝐷}))
1514adantl 484 . . . . . . . 8 ((𝜑𝑘𝐶) → 𝑘 ∈ (𝐶 ∪ {𝐷}))
1613, 15ffvelrnd 6854 . . . . . . 7 ((𝜑𝑘𝐶) → (𝐵𝑘) ∈ ℕ0)
1716faccld 13647 . . . . . 6 ((𝜑𝑘𝐶) → (!‘(𝐵𝑘)) ∈ ℕ)
1817nncnd 11656 . . . . 5 ((𝜑𝑘𝐶) → (!‘(𝐵𝑘)) ∈ ℂ)
19 2fveq3 6677 . . . . 5 (𝑘 = 𝐷 → (!‘(𝐵𝑘)) = (!‘(𝐵𝐷)))
20 snidg 4601 . . . . . . . . . 10 (𝐷 ∈ (𝐴𝐶) → 𝐷 ∈ {𝐷})
217, 20syl 17 . . . . . . . . 9 (𝜑𝐷 ∈ {𝐷})
22 elun2 4155 . . . . . . . . 9 (𝐷 ∈ {𝐷} → 𝐷 ∈ (𝐶 ∪ {𝐷}))
2321, 22syl 17 . . . . . . . 8 (𝜑𝐷 ∈ (𝐶 ∪ {𝐷}))
2412, 23ffvelrnd 6854 . . . . . . 7 (𝜑 → (𝐵𝐷) ∈ ℕ0)
2524faccld 13647 . . . . . 6 (𝜑 → (!‘(𝐵𝐷)) ∈ ℕ)
2625nncnd 11656 . . . . 5 (𝜑 → (!‘(𝐵𝐷)) ∈ ℂ)
271, 2, 6, 7, 9, 18, 19, 26fprodsplitsn 15345 . . . 4 (𝜑 → ∏𝑘 ∈ (𝐶 ∪ {𝐷})(!‘(𝐵𝑘)) = (∏𝑘𝐶 (!‘(𝐵𝑘)) · (!‘(𝐵𝐷))))
2827oveq2d 7174 . . 3 (𝜑 → ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / ∏𝑘 ∈ (𝐶 ∪ {𝐷})(!‘(𝐵𝑘))) = ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (∏𝑘𝐶 (!‘(𝐵𝑘)) · (!‘(𝐵𝐷)))))
297eldifad 3950 . . . . . . . . . . . 12 (𝜑𝐷𝐴)
30 snssi 4743 . . . . . . . . . . . 12 (𝐷𝐴 → {𝐷} ⊆ 𝐴)
3129, 30syl 17 . . . . . . . . . . 11 (𝜑 → {𝐷} ⊆ 𝐴)
324, 31unssd 4164 . . . . . . . . . 10 (𝜑 → (𝐶 ∪ {𝐷}) ⊆ 𝐴)
33 ssfi 8740 . . . . . . . . . 10 ((𝐴 ∈ Fin ∧ (𝐶 ∪ {𝐷}) ⊆ 𝐴) → (𝐶 ∪ {𝐷}) ∈ Fin)
343, 32, 33syl2anc 586 . . . . . . . . 9 (𝜑 → (𝐶 ∪ {𝐷}) ∈ Fin)
3512ffvelrnda 6853 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝐶 ∪ {𝐷})) → (𝐵𝑘) ∈ ℕ0)
3634, 35fsumnn0cl 15095 . . . . . . . 8 (𝜑 → Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘) ∈ ℕ0)
3736faccld 13647 . . . . . . 7 (𝜑 → (!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) ∈ ℕ)
3837nncnd 11656 . . . . . 6 (𝜑 → (!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) ∈ ℂ)
391, 6, 18fprodclf 15348 . . . . . . 7 (𝜑 → ∏𝑘𝐶 (!‘(𝐵𝑘)) ∈ ℂ)
4039, 26mulcld 10663 . . . . . 6 (𝜑 → (∏𝑘𝐶 (!‘(𝐵𝑘)) · (!‘(𝐵𝐷))) ∈ ℂ)
4117nnne0d 11690 . . . . . . . 8 ((𝜑𝑘𝐶) → (!‘(𝐵𝑘)) ≠ 0)
426, 18, 41fprodn0 15335 . . . . . . 7 (𝜑 → ∏𝑘𝐶 (!‘(𝐵𝑘)) ≠ 0)
4325nnne0d 11690 . . . . . . 7 (𝜑 → (!‘(𝐵𝐷)) ≠ 0)
4439, 26, 42, 43mulne0d 11294 . . . . . 6 (𝜑 → (∏𝑘𝐶 (!‘(𝐵𝑘)) · (!‘(𝐵𝐷))) ≠ 0)
4538, 40, 44divcld 11418 . . . . 5 (𝜑 → ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (∏𝑘𝐶 (!‘(𝐵𝑘)) · (!‘(𝐵𝐷)))) ∈ ℂ)
4645mulid2d 10661 . . . 4 (𝜑 → (1 · ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (∏𝑘𝐶 (!‘(𝐵𝑘)) · (!‘(𝐵𝐷))))) = ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (∏𝑘𝐶 (!‘(𝐵𝑘)) · (!‘(𝐵𝐷)))))
4746eqcomd 2829 . . 3 (𝜑 → ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (∏𝑘𝐶 (!‘(𝐵𝑘)) · (!‘(𝐵𝐷)))) = (1 · ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (∏𝑘𝐶 (!‘(𝐵𝑘)) · (!‘(𝐵𝐷))))))
486, 16fsumnn0cl 15095 . . . . . . . . 9 (𝜑 → Σ𝑘𝐶 (𝐵𝑘) ∈ ℕ0)
4948faccld 13647 . . . . . . . 8 (𝜑 → (!‘Σ𝑘𝐶 (𝐵𝑘)) ∈ ℕ)
5049nncnd 11656 . . . . . . 7 (𝜑 → (!‘Σ𝑘𝐶 (𝐵𝑘)) ∈ ℂ)
51 nnne0 11674 . . . . . . . 8 ((!‘Σ𝑘𝐶 (𝐵𝑘)) ∈ ℕ → (!‘Σ𝑘𝐶 (𝐵𝑘)) ≠ 0)
5249, 51syl 17 . . . . . . 7 (𝜑 → (!‘Σ𝑘𝐶 (𝐵𝑘)) ≠ 0)
5350, 52dividd 11416 . . . . . 6 (𝜑 → ((!‘Σ𝑘𝐶 (𝐵𝑘)) / (!‘Σ𝑘𝐶 (𝐵𝑘))) = 1)
5453eqcomd 2829 . . . . 5 (𝜑 → 1 = ((!‘Σ𝑘𝐶 (𝐵𝑘)) / (!‘Σ𝑘𝐶 (𝐵𝑘))))
5539, 26mulcomd 10664 . . . . . . 7 (𝜑 → (∏𝑘𝐶 (!‘(𝐵𝑘)) · (!‘(𝐵𝐷))) = ((!‘(𝐵𝐷)) · ∏𝑘𝐶 (!‘(𝐵𝑘))))
5655oveq2d 7174 . . . . . 6 (𝜑 → ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (∏𝑘𝐶 (!‘(𝐵𝑘)) · (!‘(𝐵𝐷)))) = ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / ((!‘(𝐵𝐷)) · ∏𝑘𝐶 (!‘(𝐵𝑘)))))
5738, 26, 39, 43, 42divdiv1d 11449 . . . . . . 7 (𝜑 → (((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (!‘(𝐵𝐷))) / ∏𝑘𝐶 (!‘(𝐵𝑘))) = ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / ((!‘(𝐵𝐷)) · ∏𝑘𝐶 (!‘(𝐵𝑘)))))
5857eqcomd 2829 . . . . . 6 (𝜑 → ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / ((!‘(𝐵𝐷)) · ∏𝑘𝐶 (!‘(𝐵𝑘)))) = (((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (!‘(𝐵𝐷))) / ∏𝑘𝐶 (!‘(𝐵𝑘))))
5956, 58eqtrd 2858 . . . . 5 (𝜑 → ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (∏𝑘𝐶 (!‘(𝐵𝑘)) · (!‘(𝐵𝐷)))) = (((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (!‘(𝐵𝐷))) / ∏𝑘𝐶 (!‘(𝐵𝑘))))
6054, 59oveq12d 7176 . . . 4 (𝜑 → (1 · ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (∏𝑘𝐶 (!‘(𝐵𝑘)) · (!‘(𝐵𝐷))))) = (((!‘Σ𝑘𝐶 (𝐵𝑘)) / (!‘Σ𝑘𝐶 (𝐵𝑘))) · (((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (!‘(𝐵𝐷))) / ∏𝑘𝐶 (!‘(𝐵𝑘)))))
6138, 26, 43divcld 11418 . . . . 5 (𝜑 → ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (!‘(𝐵𝐷))) ∈ ℂ)
6250, 50, 61, 39, 52, 42divmul13d 11460 . . . 4 (𝜑 → (((!‘Σ𝑘𝐶 (𝐵𝑘)) / (!‘Σ𝑘𝐶 (𝐵𝑘))) · (((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (!‘(𝐵𝐷))) / ∏𝑘𝐶 (!‘(𝐵𝑘)))) = ((((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (!‘(𝐵𝐷))) / (!‘Σ𝑘𝐶 (𝐵𝑘))) · ((!‘Σ𝑘𝐶 (𝐵𝑘)) / ∏𝑘𝐶 (!‘(𝐵𝑘)))))
6360, 62eqtrd 2858 . . 3 (𝜑 → (1 · ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (∏𝑘𝐶 (!‘(𝐵𝑘)) · (!‘(𝐵𝐷))))) = ((((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (!‘(𝐵𝐷))) / (!‘Σ𝑘𝐶 (𝐵𝑘))) · ((!‘Σ𝑘𝐶 (𝐵𝑘)) / ∏𝑘𝐶 (!‘(𝐵𝑘)))))
6428, 47, 633eqtrd 2862 . 2 (𝜑 → ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / ∏𝑘 ∈ (𝐶 ∪ {𝐷})(!‘(𝐵𝑘))) = ((((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (!‘(𝐵𝐷))) / (!‘Σ𝑘𝐶 (𝐵𝑘))) · ((!‘Σ𝑘𝐶 (𝐵𝑘)) / ∏𝑘𝐶 (!‘(𝐵𝑘)))))
6538, 26, 50, 43, 52divdiv1d 11449 . . . . 5 (𝜑 → (((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (!‘(𝐵𝐷))) / (!‘Σ𝑘𝐶 (𝐵𝑘))) = ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / ((!‘(𝐵𝐷)) · (!‘Σ𝑘𝐶 (𝐵𝑘)))))
66 nfcsb1v 3909 . . . . . . . . . . 11 𝑘𝐷 / 𝑘(𝐵𝑘)
6716nn0cnd 11960 . . . . . . . . . . 11 ((𝜑𝑘𝐶) → (𝐵𝑘) ∈ ℂ)
68 csbeq1a 3899 . . . . . . . . . . 11 (𝑘 = 𝐷 → (𝐵𝑘) = 𝐷 / 𝑘(𝐵𝑘))
69 csbfv 6717 . . . . . . . . . . . . 13 𝐷 / 𝑘(𝐵𝑘) = (𝐵𝐷)
7069a1i 11 . . . . . . . . . . . 12 (𝜑𝐷 / 𝑘(𝐵𝑘) = (𝐵𝐷))
7124nn0cnd 11960 . . . . . . . . . . . 12 (𝜑 → (𝐵𝐷) ∈ ℂ)
7270, 71eqeltrd 2915 . . . . . . . . . . 11 (𝜑𝐷 / 𝑘(𝐵𝑘) ∈ ℂ)
731, 66, 6, 29, 9, 67, 68, 72fsumsplitsn 15102 . . . . . . . . . 10 (𝜑 → Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘) = (Σ𝑘𝐶 (𝐵𝑘) + 𝐷 / 𝑘(𝐵𝑘)))
7473oveq1d 7173 . . . . . . . . 9 (𝜑 → (Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘) − Σ𝑘𝐶 (𝐵𝑘)) = ((Σ𝑘𝐶 (𝐵𝑘) + 𝐷 / 𝑘(𝐵𝑘)) − Σ𝑘𝐶 (𝐵𝑘)))
7548nn0cnd 11960 . . . . . . . . . 10 (𝜑 → Σ𝑘𝐶 (𝐵𝑘) ∈ ℂ)
7675, 72pncan2d 11001 . . . . . . . . 9 (𝜑 → ((Σ𝑘𝐶 (𝐵𝑘) + 𝐷 / 𝑘(𝐵𝑘)) − Σ𝑘𝐶 (𝐵𝑘)) = 𝐷 / 𝑘(𝐵𝑘))
7774, 76, 703eqtrrd 2863 . . . . . . . 8 (𝜑 → (𝐵𝐷) = (Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘) − Σ𝑘𝐶 (𝐵𝑘)))
7877fveq2d 6676 . . . . . . 7 (𝜑 → (!‘(𝐵𝐷)) = (!‘(Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘) − Σ𝑘𝐶 (𝐵𝑘))))
7978oveq1d 7173 . . . . . 6 (𝜑 → ((!‘(𝐵𝐷)) · (!‘Σ𝑘𝐶 (𝐵𝑘))) = ((!‘(Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘) − Σ𝑘𝐶 (𝐵𝑘))) · (!‘Σ𝑘𝐶 (𝐵𝑘))))
8079oveq2d 7174 . . . . 5 (𝜑 → ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / ((!‘(𝐵𝐷)) · (!‘Σ𝑘𝐶 (𝐵𝑘)))) = ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / ((!‘(Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘) − Σ𝑘𝐶 (𝐵𝑘))) · (!‘Σ𝑘𝐶 (𝐵𝑘)))))
81 0zd 11996 . . . . . . . . . 10 (𝜑 → 0 ∈ ℤ)
8236nn0zd 12088 . . . . . . . . . 10 (𝜑 → Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘) ∈ ℤ)
8348nn0zd 12088 . . . . . . . . . 10 (𝜑 → Σ𝑘𝐶 (𝐵𝑘) ∈ ℤ)
8481, 82, 833jca 1124 . . . . . . . . 9 (𝜑 → (0 ∈ ℤ ∧ Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘) ∈ ℤ ∧ Σ𝑘𝐶 (𝐵𝑘) ∈ ℤ))
8548nn0ge0d 11961 . . . . . . . . 9 (𝜑 → 0 ≤ Σ𝑘𝐶 (𝐵𝑘))
8624nn0ge0d 11961 . . . . . . . . . . . 12 (𝜑 → 0 ≤ (𝐵𝐷))
8770eqcomd 2829 . . . . . . . . . . . 12 (𝜑 → (𝐵𝐷) = 𝐷 / 𝑘(𝐵𝑘))
8886, 87breqtrd 5094 . . . . . . . . . . 11 (𝜑 → 0 ≤ 𝐷 / 𝑘(𝐵𝑘))
8948nn0red 11959 . . . . . . . . . . . 12 (𝜑 → Σ𝑘𝐶 (𝐵𝑘) ∈ ℝ)
9024nn0red 11959 . . . . . . . . . . . . 13 (𝜑 → (𝐵𝐷) ∈ ℝ)
9170, 90eqeltrd 2915 . . . . . . . . . . . 12 (𝜑𝐷 / 𝑘(𝐵𝑘) ∈ ℝ)
9289, 91addge01d 11230 . . . . . . . . . . 11 (𝜑 → (0 ≤ 𝐷 / 𝑘(𝐵𝑘) ↔ Σ𝑘𝐶 (𝐵𝑘) ≤ (Σ𝑘𝐶 (𝐵𝑘) + 𝐷 / 𝑘(𝐵𝑘))))
9388, 92mpbid 234 . . . . . . . . . 10 (𝜑 → Σ𝑘𝐶 (𝐵𝑘) ≤ (Σ𝑘𝐶 (𝐵𝑘) + 𝐷 / 𝑘(𝐵𝑘)))
9473eqcomd 2829 . . . . . . . . . 10 (𝜑 → (Σ𝑘𝐶 (𝐵𝑘) + 𝐷 / 𝑘(𝐵𝑘)) = Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘))
9593, 94breqtrd 5094 . . . . . . . . 9 (𝜑 → Σ𝑘𝐶 (𝐵𝑘) ≤ Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘))
9684, 85, 95jca32 518 . . . . . . . 8 (𝜑 → ((0 ∈ ℤ ∧ Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘) ∈ ℤ ∧ Σ𝑘𝐶 (𝐵𝑘) ∈ ℤ) ∧ (0 ≤ Σ𝑘𝐶 (𝐵𝑘) ∧ Σ𝑘𝐶 (𝐵𝑘) ≤ Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘))))
97 elfz2 12902 . . . . . . . 8 𝑘𝐶 (𝐵𝑘) ∈ (0...Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) ↔ ((0 ∈ ℤ ∧ Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘) ∈ ℤ ∧ Σ𝑘𝐶 (𝐵𝑘) ∈ ℤ) ∧ (0 ≤ Σ𝑘𝐶 (𝐵𝑘) ∧ Σ𝑘𝐶 (𝐵𝑘) ≤ Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘))))
9896, 97sylibr 236 . . . . . . 7 (𝜑 → Σ𝑘𝐶 (𝐵𝑘) ∈ (0...Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)))
99 bcval2 13668 . . . . . . 7 𝑘𝐶 (𝐵𝑘) ∈ (0...Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) → (Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)CΣ𝑘𝐶 (𝐵𝑘)) = ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / ((!‘(Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘) − Σ𝑘𝐶 (𝐵𝑘))) · (!‘Σ𝑘𝐶 (𝐵𝑘)))))
10098, 99syl 17 . . . . . 6 (𝜑 → (Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)CΣ𝑘𝐶 (𝐵𝑘)) = ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / ((!‘(Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘) − Σ𝑘𝐶 (𝐵𝑘))) · (!‘Σ𝑘𝐶 (𝐵𝑘)))))
101100eqcomd 2829 . . . . 5 (𝜑 → ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / ((!‘(Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘) − Σ𝑘𝐶 (𝐵𝑘))) · (!‘Σ𝑘𝐶 (𝐵𝑘)))) = (Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)CΣ𝑘𝐶 (𝐵𝑘)))
10265, 80, 1013eqtrd 2862 . . . 4 (𝜑 → (((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (!‘(𝐵𝐷))) / (!‘Σ𝑘𝐶 (𝐵𝑘))) = (Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)CΣ𝑘𝐶 (𝐵𝑘)))
103 bccl2 13686 . . . . 5 𝑘𝐶 (𝐵𝑘) ∈ (0...Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) → (Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)CΣ𝑘𝐶 (𝐵𝑘)) ∈ ℕ)
10498, 103syl 17 . . . 4 (𝜑 → (Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)CΣ𝑘𝐶 (𝐵𝑘)) ∈ ℕ)
105102, 104eqeltrd 2915 . . 3 (𝜑 → (((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (!‘(𝐵𝐷))) / (!‘Σ𝑘𝐶 (𝐵𝑘))) ∈ ℕ)
106 mccllem.6 . . . 4 (𝜑 → ∀𝑏 ∈ (ℕ0m 𝐶)((!‘Σ𝑘𝐶 (𝑏𝑘)) / ∏𝑘𝐶 (!‘(𝑏𝑘))) ∈ ℕ)
107 ssun1 4150 . . . . . 6 𝐶 ⊆ (𝐶 ∪ {𝐷})
108107a1i 11 . . . . 5 (𝜑𝐶 ⊆ (𝐶 ∪ {𝐷}))
109 elmapssres 8433 . . . . 5 ((𝐵 ∈ (ℕ0m (𝐶 ∪ {𝐷})) ∧ 𝐶 ⊆ (𝐶 ∪ {𝐷})) → (𝐵𝐶) ∈ (ℕ0m 𝐶))
11010, 108, 109syl2anc 586 . . . 4 (𝜑 → (𝐵𝐶) ∈ (ℕ0m 𝐶))
111 fveq1 6671 . . . . . . . . . . 11 (𝑏 = (𝐵𝐶) → (𝑏𝑘) = ((𝐵𝐶)‘𝑘))
112111adantr 483 . . . . . . . . . 10 ((𝑏 = (𝐵𝐶) ∧ 𝑘𝐶) → (𝑏𝑘) = ((𝐵𝐶)‘𝑘))
113 fvres 6691 . . . . . . . . . . 11 (𝑘𝐶 → ((𝐵𝐶)‘𝑘) = (𝐵𝑘))
114113adantl 484 . . . . . . . . . 10 ((𝑏 = (𝐵𝐶) ∧ 𝑘𝐶) → ((𝐵𝐶)‘𝑘) = (𝐵𝑘))
115112, 114eqtrd 2858 . . . . . . . . 9 ((𝑏 = (𝐵𝐶) ∧ 𝑘𝐶) → (𝑏𝑘) = (𝐵𝑘))
116115sumeq2dv 15062 . . . . . . . 8 (𝑏 = (𝐵𝐶) → Σ𝑘𝐶 (𝑏𝑘) = Σ𝑘𝐶 (𝐵𝑘))
117116fveq2d 6676 . . . . . . 7 (𝑏 = (𝐵𝐶) → (!‘Σ𝑘𝐶 (𝑏𝑘)) = (!‘Σ𝑘𝐶 (𝐵𝑘)))
118115fveq2d 6676 . . . . . . . 8 ((𝑏 = (𝐵𝐶) ∧ 𝑘𝐶) → (!‘(𝑏𝑘)) = (!‘(𝐵𝑘)))
119118prodeq2dv 15279 . . . . . . 7 (𝑏 = (𝐵𝐶) → ∏𝑘𝐶 (!‘(𝑏𝑘)) = ∏𝑘𝐶 (!‘(𝐵𝑘)))
120117, 119oveq12d 7176 . . . . . 6 (𝑏 = (𝐵𝐶) → ((!‘Σ𝑘𝐶 (𝑏𝑘)) / ∏𝑘𝐶 (!‘(𝑏𝑘))) = ((!‘Σ𝑘𝐶 (𝐵𝑘)) / ∏𝑘𝐶 (!‘(𝐵𝑘))))
121120eleq1d 2899 . . . . 5 (𝑏 = (𝐵𝐶) → (((!‘Σ𝑘𝐶 (𝑏𝑘)) / ∏𝑘𝐶 (!‘(𝑏𝑘))) ∈ ℕ ↔ ((!‘Σ𝑘𝐶 (𝐵𝑘)) / ∏𝑘𝐶 (!‘(𝐵𝑘))) ∈ ℕ))
122121rspccva 3624 . . . 4 ((∀𝑏 ∈ (ℕ0m 𝐶)((!‘Σ𝑘𝐶 (𝑏𝑘)) / ∏𝑘𝐶 (!‘(𝑏𝑘))) ∈ ℕ ∧ (𝐵𝐶) ∈ (ℕ0m 𝐶)) → ((!‘Σ𝑘𝐶 (𝐵𝑘)) / ∏𝑘𝐶 (!‘(𝐵𝑘))) ∈ ℕ)
123106, 110, 122syl2anc 586 . . 3 (𝜑 → ((!‘Σ𝑘𝐶 (𝐵𝑘)) / ∏𝑘𝐶 (!‘(𝐵𝑘))) ∈ ℕ)
124105, 123nnmulcld 11693 . 2 (𝜑 → ((((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (!‘(𝐵𝐷))) / (!‘Σ𝑘𝐶 (𝐵𝑘))) · ((!‘Σ𝑘𝐶 (𝐵𝑘)) / ∏𝑘𝐶 (!‘(𝐵𝑘)))) ∈ ℕ)
12564, 124eqeltrd 2915 1 (𝜑 → ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / ∏𝑘 ∈ (𝐶 ∪ {𝐷})(!‘(𝐵𝑘))) ∈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3018  wral 3140  csb 3885  cdif 3935  cun 3936  wss 3938  {csn 4569   class class class wbr 5068  cres 5559  wf 6353  cfv 6357  (class class class)co 7158  m cmap 8408  Fincfn 8511  cc 10537  cr 10538  0cc0 10539  1c1 10540   + caddc 10542   · cmul 10544  cle 10678  cmin 10872   / cdiv 11299  cn 11640  0cn0 11900  cz 11984  ...cfz 12895  !cfa 13636  Ccbc 13665  Σcsu 15044  cprod 15261
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-sup 8908  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-fz 12896  df-fzo 13037  df-seq 13373  df-exp 13433  df-fac 13637  df-bc 13666  df-hash 13694  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-clim 14847  df-sum 15045  df-prod 15262
This theorem is referenced by:  mccl  41886
  Copyright terms: Public domain W3C validator