Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mccllem Structured version   Visualization version   GIF version

Theorem mccllem 43028
Description: * Induction step for mccl 43029. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
mccllem.a (𝜑𝐴 ∈ Fin)
mccllem.c (𝜑𝐶𝐴)
mccllem.d (𝜑𝐷 ∈ (𝐴𝐶))
mccllem.b (𝜑𝐵 ∈ (ℕ0m (𝐶 ∪ {𝐷})))
mccllem.6 (𝜑 → ∀𝑏 ∈ (ℕ0m 𝐶)((!‘Σ𝑘𝐶 (𝑏𝑘)) / ∏𝑘𝐶 (!‘(𝑏𝑘))) ∈ ℕ)
Assertion
Ref Expression
mccllem (𝜑 → ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / ∏𝑘 ∈ (𝐶 ∪ {𝐷})(!‘(𝐵𝑘))) ∈ ℕ)
Distinct variable groups:   𝐴,𝑘   𝐵,𝑏,𝑘   𝐶,𝑏,𝑘   𝐷,𝑘   𝜑,𝑘
Allowed substitution hints:   𝜑(𝑏)   𝐴(𝑏)   𝐷(𝑏)

Proof of Theorem mccllem
StepHypRef Expression
1 nfv 1918 . . . . 5 𝑘𝜑
2 nfcv 2906 . . . . 5 𝑘(!‘(𝐵𝐷))
3 mccllem.a . . . . . 6 (𝜑𝐴 ∈ Fin)
4 mccllem.c . . . . . 6 (𝜑𝐶𝐴)
5 ssfi 8918 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐶𝐴) → 𝐶 ∈ Fin)
63, 4, 5syl2anc 583 . . . . 5 (𝜑𝐶 ∈ Fin)
7 mccllem.d . . . . 5 (𝜑𝐷 ∈ (𝐴𝐶))
8 eldifn 4058 . . . . . 6 (𝐷 ∈ (𝐴𝐶) → ¬ 𝐷𝐶)
97, 8syl 17 . . . . 5 (𝜑 → ¬ 𝐷𝐶)
10 mccllem.b . . . . . . . . . 10 (𝜑𝐵 ∈ (ℕ0m (𝐶 ∪ {𝐷})))
11 elmapi 8595 . . . . . . . . . 10 (𝐵 ∈ (ℕ0m (𝐶 ∪ {𝐷})) → 𝐵:(𝐶 ∪ {𝐷})⟶ℕ0)
1210, 11syl 17 . . . . . . . . 9 (𝜑𝐵:(𝐶 ∪ {𝐷})⟶ℕ0)
1312adantr 480 . . . . . . . 8 ((𝜑𝑘𝐶) → 𝐵:(𝐶 ∪ {𝐷})⟶ℕ0)
14 elun1 4106 . . . . . . . . 9 (𝑘𝐶𝑘 ∈ (𝐶 ∪ {𝐷}))
1514adantl 481 . . . . . . . 8 ((𝜑𝑘𝐶) → 𝑘 ∈ (𝐶 ∪ {𝐷}))
1613, 15ffvelrnd 6944 . . . . . . 7 ((𝜑𝑘𝐶) → (𝐵𝑘) ∈ ℕ0)
1716faccld 13926 . . . . . 6 ((𝜑𝑘𝐶) → (!‘(𝐵𝑘)) ∈ ℕ)
1817nncnd 11919 . . . . 5 ((𝜑𝑘𝐶) → (!‘(𝐵𝑘)) ∈ ℂ)
19 2fveq3 6761 . . . . 5 (𝑘 = 𝐷 → (!‘(𝐵𝑘)) = (!‘(𝐵𝐷)))
20 snidg 4592 . . . . . . . . . 10 (𝐷 ∈ (𝐴𝐶) → 𝐷 ∈ {𝐷})
217, 20syl 17 . . . . . . . . 9 (𝜑𝐷 ∈ {𝐷})
22 elun2 4107 . . . . . . . . 9 (𝐷 ∈ {𝐷} → 𝐷 ∈ (𝐶 ∪ {𝐷}))
2321, 22syl 17 . . . . . . . 8 (𝜑𝐷 ∈ (𝐶 ∪ {𝐷}))
2412, 23ffvelrnd 6944 . . . . . . 7 (𝜑 → (𝐵𝐷) ∈ ℕ0)
2524faccld 13926 . . . . . 6 (𝜑 → (!‘(𝐵𝐷)) ∈ ℕ)
2625nncnd 11919 . . . . 5 (𝜑 → (!‘(𝐵𝐷)) ∈ ℂ)
271, 2, 6, 7, 9, 18, 19, 26fprodsplitsn 15627 . . . 4 (𝜑 → ∏𝑘 ∈ (𝐶 ∪ {𝐷})(!‘(𝐵𝑘)) = (∏𝑘𝐶 (!‘(𝐵𝑘)) · (!‘(𝐵𝐷))))
2827oveq2d 7271 . . 3 (𝜑 → ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / ∏𝑘 ∈ (𝐶 ∪ {𝐷})(!‘(𝐵𝑘))) = ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (∏𝑘𝐶 (!‘(𝐵𝑘)) · (!‘(𝐵𝐷)))))
297eldifad 3895 . . . . . . . . . . . 12 (𝜑𝐷𝐴)
30 snssi 4738 . . . . . . . . . . . 12 (𝐷𝐴 → {𝐷} ⊆ 𝐴)
3129, 30syl 17 . . . . . . . . . . 11 (𝜑 → {𝐷} ⊆ 𝐴)
324, 31unssd 4116 . . . . . . . . . 10 (𝜑 → (𝐶 ∪ {𝐷}) ⊆ 𝐴)
33 ssfi 8918 . . . . . . . . . 10 ((𝐴 ∈ Fin ∧ (𝐶 ∪ {𝐷}) ⊆ 𝐴) → (𝐶 ∪ {𝐷}) ∈ Fin)
343, 32, 33syl2anc 583 . . . . . . . . 9 (𝜑 → (𝐶 ∪ {𝐷}) ∈ Fin)
3512ffvelrnda 6943 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝐶 ∪ {𝐷})) → (𝐵𝑘) ∈ ℕ0)
3634, 35fsumnn0cl 15376 . . . . . . . 8 (𝜑 → Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘) ∈ ℕ0)
3736faccld 13926 . . . . . . 7 (𝜑 → (!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) ∈ ℕ)
3837nncnd 11919 . . . . . 6 (𝜑 → (!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) ∈ ℂ)
391, 6, 18fprodclf 15630 . . . . . . 7 (𝜑 → ∏𝑘𝐶 (!‘(𝐵𝑘)) ∈ ℂ)
4039, 26mulcld 10926 . . . . . 6 (𝜑 → (∏𝑘𝐶 (!‘(𝐵𝑘)) · (!‘(𝐵𝐷))) ∈ ℂ)
4117nnne0d 11953 . . . . . . . 8 ((𝜑𝑘𝐶) → (!‘(𝐵𝑘)) ≠ 0)
426, 18, 41fprodn0 15617 . . . . . . 7 (𝜑 → ∏𝑘𝐶 (!‘(𝐵𝑘)) ≠ 0)
4325nnne0d 11953 . . . . . . 7 (𝜑 → (!‘(𝐵𝐷)) ≠ 0)
4439, 26, 42, 43mulne0d 11557 . . . . . 6 (𝜑 → (∏𝑘𝐶 (!‘(𝐵𝑘)) · (!‘(𝐵𝐷))) ≠ 0)
4538, 40, 44divcld 11681 . . . . 5 (𝜑 → ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (∏𝑘𝐶 (!‘(𝐵𝑘)) · (!‘(𝐵𝐷)))) ∈ ℂ)
4645mulid2d 10924 . . . 4 (𝜑 → (1 · ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (∏𝑘𝐶 (!‘(𝐵𝑘)) · (!‘(𝐵𝐷))))) = ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (∏𝑘𝐶 (!‘(𝐵𝑘)) · (!‘(𝐵𝐷)))))
4746eqcomd 2744 . . 3 (𝜑 → ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (∏𝑘𝐶 (!‘(𝐵𝑘)) · (!‘(𝐵𝐷)))) = (1 · ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (∏𝑘𝐶 (!‘(𝐵𝑘)) · (!‘(𝐵𝐷))))))
486, 16fsumnn0cl 15376 . . . . . . . . 9 (𝜑 → Σ𝑘𝐶 (𝐵𝑘) ∈ ℕ0)
4948faccld 13926 . . . . . . . 8 (𝜑 → (!‘Σ𝑘𝐶 (𝐵𝑘)) ∈ ℕ)
5049nncnd 11919 . . . . . . 7 (𝜑 → (!‘Σ𝑘𝐶 (𝐵𝑘)) ∈ ℂ)
51 nnne0 11937 . . . . . . . 8 ((!‘Σ𝑘𝐶 (𝐵𝑘)) ∈ ℕ → (!‘Σ𝑘𝐶 (𝐵𝑘)) ≠ 0)
5249, 51syl 17 . . . . . . 7 (𝜑 → (!‘Σ𝑘𝐶 (𝐵𝑘)) ≠ 0)
5350, 52dividd 11679 . . . . . 6 (𝜑 → ((!‘Σ𝑘𝐶 (𝐵𝑘)) / (!‘Σ𝑘𝐶 (𝐵𝑘))) = 1)
5453eqcomd 2744 . . . . 5 (𝜑 → 1 = ((!‘Σ𝑘𝐶 (𝐵𝑘)) / (!‘Σ𝑘𝐶 (𝐵𝑘))))
5539, 26mulcomd 10927 . . . . . . 7 (𝜑 → (∏𝑘𝐶 (!‘(𝐵𝑘)) · (!‘(𝐵𝐷))) = ((!‘(𝐵𝐷)) · ∏𝑘𝐶 (!‘(𝐵𝑘))))
5655oveq2d 7271 . . . . . 6 (𝜑 → ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (∏𝑘𝐶 (!‘(𝐵𝑘)) · (!‘(𝐵𝐷)))) = ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / ((!‘(𝐵𝐷)) · ∏𝑘𝐶 (!‘(𝐵𝑘)))))
5738, 26, 39, 43, 42divdiv1d 11712 . . . . . . 7 (𝜑 → (((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (!‘(𝐵𝐷))) / ∏𝑘𝐶 (!‘(𝐵𝑘))) = ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / ((!‘(𝐵𝐷)) · ∏𝑘𝐶 (!‘(𝐵𝑘)))))
5857eqcomd 2744 . . . . . 6 (𝜑 → ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / ((!‘(𝐵𝐷)) · ∏𝑘𝐶 (!‘(𝐵𝑘)))) = (((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (!‘(𝐵𝐷))) / ∏𝑘𝐶 (!‘(𝐵𝑘))))
5956, 58eqtrd 2778 . . . . 5 (𝜑 → ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (∏𝑘𝐶 (!‘(𝐵𝑘)) · (!‘(𝐵𝐷)))) = (((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (!‘(𝐵𝐷))) / ∏𝑘𝐶 (!‘(𝐵𝑘))))
6054, 59oveq12d 7273 . . . 4 (𝜑 → (1 · ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (∏𝑘𝐶 (!‘(𝐵𝑘)) · (!‘(𝐵𝐷))))) = (((!‘Σ𝑘𝐶 (𝐵𝑘)) / (!‘Σ𝑘𝐶 (𝐵𝑘))) · (((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (!‘(𝐵𝐷))) / ∏𝑘𝐶 (!‘(𝐵𝑘)))))
6138, 26, 43divcld 11681 . . . . 5 (𝜑 → ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (!‘(𝐵𝐷))) ∈ ℂ)
6250, 50, 61, 39, 52, 42divmul13d 11723 . . . 4 (𝜑 → (((!‘Σ𝑘𝐶 (𝐵𝑘)) / (!‘Σ𝑘𝐶 (𝐵𝑘))) · (((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (!‘(𝐵𝐷))) / ∏𝑘𝐶 (!‘(𝐵𝑘)))) = ((((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (!‘(𝐵𝐷))) / (!‘Σ𝑘𝐶 (𝐵𝑘))) · ((!‘Σ𝑘𝐶 (𝐵𝑘)) / ∏𝑘𝐶 (!‘(𝐵𝑘)))))
6360, 62eqtrd 2778 . . 3 (𝜑 → (1 · ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (∏𝑘𝐶 (!‘(𝐵𝑘)) · (!‘(𝐵𝐷))))) = ((((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (!‘(𝐵𝐷))) / (!‘Σ𝑘𝐶 (𝐵𝑘))) · ((!‘Σ𝑘𝐶 (𝐵𝑘)) / ∏𝑘𝐶 (!‘(𝐵𝑘)))))
6428, 47, 633eqtrd 2782 . 2 (𝜑 → ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / ∏𝑘 ∈ (𝐶 ∪ {𝐷})(!‘(𝐵𝑘))) = ((((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (!‘(𝐵𝐷))) / (!‘Σ𝑘𝐶 (𝐵𝑘))) · ((!‘Σ𝑘𝐶 (𝐵𝑘)) / ∏𝑘𝐶 (!‘(𝐵𝑘)))))
6538, 26, 50, 43, 52divdiv1d 11712 . . . . 5 (𝜑 → (((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (!‘(𝐵𝐷))) / (!‘Σ𝑘𝐶 (𝐵𝑘))) = ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / ((!‘(𝐵𝐷)) · (!‘Σ𝑘𝐶 (𝐵𝑘)))))
66 nfcsb1v 3853 . . . . . . . . . . 11 𝑘𝐷 / 𝑘(𝐵𝑘)
6716nn0cnd 12225 . . . . . . . . . . 11 ((𝜑𝑘𝐶) → (𝐵𝑘) ∈ ℂ)
68 csbeq1a 3842 . . . . . . . . . . 11 (𝑘 = 𝐷 → (𝐵𝑘) = 𝐷 / 𝑘(𝐵𝑘))
69 csbfv 6801 . . . . . . . . . . . . 13 𝐷 / 𝑘(𝐵𝑘) = (𝐵𝐷)
7069a1i 11 . . . . . . . . . . . 12 (𝜑𝐷 / 𝑘(𝐵𝑘) = (𝐵𝐷))
7124nn0cnd 12225 . . . . . . . . . . . 12 (𝜑 → (𝐵𝐷) ∈ ℂ)
7270, 71eqeltrd 2839 . . . . . . . . . . 11 (𝜑𝐷 / 𝑘(𝐵𝑘) ∈ ℂ)
731, 66, 6, 29, 9, 67, 68, 72fsumsplitsn 15384 . . . . . . . . . 10 (𝜑 → Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘) = (Σ𝑘𝐶 (𝐵𝑘) + 𝐷 / 𝑘(𝐵𝑘)))
7473oveq1d 7270 . . . . . . . . 9 (𝜑 → (Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘) − Σ𝑘𝐶 (𝐵𝑘)) = ((Σ𝑘𝐶 (𝐵𝑘) + 𝐷 / 𝑘(𝐵𝑘)) − Σ𝑘𝐶 (𝐵𝑘)))
7548nn0cnd 12225 . . . . . . . . . 10 (𝜑 → Σ𝑘𝐶 (𝐵𝑘) ∈ ℂ)
7675, 72pncan2d 11264 . . . . . . . . 9 (𝜑 → ((Σ𝑘𝐶 (𝐵𝑘) + 𝐷 / 𝑘(𝐵𝑘)) − Σ𝑘𝐶 (𝐵𝑘)) = 𝐷 / 𝑘(𝐵𝑘))
7774, 76, 703eqtrrd 2783 . . . . . . . 8 (𝜑 → (𝐵𝐷) = (Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘) − Σ𝑘𝐶 (𝐵𝑘)))
7877fveq2d 6760 . . . . . . 7 (𝜑 → (!‘(𝐵𝐷)) = (!‘(Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘) − Σ𝑘𝐶 (𝐵𝑘))))
7978oveq1d 7270 . . . . . 6 (𝜑 → ((!‘(𝐵𝐷)) · (!‘Σ𝑘𝐶 (𝐵𝑘))) = ((!‘(Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘) − Σ𝑘𝐶 (𝐵𝑘))) · (!‘Σ𝑘𝐶 (𝐵𝑘))))
8079oveq2d 7271 . . . . 5 (𝜑 → ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / ((!‘(𝐵𝐷)) · (!‘Σ𝑘𝐶 (𝐵𝑘)))) = ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / ((!‘(Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘) − Σ𝑘𝐶 (𝐵𝑘))) · (!‘Σ𝑘𝐶 (𝐵𝑘)))))
81 0zd 12261 . . . . . . . 8 (𝜑 → 0 ∈ ℤ)
8236nn0zd 12353 . . . . . . . 8 (𝜑 → Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘) ∈ ℤ)
8348nn0zd 12353 . . . . . . . 8 (𝜑 → Σ𝑘𝐶 (𝐵𝑘) ∈ ℤ)
8448nn0ge0d 12226 . . . . . . . 8 (𝜑 → 0 ≤ Σ𝑘𝐶 (𝐵𝑘))
8524nn0ge0d 12226 . . . . . . . . . . 11 (𝜑 → 0 ≤ (𝐵𝐷))
8670eqcomd 2744 . . . . . . . . . . 11 (𝜑 → (𝐵𝐷) = 𝐷 / 𝑘(𝐵𝑘))
8785, 86breqtrd 5096 . . . . . . . . . 10 (𝜑 → 0 ≤ 𝐷 / 𝑘(𝐵𝑘))
8848nn0red 12224 . . . . . . . . . . 11 (𝜑 → Σ𝑘𝐶 (𝐵𝑘) ∈ ℝ)
8924nn0red 12224 . . . . . . . . . . . 12 (𝜑 → (𝐵𝐷) ∈ ℝ)
9070, 89eqeltrd 2839 . . . . . . . . . . 11 (𝜑𝐷 / 𝑘(𝐵𝑘) ∈ ℝ)
9188, 90addge01d 11493 . . . . . . . . . 10 (𝜑 → (0 ≤ 𝐷 / 𝑘(𝐵𝑘) ↔ Σ𝑘𝐶 (𝐵𝑘) ≤ (Σ𝑘𝐶 (𝐵𝑘) + 𝐷 / 𝑘(𝐵𝑘))))
9287, 91mpbid 231 . . . . . . . . 9 (𝜑 → Σ𝑘𝐶 (𝐵𝑘) ≤ (Σ𝑘𝐶 (𝐵𝑘) + 𝐷 / 𝑘(𝐵𝑘)))
9373eqcomd 2744 . . . . . . . . 9 (𝜑 → (Σ𝑘𝐶 (𝐵𝑘) + 𝐷 / 𝑘(𝐵𝑘)) = Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘))
9492, 93breqtrd 5096 . . . . . . . 8 (𝜑 → Σ𝑘𝐶 (𝐵𝑘) ≤ Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘))
9581, 82, 83, 84, 94elfzd 13176 . . . . . . 7 (𝜑 → Σ𝑘𝐶 (𝐵𝑘) ∈ (0...Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)))
96 bcval2 13947 . . . . . . 7 𝑘𝐶 (𝐵𝑘) ∈ (0...Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) → (Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)CΣ𝑘𝐶 (𝐵𝑘)) = ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / ((!‘(Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘) − Σ𝑘𝐶 (𝐵𝑘))) · (!‘Σ𝑘𝐶 (𝐵𝑘)))))
9795, 96syl 17 . . . . . 6 (𝜑 → (Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)CΣ𝑘𝐶 (𝐵𝑘)) = ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / ((!‘(Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘) − Σ𝑘𝐶 (𝐵𝑘))) · (!‘Σ𝑘𝐶 (𝐵𝑘)))))
9897eqcomd 2744 . . . . 5 (𝜑 → ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / ((!‘(Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘) − Σ𝑘𝐶 (𝐵𝑘))) · (!‘Σ𝑘𝐶 (𝐵𝑘)))) = (Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)CΣ𝑘𝐶 (𝐵𝑘)))
9965, 80, 983eqtrd 2782 . . . 4 (𝜑 → (((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (!‘(𝐵𝐷))) / (!‘Σ𝑘𝐶 (𝐵𝑘))) = (Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)CΣ𝑘𝐶 (𝐵𝑘)))
100 bccl2 13965 . . . . 5 𝑘𝐶 (𝐵𝑘) ∈ (0...Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) → (Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)CΣ𝑘𝐶 (𝐵𝑘)) ∈ ℕ)
10195, 100syl 17 . . . 4 (𝜑 → (Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)CΣ𝑘𝐶 (𝐵𝑘)) ∈ ℕ)
10299, 101eqeltrd 2839 . . 3 (𝜑 → (((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (!‘(𝐵𝐷))) / (!‘Σ𝑘𝐶 (𝐵𝑘))) ∈ ℕ)
103 mccllem.6 . . . 4 (𝜑 → ∀𝑏 ∈ (ℕ0m 𝐶)((!‘Σ𝑘𝐶 (𝑏𝑘)) / ∏𝑘𝐶 (!‘(𝑏𝑘))) ∈ ℕ)
104 ssun1 4102 . . . . . 6 𝐶 ⊆ (𝐶 ∪ {𝐷})
105104a1i 11 . . . . 5 (𝜑𝐶 ⊆ (𝐶 ∪ {𝐷}))
106 elmapssres 8613 . . . . 5 ((𝐵 ∈ (ℕ0m (𝐶 ∪ {𝐷})) ∧ 𝐶 ⊆ (𝐶 ∪ {𝐷})) → (𝐵𝐶) ∈ (ℕ0m 𝐶))
10710, 105, 106syl2anc 583 . . . 4 (𝜑 → (𝐵𝐶) ∈ (ℕ0m 𝐶))
108 fveq1 6755 . . . . . . . . . . 11 (𝑏 = (𝐵𝐶) → (𝑏𝑘) = ((𝐵𝐶)‘𝑘))
109108adantr 480 . . . . . . . . . 10 ((𝑏 = (𝐵𝐶) ∧ 𝑘𝐶) → (𝑏𝑘) = ((𝐵𝐶)‘𝑘))
110 fvres 6775 . . . . . . . . . . 11 (𝑘𝐶 → ((𝐵𝐶)‘𝑘) = (𝐵𝑘))
111110adantl 481 . . . . . . . . . 10 ((𝑏 = (𝐵𝐶) ∧ 𝑘𝐶) → ((𝐵𝐶)‘𝑘) = (𝐵𝑘))
112109, 111eqtrd 2778 . . . . . . . . 9 ((𝑏 = (𝐵𝐶) ∧ 𝑘𝐶) → (𝑏𝑘) = (𝐵𝑘))
113112sumeq2dv 15343 . . . . . . . 8 (𝑏 = (𝐵𝐶) → Σ𝑘𝐶 (𝑏𝑘) = Σ𝑘𝐶 (𝐵𝑘))
114113fveq2d 6760 . . . . . . 7 (𝑏 = (𝐵𝐶) → (!‘Σ𝑘𝐶 (𝑏𝑘)) = (!‘Σ𝑘𝐶 (𝐵𝑘)))
115112fveq2d 6760 . . . . . . . 8 ((𝑏 = (𝐵𝐶) ∧ 𝑘𝐶) → (!‘(𝑏𝑘)) = (!‘(𝐵𝑘)))
116115prodeq2dv 15561 . . . . . . 7 (𝑏 = (𝐵𝐶) → ∏𝑘𝐶 (!‘(𝑏𝑘)) = ∏𝑘𝐶 (!‘(𝐵𝑘)))
117114, 116oveq12d 7273 . . . . . 6 (𝑏 = (𝐵𝐶) → ((!‘Σ𝑘𝐶 (𝑏𝑘)) / ∏𝑘𝐶 (!‘(𝑏𝑘))) = ((!‘Σ𝑘𝐶 (𝐵𝑘)) / ∏𝑘𝐶 (!‘(𝐵𝑘))))
118117eleq1d 2823 . . . . 5 (𝑏 = (𝐵𝐶) → (((!‘Σ𝑘𝐶 (𝑏𝑘)) / ∏𝑘𝐶 (!‘(𝑏𝑘))) ∈ ℕ ↔ ((!‘Σ𝑘𝐶 (𝐵𝑘)) / ∏𝑘𝐶 (!‘(𝐵𝑘))) ∈ ℕ))
119118rspccva 3551 . . . 4 ((∀𝑏 ∈ (ℕ0m 𝐶)((!‘Σ𝑘𝐶 (𝑏𝑘)) / ∏𝑘𝐶 (!‘(𝑏𝑘))) ∈ ℕ ∧ (𝐵𝐶) ∈ (ℕ0m 𝐶)) → ((!‘Σ𝑘𝐶 (𝐵𝑘)) / ∏𝑘𝐶 (!‘(𝐵𝑘))) ∈ ℕ)
120103, 107, 119syl2anc 583 . . 3 (𝜑 → ((!‘Σ𝑘𝐶 (𝐵𝑘)) / ∏𝑘𝐶 (!‘(𝐵𝑘))) ∈ ℕ)
121102, 120nnmulcld 11956 . 2 (𝜑 → ((((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (!‘(𝐵𝐷))) / (!‘Σ𝑘𝐶 (𝐵𝑘))) · ((!‘Σ𝑘𝐶 (𝐵𝑘)) / ∏𝑘𝐶 (!‘(𝐵𝑘)))) ∈ ℕ)
12264, 121eqeltrd 2839 1 (𝜑 → ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / ∏𝑘 ∈ (𝐶 ∪ {𝐷})(!‘(𝐵𝑘))) ∈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2108  wne 2942  wral 3063  csb 3828  cdif 3880  cun 3881  wss 3883  {csn 4558   class class class wbr 5070  cres 5582  wf 6414  cfv 6418  (class class class)co 7255  m cmap 8573  Fincfn 8691  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  cle 10941  cmin 11135   / cdiv 11562  cn 11903  0cn0 12163  ...cfz 13168  !cfa 13915  Ccbc 13944  Σcsu 15325  cprod 15543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326  df-prod 15544
This theorem is referenced by:  mccl  43029
  Copyright terms: Public domain W3C validator