Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mccllem Structured version   Visualization version   GIF version

Theorem mccllem 43393
Description: * Induction step for mccl 43394. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
mccllem.a (𝜑𝐴 ∈ Fin)
mccllem.c (𝜑𝐶𝐴)
mccllem.d (𝜑𝐷 ∈ (𝐴𝐶))
mccllem.b (𝜑𝐵 ∈ (ℕ0m (𝐶 ∪ {𝐷})))
mccllem.6 (𝜑 → ∀𝑏 ∈ (ℕ0m 𝐶)((!‘Σ𝑘𝐶 (𝑏𝑘)) / ∏𝑘𝐶 (!‘(𝑏𝑘))) ∈ ℕ)
Assertion
Ref Expression
mccllem (𝜑 → ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / ∏𝑘 ∈ (𝐶 ∪ {𝐷})(!‘(𝐵𝑘))) ∈ ℕ)
Distinct variable groups:   𝐴,𝑘   𝐵,𝑏,𝑘   𝐶,𝑏,𝑘   𝐷,𝑘   𝜑,𝑘
Allowed substitution hints:   𝜑(𝑏)   𝐴(𝑏)   𝐷(𝑏)

Proof of Theorem mccllem
StepHypRef Expression
1 nfv 1916 . . . . 5 𝑘𝜑
2 nfcv 2904 . . . . 5 𝑘(!‘(𝐵𝐷))
3 mccllem.a . . . . . 6 (𝜑𝐴 ∈ Fin)
4 mccllem.c . . . . . 6 (𝜑𝐶𝐴)
5 ssfi 9016 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐶𝐴) → 𝐶 ∈ Fin)
63, 4, 5syl2anc 584 . . . . 5 (𝜑𝐶 ∈ Fin)
7 mccllem.d . . . . 5 (𝜑𝐷 ∈ (𝐴𝐶))
8 eldifn 4072 . . . . . 6 (𝐷 ∈ (𝐴𝐶) → ¬ 𝐷𝐶)
97, 8syl 17 . . . . 5 (𝜑 → ¬ 𝐷𝐶)
10 mccllem.b . . . . . . . . . 10 (𝜑𝐵 ∈ (ℕ0m (𝐶 ∪ {𝐷})))
11 elmapi 8686 . . . . . . . . . 10 (𝐵 ∈ (ℕ0m (𝐶 ∪ {𝐷})) → 𝐵:(𝐶 ∪ {𝐷})⟶ℕ0)
1210, 11syl 17 . . . . . . . . 9 (𝜑𝐵:(𝐶 ∪ {𝐷})⟶ℕ0)
1312adantr 481 . . . . . . . 8 ((𝜑𝑘𝐶) → 𝐵:(𝐶 ∪ {𝐷})⟶ℕ0)
14 elun1 4120 . . . . . . . . 9 (𝑘𝐶𝑘 ∈ (𝐶 ∪ {𝐷}))
1514adantl 482 . . . . . . . 8 ((𝜑𝑘𝐶) → 𝑘 ∈ (𝐶 ∪ {𝐷}))
1613, 15ffvelcdmd 7001 . . . . . . 7 ((𝜑𝑘𝐶) → (𝐵𝑘) ∈ ℕ0)
1716faccld 14077 . . . . . 6 ((𝜑𝑘𝐶) → (!‘(𝐵𝑘)) ∈ ℕ)
1817nncnd 12068 . . . . 5 ((𝜑𝑘𝐶) → (!‘(𝐵𝑘)) ∈ ℂ)
19 2fveq3 6816 . . . . 5 (𝑘 = 𝐷 → (!‘(𝐵𝑘)) = (!‘(𝐵𝐷)))
20 snidg 4604 . . . . . . . . . 10 (𝐷 ∈ (𝐴𝐶) → 𝐷 ∈ {𝐷})
217, 20syl 17 . . . . . . . . 9 (𝜑𝐷 ∈ {𝐷})
22 elun2 4121 . . . . . . . . 9 (𝐷 ∈ {𝐷} → 𝐷 ∈ (𝐶 ∪ {𝐷}))
2321, 22syl 17 . . . . . . . 8 (𝜑𝐷 ∈ (𝐶 ∪ {𝐷}))
2412, 23ffvelcdmd 7001 . . . . . . 7 (𝜑 → (𝐵𝐷) ∈ ℕ0)
2524faccld 14077 . . . . . 6 (𝜑 → (!‘(𝐵𝐷)) ∈ ℕ)
2625nncnd 12068 . . . . 5 (𝜑 → (!‘(𝐵𝐷)) ∈ ℂ)
271, 2, 6, 7, 9, 18, 19, 26fprodsplitsn 15775 . . . 4 (𝜑 → ∏𝑘 ∈ (𝐶 ∪ {𝐷})(!‘(𝐵𝑘)) = (∏𝑘𝐶 (!‘(𝐵𝑘)) · (!‘(𝐵𝐷))))
2827oveq2d 7332 . . 3 (𝜑 → ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / ∏𝑘 ∈ (𝐶 ∪ {𝐷})(!‘(𝐵𝑘))) = ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (∏𝑘𝐶 (!‘(𝐵𝑘)) · (!‘(𝐵𝐷)))))
297eldifad 3908 . . . . . . . . . . . 12 (𝜑𝐷𝐴)
30 snssi 4752 . . . . . . . . . . . 12 (𝐷𝐴 → {𝐷} ⊆ 𝐴)
3129, 30syl 17 . . . . . . . . . . 11 (𝜑 → {𝐷} ⊆ 𝐴)
324, 31unssd 4130 . . . . . . . . . 10 (𝜑 → (𝐶 ∪ {𝐷}) ⊆ 𝐴)
33 ssfi 9016 . . . . . . . . . 10 ((𝐴 ∈ Fin ∧ (𝐶 ∪ {𝐷}) ⊆ 𝐴) → (𝐶 ∪ {𝐷}) ∈ Fin)
343, 32, 33syl2anc 584 . . . . . . . . 9 (𝜑 → (𝐶 ∪ {𝐷}) ∈ Fin)
3512ffvelcdmda 7000 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝐶 ∪ {𝐷})) → (𝐵𝑘) ∈ ℕ0)
3634, 35fsumnn0cl 15524 . . . . . . . 8 (𝜑 → Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘) ∈ ℕ0)
3736faccld 14077 . . . . . . 7 (𝜑 → (!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) ∈ ℕ)
3837nncnd 12068 . . . . . 6 (𝜑 → (!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) ∈ ℂ)
391, 6, 18fprodclf 15778 . . . . . . 7 (𝜑 → ∏𝑘𝐶 (!‘(𝐵𝑘)) ∈ ℂ)
4039, 26mulcld 11074 . . . . . 6 (𝜑 → (∏𝑘𝐶 (!‘(𝐵𝑘)) · (!‘(𝐵𝐷))) ∈ ℂ)
4117nnne0d 12102 . . . . . . . 8 ((𝜑𝑘𝐶) → (!‘(𝐵𝑘)) ≠ 0)
426, 18, 41fprodn0 15765 . . . . . . 7 (𝜑 → ∏𝑘𝐶 (!‘(𝐵𝑘)) ≠ 0)
4325nnne0d 12102 . . . . . . 7 (𝜑 → (!‘(𝐵𝐷)) ≠ 0)
4439, 26, 42, 43mulne0d 11706 . . . . . 6 (𝜑 → (∏𝑘𝐶 (!‘(𝐵𝑘)) · (!‘(𝐵𝐷))) ≠ 0)
4538, 40, 44divcld 11830 . . . . 5 (𝜑 → ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (∏𝑘𝐶 (!‘(𝐵𝑘)) · (!‘(𝐵𝐷)))) ∈ ℂ)
4645mulid2d 11072 . . . 4 (𝜑 → (1 · ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (∏𝑘𝐶 (!‘(𝐵𝑘)) · (!‘(𝐵𝐷))))) = ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (∏𝑘𝐶 (!‘(𝐵𝑘)) · (!‘(𝐵𝐷)))))
4746eqcomd 2742 . . 3 (𝜑 → ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (∏𝑘𝐶 (!‘(𝐵𝑘)) · (!‘(𝐵𝐷)))) = (1 · ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (∏𝑘𝐶 (!‘(𝐵𝑘)) · (!‘(𝐵𝐷))))))
486, 16fsumnn0cl 15524 . . . . . . . . 9 (𝜑 → Σ𝑘𝐶 (𝐵𝑘) ∈ ℕ0)
4948faccld 14077 . . . . . . . 8 (𝜑 → (!‘Σ𝑘𝐶 (𝐵𝑘)) ∈ ℕ)
5049nncnd 12068 . . . . . . 7 (𝜑 → (!‘Σ𝑘𝐶 (𝐵𝑘)) ∈ ℂ)
51 nnne0 12086 . . . . . . . 8 ((!‘Σ𝑘𝐶 (𝐵𝑘)) ∈ ℕ → (!‘Σ𝑘𝐶 (𝐵𝑘)) ≠ 0)
5249, 51syl 17 . . . . . . 7 (𝜑 → (!‘Σ𝑘𝐶 (𝐵𝑘)) ≠ 0)
5350, 52dividd 11828 . . . . . 6 (𝜑 → ((!‘Σ𝑘𝐶 (𝐵𝑘)) / (!‘Σ𝑘𝐶 (𝐵𝑘))) = 1)
5453eqcomd 2742 . . . . 5 (𝜑 → 1 = ((!‘Σ𝑘𝐶 (𝐵𝑘)) / (!‘Σ𝑘𝐶 (𝐵𝑘))))
5539, 26mulcomd 11075 . . . . . . 7 (𝜑 → (∏𝑘𝐶 (!‘(𝐵𝑘)) · (!‘(𝐵𝐷))) = ((!‘(𝐵𝐷)) · ∏𝑘𝐶 (!‘(𝐵𝑘))))
5655oveq2d 7332 . . . . . 6 (𝜑 → ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (∏𝑘𝐶 (!‘(𝐵𝑘)) · (!‘(𝐵𝐷)))) = ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / ((!‘(𝐵𝐷)) · ∏𝑘𝐶 (!‘(𝐵𝑘)))))
5738, 26, 39, 43, 42divdiv1d 11861 . . . . . . 7 (𝜑 → (((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (!‘(𝐵𝐷))) / ∏𝑘𝐶 (!‘(𝐵𝑘))) = ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / ((!‘(𝐵𝐷)) · ∏𝑘𝐶 (!‘(𝐵𝑘)))))
5857eqcomd 2742 . . . . . 6 (𝜑 → ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / ((!‘(𝐵𝐷)) · ∏𝑘𝐶 (!‘(𝐵𝑘)))) = (((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (!‘(𝐵𝐷))) / ∏𝑘𝐶 (!‘(𝐵𝑘))))
5956, 58eqtrd 2776 . . . . 5 (𝜑 → ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (∏𝑘𝐶 (!‘(𝐵𝑘)) · (!‘(𝐵𝐷)))) = (((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (!‘(𝐵𝐷))) / ∏𝑘𝐶 (!‘(𝐵𝑘))))
6054, 59oveq12d 7334 . . . 4 (𝜑 → (1 · ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (∏𝑘𝐶 (!‘(𝐵𝑘)) · (!‘(𝐵𝐷))))) = (((!‘Σ𝑘𝐶 (𝐵𝑘)) / (!‘Σ𝑘𝐶 (𝐵𝑘))) · (((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (!‘(𝐵𝐷))) / ∏𝑘𝐶 (!‘(𝐵𝑘)))))
6138, 26, 43divcld 11830 . . . . 5 (𝜑 → ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (!‘(𝐵𝐷))) ∈ ℂ)
6250, 50, 61, 39, 52, 42divmul13d 11872 . . . 4 (𝜑 → (((!‘Σ𝑘𝐶 (𝐵𝑘)) / (!‘Σ𝑘𝐶 (𝐵𝑘))) · (((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (!‘(𝐵𝐷))) / ∏𝑘𝐶 (!‘(𝐵𝑘)))) = ((((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (!‘(𝐵𝐷))) / (!‘Σ𝑘𝐶 (𝐵𝑘))) · ((!‘Σ𝑘𝐶 (𝐵𝑘)) / ∏𝑘𝐶 (!‘(𝐵𝑘)))))
6360, 62eqtrd 2776 . . 3 (𝜑 → (1 · ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (∏𝑘𝐶 (!‘(𝐵𝑘)) · (!‘(𝐵𝐷))))) = ((((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (!‘(𝐵𝐷))) / (!‘Σ𝑘𝐶 (𝐵𝑘))) · ((!‘Σ𝑘𝐶 (𝐵𝑘)) / ∏𝑘𝐶 (!‘(𝐵𝑘)))))
6428, 47, 633eqtrd 2780 . 2 (𝜑 → ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / ∏𝑘 ∈ (𝐶 ∪ {𝐷})(!‘(𝐵𝑘))) = ((((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (!‘(𝐵𝐷))) / (!‘Σ𝑘𝐶 (𝐵𝑘))) · ((!‘Σ𝑘𝐶 (𝐵𝑘)) / ∏𝑘𝐶 (!‘(𝐵𝑘)))))
6538, 26, 50, 43, 52divdiv1d 11861 . . . . 5 (𝜑 → (((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (!‘(𝐵𝐷))) / (!‘Σ𝑘𝐶 (𝐵𝑘))) = ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / ((!‘(𝐵𝐷)) · (!‘Σ𝑘𝐶 (𝐵𝑘)))))
66 nfcsb1v 3866 . . . . . . . . . . 11 𝑘𝐷 / 𝑘(𝐵𝑘)
6716nn0cnd 12374 . . . . . . . . . . 11 ((𝜑𝑘𝐶) → (𝐵𝑘) ∈ ℂ)
68 csbeq1a 3855 . . . . . . . . . . 11 (𝑘 = 𝐷 → (𝐵𝑘) = 𝐷 / 𝑘(𝐵𝑘))
69 csbfv 6858 . . . . . . . . . . . . 13 𝐷 / 𝑘(𝐵𝑘) = (𝐵𝐷)
7069a1i 11 . . . . . . . . . . . 12 (𝜑𝐷 / 𝑘(𝐵𝑘) = (𝐵𝐷))
7124nn0cnd 12374 . . . . . . . . . . . 12 (𝜑 → (𝐵𝐷) ∈ ℂ)
7270, 71eqeltrd 2837 . . . . . . . . . . 11 (𝜑𝐷 / 𝑘(𝐵𝑘) ∈ ℂ)
731, 66, 6, 29, 9, 67, 68, 72fsumsplitsn 15532 . . . . . . . . . 10 (𝜑 → Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘) = (Σ𝑘𝐶 (𝐵𝑘) + 𝐷 / 𝑘(𝐵𝑘)))
7473oveq1d 7331 . . . . . . . . 9 (𝜑 → (Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘) − Σ𝑘𝐶 (𝐵𝑘)) = ((Σ𝑘𝐶 (𝐵𝑘) + 𝐷 / 𝑘(𝐵𝑘)) − Σ𝑘𝐶 (𝐵𝑘)))
7548nn0cnd 12374 . . . . . . . . . 10 (𝜑 → Σ𝑘𝐶 (𝐵𝑘) ∈ ℂ)
7675, 72pncan2d 11413 . . . . . . . . 9 (𝜑 → ((Σ𝑘𝐶 (𝐵𝑘) + 𝐷 / 𝑘(𝐵𝑘)) − Σ𝑘𝐶 (𝐵𝑘)) = 𝐷 / 𝑘(𝐵𝑘))
7774, 76, 703eqtrrd 2781 . . . . . . . 8 (𝜑 → (𝐵𝐷) = (Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘) − Σ𝑘𝐶 (𝐵𝑘)))
7877fveq2d 6815 . . . . . . 7 (𝜑 → (!‘(𝐵𝐷)) = (!‘(Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘) − Σ𝑘𝐶 (𝐵𝑘))))
7978oveq1d 7331 . . . . . 6 (𝜑 → ((!‘(𝐵𝐷)) · (!‘Σ𝑘𝐶 (𝐵𝑘))) = ((!‘(Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘) − Σ𝑘𝐶 (𝐵𝑘))) · (!‘Σ𝑘𝐶 (𝐵𝑘))))
8079oveq2d 7332 . . . . 5 (𝜑 → ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / ((!‘(𝐵𝐷)) · (!‘Σ𝑘𝐶 (𝐵𝑘)))) = ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / ((!‘(Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘) − Σ𝑘𝐶 (𝐵𝑘))) · (!‘Σ𝑘𝐶 (𝐵𝑘)))))
81 0zd 12410 . . . . . . . 8 (𝜑 → 0 ∈ ℤ)
8236nn0zd 12503 . . . . . . . 8 (𝜑 → Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘) ∈ ℤ)
8348nn0zd 12503 . . . . . . . 8 (𝜑 → Σ𝑘𝐶 (𝐵𝑘) ∈ ℤ)
8448nn0ge0d 12375 . . . . . . . 8 (𝜑 → 0 ≤ Σ𝑘𝐶 (𝐵𝑘))
8524nn0ge0d 12375 . . . . . . . . . . 11 (𝜑 → 0 ≤ (𝐵𝐷))
8670eqcomd 2742 . . . . . . . . . . 11 (𝜑 → (𝐵𝐷) = 𝐷 / 𝑘(𝐵𝑘))
8785, 86breqtrd 5112 . . . . . . . . . 10 (𝜑 → 0 ≤ 𝐷 / 𝑘(𝐵𝑘))
8848nn0red 12373 . . . . . . . . . . 11 (𝜑 → Σ𝑘𝐶 (𝐵𝑘) ∈ ℝ)
8924nn0red 12373 . . . . . . . . . . . 12 (𝜑 → (𝐵𝐷) ∈ ℝ)
9070, 89eqeltrd 2837 . . . . . . . . . . 11 (𝜑𝐷 / 𝑘(𝐵𝑘) ∈ ℝ)
9188, 90addge01d 11642 . . . . . . . . . 10 (𝜑 → (0 ≤ 𝐷 / 𝑘(𝐵𝑘) ↔ Σ𝑘𝐶 (𝐵𝑘) ≤ (Σ𝑘𝐶 (𝐵𝑘) + 𝐷 / 𝑘(𝐵𝑘))))
9287, 91mpbid 231 . . . . . . . . 9 (𝜑 → Σ𝑘𝐶 (𝐵𝑘) ≤ (Σ𝑘𝐶 (𝐵𝑘) + 𝐷 / 𝑘(𝐵𝑘)))
9373eqcomd 2742 . . . . . . . . 9 (𝜑 → (Σ𝑘𝐶 (𝐵𝑘) + 𝐷 / 𝑘(𝐵𝑘)) = Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘))
9492, 93breqtrd 5112 . . . . . . . 8 (𝜑 → Σ𝑘𝐶 (𝐵𝑘) ≤ Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘))
9581, 82, 83, 84, 94elfzd 13326 . . . . . . 7 (𝜑 → Σ𝑘𝐶 (𝐵𝑘) ∈ (0...Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)))
96 bcval2 14098 . . . . . . 7 𝑘𝐶 (𝐵𝑘) ∈ (0...Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) → (Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)CΣ𝑘𝐶 (𝐵𝑘)) = ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / ((!‘(Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘) − Σ𝑘𝐶 (𝐵𝑘))) · (!‘Σ𝑘𝐶 (𝐵𝑘)))))
9795, 96syl 17 . . . . . 6 (𝜑 → (Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)CΣ𝑘𝐶 (𝐵𝑘)) = ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / ((!‘(Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘) − Σ𝑘𝐶 (𝐵𝑘))) · (!‘Σ𝑘𝐶 (𝐵𝑘)))))
9897eqcomd 2742 . . . . 5 (𝜑 → ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / ((!‘(Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘) − Σ𝑘𝐶 (𝐵𝑘))) · (!‘Σ𝑘𝐶 (𝐵𝑘)))) = (Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)CΣ𝑘𝐶 (𝐵𝑘)))
9965, 80, 983eqtrd 2780 . . . 4 (𝜑 → (((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (!‘(𝐵𝐷))) / (!‘Σ𝑘𝐶 (𝐵𝑘))) = (Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)CΣ𝑘𝐶 (𝐵𝑘)))
100 bccl2 14116 . . . . 5 𝑘𝐶 (𝐵𝑘) ∈ (0...Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) → (Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)CΣ𝑘𝐶 (𝐵𝑘)) ∈ ℕ)
10195, 100syl 17 . . . 4 (𝜑 → (Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)CΣ𝑘𝐶 (𝐵𝑘)) ∈ ℕ)
10299, 101eqeltrd 2837 . . 3 (𝜑 → (((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (!‘(𝐵𝐷))) / (!‘Σ𝑘𝐶 (𝐵𝑘))) ∈ ℕ)
103 mccllem.6 . . . 4 (𝜑 → ∀𝑏 ∈ (ℕ0m 𝐶)((!‘Σ𝑘𝐶 (𝑏𝑘)) / ∏𝑘𝐶 (!‘(𝑏𝑘))) ∈ ℕ)
104 ssun1 4116 . . . . . 6 𝐶 ⊆ (𝐶 ∪ {𝐷})
105104a1i 11 . . . . 5 (𝜑𝐶 ⊆ (𝐶 ∪ {𝐷}))
106 elmapssres 8704 . . . . 5 ((𝐵 ∈ (ℕ0m (𝐶 ∪ {𝐷})) ∧ 𝐶 ⊆ (𝐶 ∪ {𝐷})) → (𝐵𝐶) ∈ (ℕ0m 𝐶))
10710, 105, 106syl2anc 584 . . . 4 (𝜑 → (𝐵𝐶) ∈ (ℕ0m 𝐶))
108 fveq1 6810 . . . . . . . . . . 11 (𝑏 = (𝐵𝐶) → (𝑏𝑘) = ((𝐵𝐶)‘𝑘))
109108adantr 481 . . . . . . . . . 10 ((𝑏 = (𝐵𝐶) ∧ 𝑘𝐶) → (𝑏𝑘) = ((𝐵𝐶)‘𝑘))
110 fvres 6830 . . . . . . . . . . 11 (𝑘𝐶 → ((𝐵𝐶)‘𝑘) = (𝐵𝑘))
111110adantl 482 . . . . . . . . . 10 ((𝑏 = (𝐵𝐶) ∧ 𝑘𝐶) → ((𝐵𝐶)‘𝑘) = (𝐵𝑘))
112109, 111eqtrd 2776 . . . . . . . . 9 ((𝑏 = (𝐵𝐶) ∧ 𝑘𝐶) → (𝑏𝑘) = (𝐵𝑘))
113112sumeq2dv 15491 . . . . . . . 8 (𝑏 = (𝐵𝐶) → Σ𝑘𝐶 (𝑏𝑘) = Σ𝑘𝐶 (𝐵𝑘))
114113fveq2d 6815 . . . . . . 7 (𝑏 = (𝐵𝐶) → (!‘Σ𝑘𝐶 (𝑏𝑘)) = (!‘Σ𝑘𝐶 (𝐵𝑘)))
115112fveq2d 6815 . . . . . . . 8 ((𝑏 = (𝐵𝐶) ∧ 𝑘𝐶) → (!‘(𝑏𝑘)) = (!‘(𝐵𝑘)))
116115prodeq2dv 15709 . . . . . . 7 (𝑏 = (𝐵𝐶) → ∏𝑘𝐶 (!‘(𝑏𝑘)) = ∏𝑘𝐶 (!‘(𝐵𝑘)))
117114, 116oveq12d 7334 . . . . . 6 (𝑏 = (𝐵𝐶) → ((!‘Σ𝑘𝐶 (𝑏𝑘)) / ∏𝑘𝐶 (!‘(𝑏𝑘))) = ((!‘Σ𝑘𝐶 (𝐵𝑘)) / ∏𝑘𝐶 (!‘(𝐵𝑘))))
118117eleq1d 2821 . . . . 5 (𝑏 = (𝐵𝐶) → (((!‘Σ𝑘𝐶 (𝑏𝑘)) / ∏𝑘𝐶 (!‘(𝑏𝑘))) ∈ ℕ ↔ ((!‘Σ𝑘𝐶 (𝐵𝑘)) / ∏𝑘𝐶 (!‘(𝐵𝑘))) ∈ ℕ))
119118rspccva 3568 . . . 4 ((∀𝑏 ∈ (ℕ0m 𝐶)((!‘Σ𝑘𝐶 (𝑏𝑘)) / ∏𝑘𝐶 (!‘(𝑏𝑘))) ∈ ℕ ∧ (𝐵𝐶) ∈ (ℕ0m 𝐶)) → ((!‘Σ𝑘𝐶 (𝐵𝑘)) / ∏𝑘𝐶 (!‘(𝐵𝑘))) ∈ ℕ)
120103, 107, 119syl2anc 584 . . 3 (𝜑 → ((!‘Σ𝑘𝐶 (𝐵𝑘)) / ∏𝑘𝐶 (!‘(𝐵𝑘))) ∈ ℕ)
121102, 120nnmulcld 12105 . 2 (𝜑 → ((((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / (!‘(𝐵𝐷))) / (!‘Σ𝑘𝐶 (𝐵𝑘))) · ((!‘Σ𝑘𝐶 (𝐵𝑘)) / ∏𝑘𝐶 (!‘(𝐵𝑘)))) ∈ ℕ)
12264, 121eqeltrd 2837 1 (𝜑 → ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / ∏𝑘 ∈ (𝐶 ∪ {𝐷})(!‘(𝐵𝑘))) ∈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1540  wcel 2105  wne 2940  wral 3061  csb 3841  cdif 3893  cun 3894  wss 3896  {csn 4570   class class class wbr 5086  cres 5609  wf 6461  cfv 6465  (class class class)co 7316  m cmap 8664  Fincfn 8782  cc 10948  cr 10949  0cc0 10950  1c1 10951   + caddc 10953   · cmul 10955  cle 11089  cmin 11284   / cdiv 11711  cn 12052  0cn0 12312  ...cfz 13318  !cfa 14066  Ccbc 14095  Σcsu 15473  cprod 15691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5223  ax-sep 5237  ax-nul 5244  ax-pow 5302  ax-pr 5366  ax-un 7629  ax-inf2 9476  ax-cnex 11006  ax-resscn 11007  ax-1cn 11008  ax-icn 11009  ax-addcl 11010  ax-addrcl 11011  ax-mulcl 11012  ax-mulrcl 11013  ax-mulcom 11014  ax-addass 11015  ax-mulass 11016  ax-distr 11017  ax-i2m1 11018  ax-1ne0 11019  ax-1rid 11020  ax-rnegex 11021  ax-rrecex 11022  ax-cnre 11023  ax-pre-lttri 11024  ax-pre-lttrn 11025  ax-pre-ltadd 11026  ax-pre-mulgt0 11027  ax-pre-sup 11028
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3442  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-pss 3915  df-nul 4267  df-if 4471  df-pw 4546  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4850  df-int 4892  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5170  df-tr 5204  df-id 5506  df-eprel 5512  df-po 5520  df-so 5521  df-fr 5562  df-se 5563  df-we 5564  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-pred 6224  df-ord 6291  df-on 6292  df-lim 6293  df-suc 6294  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-f1 6470  df-fo 6471  df-f1o 6472  df-fv 6473  df-isom 6474  df-riota 7273  df-ov 7319  df-oprab 7320  df-mpo 7321  df-om 7759  df-1st 7877  df-2nd 7878  df-frecs 8145  df-wrecs 8176  df-recs 8250  df-rdg 8289  df-1o 8345  df-er 8547  df-map 8666  df-en 8783  df-dom 8784  df-sdom 8785  df-fin 8786  df-sup 9277  df-oi 9345  df-card 9774  df-pnf 11090  df-mnf 11091  df-xr 11092  df-ltxr 11093  df-le 11094  df-sub 11286  df-neg 11287  df-div 11712  df-nn 12053  df-2 12115  df-3 12116  df-n0 12313  df-z 12399  df-uz 12662  df-rp 12810  df-fz 13319  df-fzo 13462  df-seq 13801  df-exp 13862  df-fac 14067  df-bc 14096  df-hash 14124  df-cj 14886  df-re 14887  df-im 14888  df-sqrt 15022  df-abs 15023  df-clim 15273  df-sum 15474  df-prod 15692
This theorem is referenced by:  mccl  43394
  Copyright terms: Public domain W3C validator