Proof of Theorem cvmsval
Step | Hyp | Ref
| Expression |
1 | | cvmcov.1 |
. . 3
⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 =
(◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) |
2 | 1 | cvmsi 33127 |
. 2
⊢ (𝑇 ∈ (𝑆‘𝑈) → (𝑈 ∈ 𝐽 ∧ (𝑇 ⊆ 𝐶 ∧ 𝑇 ≠ ∅) ∧ (∪ 𝑇 =
(◡𝐹 “ 𝑈) ∧ ∀𝑢 ∈ 𝑇 (∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑈)))))) |
3 | | 3anass 1093 |
. . 3
⊢ ((𝑈 ∈ 𝐽 ∧ (𝑇 ⊆ 𝐶 ∧ 𝑇 ≠ ∅) ∧ (∪ 𝑇 =
(◡𝐹 “ 𝑈) ∧ ∀𝑢 ∈ 𝑇 (∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑈))))) ↔ (𝑈 ∈ 𝐽 ∧ ((𝑇 ⊆ 𝐶 ∧ 𝑇 ≠ ∅) ∧ (∪ 𝑇 =
(◡𝐹 “ 𝑈) ∧ ∀𝑢 ∈ 𝑇 (∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑈))))))) |
4 | | id 22 |
. . . . . . . 8
⊢ (𝑈 ∈ 𝐽 → 𝑈 ∈ 𝐽) |
5 | | pwexg 5296 |
. . . . . . . . 9
⊢ (𝐶 ∈ 𝑉 → 𝒫 𝐶 ∈ V) |
6 | | difexg 5246 |
. . . . . . . . 9
⊢
(𝒫 𝐶 ∈
V → (𝒫 𝐶
∖ {∅}) ∈ V) |
7 | | rabexg 5250 |
. . . . . . . . 9
⊢
((𝒫 𝐶
∖ {∅}) ∈ V → {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 =
(◡𝐹 “ 𝑈) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑈))))} ∈ V) |
8 | 5, 6, 7 | 3syl 18 |
. . . . . . . 8
⊢ (𝐶 ∈ 𝑉 → {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 =
(◡𝐹 “ 𝑈) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑈))))} ∈ V) |
9 | | imaeq2 5954 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑈 → (◡𝐹 “ 𝑘) = (◡𝐹 “ 𝑈)) |
10 | 9 | eqeq2d 2749 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑈 → (∪ 𝑠 = (◡𝐹 “ 𝑘) ↔ ∪ 𝑠 = (◡𝐹 “ 𝑈))) |
11 | | oveq2 7263 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑈 → (𝐽 ↾t 𝑘) = (𝐽 ↾t 𝑈)) |
12 | 11 | oveq2d 7271 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑈 → ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘)) = ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑈))) |
13 | 12 | eleq2d 2824 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑈 → ((𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘)) ↔ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑈)))) |
14 | 13 | anbi2d 628 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑈 → ((∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))) ↔ (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑈))))) |
15 | 14 | ralbidv 3120 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑈 → (∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))) ↔ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑈))))) |
16 | 10, 15 | anbi12d 630 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑈 → ((∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘)))) ↔ (∪
𝑠 = (◡𝐹 “ 𝑈) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑈)))))) |
17 | 16 | rabbidv 3404 |
. . . . . . . . 9
⊢ (𝑘 = 𝑈 → {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 =
(◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))} = {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 =
(◡𝐹 “ 𝑈) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑈))))}) |
18 | 17, 1 | fvmptg 6855 |
. . . . . . . 8
⊢ ((𝑈 ∈ 𝐽 ∧ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 =
(◡𝐹 “ 𝑈) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑈))))} ∈ V) → (𝑆‘𝑈) = {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 =
(◡𝐹 “ 𝑈) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑈))))}) |
19 | 4, 8, 18 | syl2anr 596 |
. . . . . . 7
⊢ ((𝐶 ∈ 𝑉 ∧ 𝑈 ∈ 𝐽) → (𝑆‘𝑈) = {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 =
(◡𝐹 “ 𝑈) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑈))))}) |
20 | 19 | eleq2d 2824 |
. . . . . 6
⊢ ((𝐶 ∈ 𝑉 ∧ 𝑈 ∈ 𝐽) → (𝑇 ∈ (𝑆‘𝑈) ↔ 𝑇 ∈ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 =
(◡𝐹 “ 𝑈) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑈))))})) |
21 | | unieq 4847 |
. . . . . . . . . 10
⊢ (𝑠 = 𝑇 → ∪ 𝑠 = ∪
𝑇) |
22 | 21 | eqeq1d 2740 |
. . . . . . . . 9
⊢ (𝑠 = 𝑇 → (∪ 𝑠 = (◡𝐹 “ 𝑈) ↔ ∪ 𝑇 = (◡𝐹 “ 𝑈))) |
23 | | difeq1 4046 |
. . . . . . . . . . . 12
⊢ (𝑠 = 𝑇 → (𝑠 ∖ {𝑢}) = (𝑇 ∖ {𝑢})) |
24 | 23 | raleqdv 3339 |
. . . . . . . . . . 11
⊢ (𝑠 = 𝑇 → (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ↔ ∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅)) |
25 | 24 | anbi1d 629 |
. . . . . . . . . 10
⊢ (𝑠 = 𝑇 → ((∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑈))) ↔ (∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑈))))) |
26 | 25 | raleqbi1dv 3331 |
. . . . . . . . 9
⊢ (𝑠 = 𝑇 → (∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑈))) ↔ ∀𝑢 ∈ 𝑇 (∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑈))))) |
27 | 22, 26 | anbi12d 630 |
. . . . . . . 8
⊢ (𝑠 = 𝑇 → ((∪ 𝑠 = (◡𝐹 “ 𝑈) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑈)))) ↔ (∪
𝑇 = (◡𝐹 “ 𝑈) ∧ ∀𝑢 ∈ 𝑇 (∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑈)))))) |
28 | 27 | elrab 3617 |
. . . . . . 7
⊢ (𝑇 ∈ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 =
(◡𝐹 “ 𝑈) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑈))))} ↔ (𝑇 ∈ (𝒫 𝐶 ∖ {∅}) ∧ (∪ 𝑇 =
(◡𝐹 “ 𝑈) ∧ ∀𝑢 ∈ 𝑇 (∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑈)))))) |
29 | | eldifsn 4717 |
. . . . . . . . 9
⊢ (𝑇 ∈ (𝒫 𝐶 ∖ {∅}) ↔
(𝑇 ∈ 𝒫 𝐶 ∧ 𝑇 ≠ ∅)) |
30 | | elpw2g 5263 |
. . . . . . . . . . 11
⊢ (𝐶 ∈ 𝑉 → (𝑇 ∈ 𝒫 𝐶 ↔ 𝑇 ⊆ 𝐶)) |
31 | 30 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝐶 ∈ 𝑉 ∧ 𝑈 ∈ 𝐽) → (𝑇 ∈ 𝒫 𝐶 ↔ 𝑇 ⊆ 𝐶)) |
32 | 31 | anbi1d 629 |
. . . . . . . . 9
⊢ ((𝐶 ∈ 𝑉 ∧ 𝑈 ∈ 𝐽) → ((𝑇 ∈ 𝒫 𝐶 ∧ 𝑇 ≠ ∅) ↔ (𝑇 ⊆ 𝐶 ∧ 𝑇 ≠ ∅))) |
33 | 29, 32 | syl5bb 282 |
. . . . . . . 8
⊢ ((𝐶 ∈ 𝑉 ∧ 𝑈 ∈ 𝐽) → (𝑇 ∈ (𝒫 𝐶 ∖ {∅}) ↔ (𝑇 ⊆ 𝐶 ∧ 𝑇 ≠ ∅))) |
34 | 33 | anbi1d 629 |
. . . . . . 7
⊢ ((𝐶 ∈ 𝑉 ∧ 𝑈 ∈ 𝐽) → ((𝑇 ∈ (𝒫 𝐶 ∖ {∅}) ∧ (∪ 𝑇 =
(◡𝐹 “ 𝑈) ∧ ∀𝑢 ∈ 𝑇 (∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑈))))) ↔ ((𝑇 ⊆ 𝐶 ∧ 𝑇 ≠ ∅) ∧ (∪ 𝑇 =
(◡𝐹 “ 𝑈) ∧ ∀𝑢 ∈ 𝑇 (∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑈))))))) |
35 | 28, 34 | syl5bb 282 |
. . . . . 6
⊢ ((𝐶 ∈ 𝑉 ∧ 𝑈 ∈ 𝐽) → (𝑇 ∈ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 =
(◡𝐹 “ 𝑈) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑈))))} ↔ ((𝑇 ⊆ 𝐶 ∧ 𝑇 ≠ ∅) ∧ (∪ 𝑇 =
(◡𝐹 “ 𝑈) ∧ ∀𝑢 ∈ 𝑇 (∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑈))))))) |
36 | 20, 35 | bitrd 278 |
. . . . 5
⊢ ((𝐶 ∈ 𝑉 ∧ 𝑈 ∈ 𝐽) → (𝑇 ∈ (𝑆‘𝑈) ↔ ((𝑇 ⊆ 𝐶 ∧ 𝑇 ≠ ∅) ∧ (∪ 𝑇 =
(◡𝐹 “ 𝑈) ∧ ∀𝑢 ∈ 𝑇 (∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑈))))))) |
37 | 36 | biimprd 247 |
. . . 4
⊢ ((𝐶 ∈ 𝑉 ∧ 𝑈 ∈ 𝐽) → (((𝑇 ⊆ 𝐶 ∧ 𝑇 ≠ ∅) ∧ (∪ 𝑇 =
(◡𝐹 “ 𝑈) ∧ ∀𝑢 ∈ 𝑇 (∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑈))))) → 𝑇 ∈ (𝑆‘𝑈))) |
38 | 37 | expimpd 453 |
. . 3
⊢ (𝐶 ∈ 𝑉 → ((𝑈 ∈ 𝐽 ∧ ((𝑇 ⊆ 𝐶 ∧ 𝑇 ≠ ∅) ∧ (∪ 𝑇 =
(◡𝐹 “ 𝑈) ∧ ∀𝑢 ∈ 𝑇 (∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑈)))))) → 𝑇 ∈ (𝑆‘𝑈))) |
39 | 3, 38 | syl5bi 241 |
. 2
⊢ (𝐶 ∈ 𝑉 → ((𝑈 ∈ 𝐽 ∧ (𝑇 ⊆ 𝐶 ∧ 𝑇 ≠ ∅) ∧ (∪ 𝑇 =
(◡𝐹 “ 𝑈) ∧ ∀𝑢 ∈ 𝑇 (∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑈))))) → 𝑇 ∈ (𝑆‘𝑈))) |
40 | 2, 39 | impbid2 225 |
1
⊢ (𝐶 ∈ 𝑉 → (𝑇 ∈ (𝑆‘𝑈) ↔ (𝑈 ∈ 𝐽 ∧ (𝑇 ⊆ 𝐶 ∧ 𝑇 ≠ ∅) ∧ (∪ 𝑇 =
(◡𝐹 “ 𝑈) ∧ ∀𝑢 ∈ 𝑇 (∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑈))))))) |