Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > recxpcl | Structured version Visualization version GIF version |
Description: Real closure of the complex power function. (Contributed by Mario Carneiro, 2-Aug-2014.) |
Ref | Expression |
---|---|
recxpcl | ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐵 ∈ ℝ) → (𝐴↑𝑐𝐵) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recn 10832 | . . . 4 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
2 | recn 10832 | . . . 4 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℂ) | |
3 | cxpval 25565 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴↑𝑐𝐵) = if(𝐴 = 0, if(𝐵 = 0, 1, 0), (exp‘(𝐵 · (log‘𝐴))))) | |
4 | 1, 2, 3 | syl2an 599 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴↑𝑐𝐵) = if(𝐴 = 0, if(𝐵 = 0, 1, 0), (exp‘(𝐵 · (log‘𝐴))))) |
5 | 4 | 3adant2 1133 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐵 ∈ ℝ) → (𝐴↑𝑐𝐵) = if(𝐴 = 0, if(𝐵 = 0, 1, 0), (exp‘(𝐵 · (log‘𝐴))))) |
6 | 1re 10846 | . . . . 5 ⊢ 1 ∈ ℝ | |
7 | 0re 10848 | . . . . 5 ⊢ 0 ∈ ℝ | |
8 | 6, 7 | ifcli 4495 | . . . 4 ⊢ if(𝐵 = 0, 1, 0) ∈ ℝ |
9 | 8 | a1i 11 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐵 ∈ ℝ) ∧ 𝐴 = 0) → if(𝐵 = 0, 1, 0) ∈ ℝ) |
10 | df-ne 2942 | . . . 4 ⊢ (𝐴 ≠ 0 ↔ ¬ 𝐴 = 0) | |
11 | simpl3 1195 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ≠ 0) → 𝐵 ∈ ℝ) | |
12 | simpl1 1193 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℝ) | |
13 | simpl2 1194 | . . . . . . . . 9 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ≠ 0) → 0 ≤ 𝐴) | |
14 | simpr 488 | . . . . . . . . 9 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ≠ 0) → 𝐴 ≠ 0) | |
15 | 12, 13, 14 | ne0gt0d 10982 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ≠ 0) → 0 < 𝐴) |
16 | 12, 15 | elrpd 12638 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℝ+) |
17 | 16 | relogcld 25524 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ≠ 0) → (log‘𝐴) ∈ ℝ) |
18 | 11, 17 | remulcld 10876 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ≠ 0) → (𝐵 · (log‘𝐴)) ∈ ℝ) |
19 | 18 | reefcld 15662 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ≠ 0) → (exp‘(𝐵 · (log‘𝐴))) ∈ ℝ) |
20 | 10, 19 | sylan2br 598 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐵 ∈ ℝ) ∧ ¬ 𝐴 = 0) → (exp‘(𝐵 · (log‘𝐴))) ∈ ℝ) |
21 | 9, 20 | ifclda 4483 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐵 ∈ ℝ) → if(𝐴 = 0, if(𝐵 = 0, 1, 0), (exp‘(𝐵 · (log‘𝐴)))) ∈ ℝ) |
22 | 5, 21 | eqeltrd 2839 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐵 ∈ ℝ) → (𝐴↑𝑐𝐵) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∈ wcel 2111 ≠ wne 2941 ifcif 4448 class class class wbr 5062 ‘cfv 6389 (class class class)co 7222 ℂcc 10740 ℝcr 10741 0cc0 10742 1c1 10743 · cmul 10747 ≤ cle 10881 expce 15636 logclog 25456 ↑𝑐ccxp 25457 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2159 ax-12 2176 ax-ext 2709 ax-rep 5188 ax-sep 5201 ax-nul 5208 ax-pow 5267 ax-pr 5331 ax-un 7532 ax-inf2 9269 ax-cnex 10798 ax-resscn 10799 ax-1cn 10800 ax-icn 10801 ax-addcl 10802 ax-addrcl 10803 ax-mulcl 10804 ax-mulrcl 10805 ax-mulcom 10806 ax-addass 10807 ax-mulass 10808 ax-distr 10809 ax-i2m1 10810 ax-1ne0 10811 ax-1rid 10812 ax-rnegex 10813 ax-rrecex 10814 ax-cnre 10815 ax-pre-lttri 10816 ax-pre-lttrn 10817 ax-pre-ltadd 10818 ax-pre-mulgt0 10819 ax-pre-sup 10820 ax-addf 10821 ax-mulf 10822 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2072 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3067 df-rex 3068 df-reu 3069 df-rmo 3070 df-rab 3071 df-v 3417 df-sbc 3704 df-csb 3821 df-dif 3878 df-un 3880 df-in 3882 df-ss 3892 df-pss 3894 df-nul 4247 df-if 4449 df-pw 4524 df-sn 4551 df-pr 4553 df-tp 4555 df-op 4557 df-uni 4829 df-int 4869 df-iun 4915 df-iin 4916 df-br 5063 df-opab 5125 df-mpt 5145 df-tr 5171 df-id 5464 df-eprel 5469 df-po 5477 df-so 5478 df-fr 5518 df-se 5519 df-we 5520 df-xp 5566 df-rel 5567 df-cnv 5568 df-co 5569 df-dm 5570 df-rn 5571 df-res 5572 df-ima 5573 df-pred 6169 df-ord 6225 df-on 6226 df-lim 6227 df-suc 6228 df-iota 6347 df-fun 6391 df-fn 6392 df-f 6393 df-f1 6394 df-fo 6395 df-f1o 6396 df-fv 6397 df-isom 6398 df-riota 7179 df-ov 7225 df-oprab 7226 df-mpo 7227 df-of 7478 df-om 7654 df-1st 7770 df-2nd 7771 df-supp 7913 df-wrecs 8056 df-recs 8117 df-rdg 8155 df-1o 8211 df-2o 8212 df-er 8400 df-map 8519 df-pm 8520 df-ixp 8588 df-en 8636 df-dom 8637 df-sdom 8638 df-fin 8639 df-fsupp 8999 df-fi 9040 df-sup 9071 df-inf 9072 df-oi 9139 df-card 9568 df-pnf 10882 df-mnf 10883 df-xr 10884 df-ltxr 10885 df-le 10886 df-sub 11077 df-neg 11078 df-div 11503 df-nn 11844 df-2 11906 df-3 11907 df-4 11908 df-5 11909 df-6 11910 df-7 11911 df-8 11912 df-9 11913 df-n0 12104 df-z 12190 df-dec 12307 df-uz 12452 df-q 12558 df-rp 12600 df-xneg 12717 df-xadd 12718 df-xmul 12719 df-ioo 12952 df-ioc 12953 df-ico 12954 df-icc 12955 df-fz 13109 df-fzo 13252 df-fl 13380 df-mod 13456 df-seq 13588 df-exp 13649 df-fac 13853 df-bc 13882 df-hash 13910 df-shft 14643 df-cj 14675 df-re 14676 df-im 14677 df-sqrt 14811 df-abs 14812 df-limsup 15045 df-clim 15062 df-rlim 15063 df-sum 15263 df-ef 15642 df-sin 15644 df-cos 15645 df-pi 15647 df-struct 16713 df-sets 16730 df-slot 16748 df-ndx 16758 df-base 16774 df-ress 16798 df-plusg 16828 df-mulr 16829 df-starv 16830 df-sca 16831 df-vsca 16832 df-ip 16833 df-tset 16834 df-ple 16835 df-ds 16837 df-unif 16838 df-hom 16839 df-cco 16840 df-rest 16940 df-topn 16941 df-0g 16959 df-gsum 16960 df-topgen 16961 df-pt 16962 df-prds 16965 df-xrs 17020 df-qtop 17025 df-imas 17026 df-xps 17028 df-mre 17102 df-mrc 17103 df-acs 17105 df-mgm 18127 df-sgrp 18176 df-mnd 18187 df-submnd 18232 df-mulg 18502 df-cntz 18724 df-cmn 19185 df-psmet 20368 df-xmet 20369 df-met 20370 df-bl 20371 df-mopn 20372 df-fbas 20373 df-fg 20374 df-cnfld 20377 df-top 21804 df-topon 21821 df-topsp 21843 df-bases 21856 df-cld 21929 df-ntr 21930 df-cls 21931 df-nei 22008 df-lp 22046 df-perf 22047 df-cn 22137 df-cnp 22138 df-haus 22225 df-tx 22472 df-hmeo 22665 df-fil 22756 df-fm 22848 df-flim 22849 df-flf 22850 df-xms 23231 df-ms 23232 df-tms 23233 df-cncf 23788 df-limc 24776 df-dv 24777 df-log 25458 df-cxp 25459 |
This theorem is referenced by: rpcxpcl 25577 abscxp2 25594 cxple 25596 cxplt2 25599 recxpcld 25624 cxpaddlelem 25650 |
Copyright terms: Public domain | W3C validator |