| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cxpef | Structured version Visualization version GIF version | ||
| Description: Value of the complex power function. (Contributed by Mario Carneiro, 2-Aug-2014.) |
| Ref | Expression |
|---|---|
| cxpef | ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℂ) → (𝐴↑𝑐𝐵) = (exp‘(𝐵 · (log‘𝐴)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cxpval 26589 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴↑𝑐𝐵) = if(𝐴 = 0, if(𝐵 = 0, 1, 0), (exp‘(𝐵 · (log‘𝐴))))) | |
| 2 | 1 | 3adant2 1131 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℂ) → (𝐴↑𝑐𝐵) = if(𝐴 = 0, if(𝐵 = 0, 1, 0), (exp‘(𝐵 · (log‘𝐴))))) |
| 3 | simp2 1137 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℂ) → 𝐴 ≠ 0) | |
| 4 | 3 | neneqd 2930 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℂ) → ¬ 𝐴 = 0) |
| 5 | 4 | iffalsed 4489 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℂ) → if(𝐴 = 0, if(𝐵 = 0, 1, 0), (exp‘(𝐵 · (log‘𝐴)))) = (exp‘(𝐵 · (log‘𝐴)))) |
| 6 | 2, 5 | eqtrd 2764 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℂ) → (𝐴↑𝑐𝐵) = (exp‘(𝐵 · (log‘𝐴)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ifcif 4478 ‘cfv 6486 (class class class)co 7353 ℂcc 11026 0cc0 11028 1c1 11029 · cmul 11033 expce 15986 logclog 26479 ↑𝑐ccxp 26480 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-mulcl 11090 ax-i2m1 11096 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-cxp 26482 |
| This theorem is referenced by: cxpexpz 26592 logcxp 26594 1cxp 26597 ecxp 26598 rpcxpcl 26601 cxpne0 26602 cxpadd 26604 mulcxp 26610 cxpmul 26613 abscxp 26617 abscxp2 26618 cxplt 26619 cxple2 26622 cxpsqrtlem 26627 cxpsqrt 26628 cxpefd 26637 1cubrlem 26767 bposlem9 27219 iexpire 35710 aks4d1p1p1 42039 |
| Copyright terms: Public domain | W3C validator |