MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  deg1leb Structured version   Visualization version   GIF version

Theorem deg1leb 25241
Description: Property of being of limited degree. (Contributed by Stefan O'Rear, 23-Mar-2015.)
Hypotheses
Ref Expression
deg1leb.d 𝐷 = ( deg1𝑅)
deg1leb.p 𝑃 = (Poly1𝑅)
deg1leb.b 𝐵 = (Base‘𝑃)
deg1leb.y 0 = (0g𝑅)
deg1leb.a 𝐴 = (coe1𝐹)
Assertion
Ref Expression
deg1leb ((𝐹𝐵𝐺 ∈ ℝ*) → ((𝐷𝐹) ≤ 𝐺 ↔ ∀𝑥 ∈ ℕ0 (𝐺 < 𝑥 → (𝐴𝑥) = 0 )))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐺   𝑥, 0
Allowed substitution hints:   𝐵(𝑥)   𝐷(𝑥)   𝑃(𝑥)   𝑅(𝑥)   𝐹(𝑥)

Proof of Theorem deg1leb
Dummy variables 𝑦 𝑏 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 deg1leb.d . . . 4 𝐷 = ( deg1𝑅)
21deg1fval 25226 . . 3 𝐷 = (1o mDeg 𝑅)
3 eqid 2739 . . 3 (1o mPoly 𝑅) = (1o mPoly 𝑅)
4 deg1leb.p . . . 4 𝑃 = (Poly1𝑅)
5 eqid 2739 . . . 4 (PwSer1𝑅) = (PwSer1𝑅)
6 deg1leb.b . . . 4 𝐵 = (Base‘𝑃)
74, 5, 6ply1bas 21347 . . 3 𝐵 = (Base‘(1o mPoly 𝑅))
8 deg1leb.y . . 3 0 = (0g𝑅)
9 psr1baslem 21337 . . 3 (ℕ0m 1o) = {𝑎 ∈ (ℕ0m 1o) ∣ (𝑎 “ ℕ) ∈ Fin}
10 tdeglem2 25207 . . 3 (𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅)) = (𝑏 ∈ (ℕ0m 1o) ↦ (ℂfld Σg 𝑏))
112, 3, 7, 8, 9, 10mdegleb 25210 . 2 ((𝐹𝐵𝐺 ∈ ℝ*) → ((𝐷𝐹) ≤ 𝐺 ↔ ∀𝑦 ∈ (ℕ0m 1o)(𝐺 < ((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦) → (𝐹𝑦) = 0 )))
12 df1o2 8293 . . . . 5 1o = {∅}
13 nn0ex 12222 . . . . 5 0 ∈ V
14 0ex 5234 . . . . 5 ∅ ∈ V
15 eqid 2739 . . . . 5 (𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅)) = (𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))
1612, 13, 14, 15mapsnf1o2 8656 . . . 4 (𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅)):(ℕ0m 1o)–1-1-onto→ℕ0
17 f1ofo 6719 . . . 4 ((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅)):(ℕ0m 1o)–1-1-onto→ℕ0 → (𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅)):(ℕ0m 1o)–onto→ℕ0)
18 breq2 5082 . . . . . 6 (((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦) = 𝑥 → (𝐺 < ((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦) ↔ 𝐺 < 𝑥))
19 fveqeq2 6777 . . . . . 6 (((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦) = 𝑥 → ((𝐴‘((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦)) = 0 ↔ (𝐴𝑥) = 0 ))
2018, 19imbi12d 344 . . . . 5 (((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦) = 𝑥 → ((𝐺 < ((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦) → (𝐴‘((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦)) = 0 ) ↔ (𝐺 < 𝑥 → (𝐴𝑥) = 0 )))
2120cbvfo 7154 . . . 4 ((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅)):(ℕ0m 1o)–onto→ℕ0 → (∀𝑦 ∈ (ℕ0m 1o)(𝐺 < ((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦) → (𝐴‘((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦)) = 0 ) ↔ ∀𝑥 ∈ ℕ0 (𝐺 < 𝑥 → (𝐴𝑥) = 0 )))
2216, 17, 21mp2b 10 . . 3 (∀𝑦 ∈ (ℕ0m 1o)(𝐺 < ((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦) → (𝐴‘((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦)) = 0 ) ↔ ∀𝑥 ∈ ℕ0 (𝐺 < 𝑥 → (𝐴𝑥) = 0 ))
23 fveq1 6767 . . . . . . . . . 10 (𝑏 = 𝑦 → (𝑏‘∅) = (𝑦‘∅))
24 fvex 6781 . . . . . . . . . 10 (𝑦‘∅) ∈ V
2523, 15, 24fvmpt 6869 . . . . . . . . 9 (𝑦 ∈ (ℕ0m 1o) → ((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦) = (𝑦‘∅))
2625fveq2d 6772 . . . . . . . 8 (𝑦 ∈ (ℕ0m 1o) → (𝐴‘((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦)) = (𝐴‘(𝑦‘∅)))
2726adantl 481 . . . . . . 7 (((𝐹𝐵𝐺 ∈ ℝ*) ∧ 𝑦 ∈ (ℕ0m 1o)) → (𝐴‘((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦)) = (𝐴‘(𝑦‘∅)))
28 deg1leb.a . . . . . . . . 9 𝐴 = (coe1𝐹)
2928fvcoe1 21359 . . . . . . . 8 ((𝐹𝐵𝑦 ∈ (ℕ0m 1o)) → (𝐹𝑦) = (𝐴‘(𝑦‘∅)))
3029adantlr 711 . . . . . . 7 (((𝐹𝐵𝐺 ∈ ℝ*) ∧ 𝑦 ∈ (ℕ0m 1o)) → (𝐹𝑦) = (𝐴‘(𝑦‘∅)))
3127, 30eqtr4d 2782 . . . . . 6 (((𝐹𝐵𝐺 ∈ ℝ*) ∧ 𝑦 ∈ (ℕ0m 1o)) → (𝐴‘((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦)) = (𝐹𝑦))
3231eqeq1d 2741 . . . . 5 (((𝐹𝐵𝐺 ∈ ℝ*) ∧ 𝑦 ∈ (ℕ0m 1o)) → ((𝐴‘((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦)) = 0 ↔ (𝐹𝑦) = 0 ))
3332imbi2d 340 . . . 4 (((𝐹𝐵𝐺 ∈ ℝ*) ∧ 𝑦 ∈ (ℕ0m 1o)) → ((𝐺 < ((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦) → (𝐴‘((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦)) = 0 ) ↔ (𝐺 < ((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦) → (𝐹𝑦) = 0 )))
3433ralbidva 3121 . . 3 ((𝐹𝐵𝐺 ∈ ℝ*) → (∀𝑦 ∈ (ℕ0m 1o)(𝐺 < ((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦) → (𝐴‘((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦)) = 0 ) ↔ ∀𝑦 ∈ (ℕ0m 1o)(𝐺 < ((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦) → (𝐹𝑦) = 0 )))
3522, 34bitr3id 284 . 2 ((𝐹𝐵𝐺 ∈ ℝ*) → (∀𝑥 ∈ ℕ0 (𝐺 < 𝑥 → (𝐴𝑥) = 0 ) ↔ ∀𝑦 ∈ (ℕ0m 1o)(𝐺 < ((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦) → (𝐹𝑦) = 0 )))
3611, 35bitr4d 281 1 ((𝐹𝐵𝐺 ∈ ℝ*) → ((𝐷𝐹) ≤ 𝐺 ↔ ∀𝑥 ∈ ℕ0 (𝐺 < 𝑥 → (𝐴𝑥) = 0 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1541  wcel 2109  wral 3065  c0 4261   class class class wbr 5078  cmpt 5161  ontowfo 6428  1-1-ontowf1o 6429  cfv 6430  (class class class)co 7268  1oc1o 8274  m cmap 8589  *cxr 10992   < clt 10993  cle 10994  0cn0 12216  Basecbs 16893  0gc0g 17131   mPoly cmpl 21090  PwSer1cps1 21327  Poly1cpl1 21329  coe1cco1 21330   deg1 cdg1 25197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932  ax-pre-sup 10933  ax-addf 10934  ax-mulf 10935
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-int 4885  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-se 5544  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-isom 6439  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-of 7524  df-om 7701  df-1st 7817  df-2nd 7818  df-supp 7962  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-1o 8281  df-er 8472  df-map 8591  df-en 8708  df-dom 8709  df-sdom 8710  df-fin 8711  df-fsupp 9090  df-sup 9162  df-oi 9230  df-card 9681  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-nn 11957  df-2 12019  df-3 12020  df-4 12021  df-5 12022  df-6 12023  df-7 12024  df-8 12025  df-9 12026  df-n0 12217  df-z 12303  df-dec 12420  df-uz 12565  df-fz 13222  df-fzo 13365  df-seq 13703  df-hash 14026  df-struct 16829  df-sets 16846  df-slot 16864  df-ndx 16876  df-base 16894  df-ress 16923  df-plusg 16956  df-mulr 16957  df-starv 16958  df-sca 16959  df-vsca 16960  df-tset 16962  df-ple 16963  df-ds 16965  df-unif 16966  df-0g 17133  df-gsum 17134  df-mgm 18307  df-sgrp 18356  df-mnd 18367  df-submnd 18412  df-grp 18561  df-minusg 18562  df-mulg 18682  df-cntz 18904  df-cmn 19369  df-abl 19370  df-mgp 19702  df-ur 19719  df-ring 19766  df-cring 19767  df-cnfld 20579  df-psr 21093  df-mpl 21095  df-opsr 21097  df-psr1 21332  df-ply1 21334  df-coe1 21335  df-mdeg 25198  df-deg1 25199
This theorem is referenced by:  deg1lt  25243  deg1tmle  25263
  Copyright terms: Public domain W3C validator