MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  deg1leb Structured version   Visualization version   GIF version

Theorem deg1leb 26057
Description: Property of being of limited degree. (Contributed by Stefan O'Rear, 23-Mar-2015.)
Hypotheses
Ref Expression
deg1leb.d 𝐷 = (deg1𝑅)
deg1leb.p 𝑃 = (Poly1𝑅)
deg1leb.b 𝐵 = (Base‘𝑃)
deg1leb.y 0 = (0g𝑅)
deg1leb.a 𝐴 = (coe1𝐹)
Assertion
Ref Expression
deg1leb ((𝐹𝐵𝐺 ∈ ℝ*) → ((𝐷𝐹) ≤ 𝐺 ↔ ∀𝑥 ∈ ℕ0 (𝐺 < 𝑥 → (𝐴𝑥) = 0 )))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐺   𝑥, 0
Allowed substitution hints:   𝐵(𝑥)   𝐷(𝑥)   𝑃(𝑥)   𝑅(𝑥)   𝐹(𝑥)

Proof of Theorem deg1leb
Dummy variables 𝑦 𝑏 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 deg1leb.d . . . 4 𝐷 = (deg1𝑅)
21deg1fval 26042 . . 3 𝐷 = (1o mDeg 𝑅)
3 eqid 2736 . . 3 (1o mPoly 𝑅) = (1o mPoly 𝑅)
4 deg1leb.p . . . 4 𝑃 = (Poly1𝑅)
5 deg1leb.b . . . 4 𝐵 = (Base‘𝑃)
64, 5ply1bas 22135 . . 3 𝐵 = (Base‘(1o mPoly 𝑅))
7 deg1leb.y . . 3 0 = (0g𝑅)
8 psr1baslem 22125 . . 3 (ℕ0m 1o) = {𝑎 ∈ (ℕ0m 1o) ∣ (𝑎 “ ℕ) ∈ Fin}
9 tdeglem2 26023 . . 3 (𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅)) = (𝑏 ∈ (ℕ0m 1o) ↦ (ℂfld Σg 𝑏))
102, 3, 6, 7, 8, 9mdegleb 26026 . 2 ((𝐹𝐵𝐺 ∈ ℝ*) → ((𝐷𝐹) ≤ 𝐺 ↔ ∀𝑦 ∈ (ℕ0m 1o)(𝐺 < ((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦) → (𝐹𝑦) = 0 )))
11 df1o2 8492 . . . . 5 1o = {∅}
12 nn0ex 12512 . . . . 5 0 ∈ V
13 0ex 5282 . . . . 5 ∅ ∈ V
14 eqid 2736 . . . . 5 (𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅)) = (𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))
1511, 12, 13, 14mapsnf1o2 8913 . . . 4 (𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅)):(ℕ0m 1o)–1-1-onto→ℕ0
16 f1ofo 6830 . . . 4 ((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅)):(ℕ0m 1o)–1-1-onto→ℕ0 → (𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅)):(ℕ0m 1o)–onto→ℕ0)
17 breq2 5128 . . . . . 6 (((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦) = 𝑥 → (𝐺 < ((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦) ↔ 𝐺 < 𝑥))
18 fveqeq2 6890 . . . . . 6 (((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦) = 𝑥 → ((𝐴‘((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦)) = 0 ↔ (𝐴𝑥) = 0 ))
1917, 18imbi12d 344 . . . . 5 (((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦) = 𝑥 → ((𝐺 < ((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦) → (𝐴‘((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦)) = 0 ) ↔ (𝐺 < 𝑥 → (𝐴𝑥) = 0 )))
2019cbvfo 7287 . . . 4 ((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅)):(ℕ0m 1o)–onto→ℕ0 → (∀𝑦 ∈ (ℕ0m 1o)(𝐺 < ((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦) → (𝐴‘((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦)) = 0 ) ↔ ∀𝑥 ∈ ℕ0 (𝐺 < 𝑥 → (𝐴𝑥) = 0 )))
2115, 16, 20mp2b 10 . . 3 (∀𝑦 ∈ (ℕ0m 1o)(𝐺 < ((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦) → (𝐴‘((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦)) = 0 ) ↔ ∀𝑥 ∈ ℕ0 (𝐺 < 𝑥 → (𝐴𝑥) = 0 ))
22 fveq1 6880 . . . . . . . . . 10 (𝑏 = 𝑦 → (𝑏‘∅) = (𝑦‘∅))
23 fvex 6894 . . . . . . . . . 10 (𝑦‘∅) ∈ V
2422, 14, 23fvmpt 6991 . . . . . . . . 9 (𝑦 ∈ (ℕ0m 1o) → ((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦) = (𝑦‘∅))
2524fveq2d 6885 . . . . . . . 8 (𝑦 ∈ (ℕ0m 1o) → (𝐴‘((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦)) = (𝐴‘(𝑦‘∅)))
2625adantl 481 . . . . . . 7 (((𝐹𝐵𝐺 ∈ ℝ*) ∧ 𝑦 ∈ (ℕ0m 1o)) → (𝐴‘((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦)) = (𝐴‘(𝑦‘∅)))
27 deg1leb.a . . . . . . . . 9 𝐴 = (coe1𝐹)
2827fvcoe1 22148 . . . . . . . 8 ((𝐹𝐵𝑦 ∈ (ℕ0m 1o)) → (𝐹𝑦) = (𝐴‘(𝑦‘∅)))
2928adantlr 715 . . . . . . 7 (((𝐹𝐵𝐺 ∈ ℝ*) ∧ 𝑦 ∈ (ℕ0m 1o)) → (𝐹𝑦) = (𝐴‘(𝑦‘∅)))
3026, 29eqtr4d 2774 . . . . . 6 (((𝐹𝐵𝐺 ∈ ℝ*) ∧ 𝑦 ∈ (ℕ0m 1o)) → (𝐴‘((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦)) = (𝐹𝑦))
3130eqeq1d 2738 . . . . 5 (((𝐹𝐵𝐺 ∈ ℝ*) ∧ 𝑦 ∈ (ℕ0m 1o)) → ((𝐴‘((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦)) = 0 ↔ (𝐹𝑦) = 0 ))
3231imbi2d 340 . . . 4 (((𝐹𝐵𝐺 ∈ ℝ*) ∧ 𝑦 ∈ (ℕ0m 1o)) → ((𝐺 < ((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦) → (𝐴‘((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦)) = 0 ) ↔ (𝐺 < ((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦) → (𝐹𝑦) = 0 )))
3332ralbidva 3162 . . 3 ((𝐹𝐵𝐺 ∈ ℝ*) → (∀𝑦 ∈ (ℕ0m 1o)(𝐺 < ((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦) → (𝐴‘((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦)) = 0 ) ↔ ∀𝑦 ∈ (ℕ0m 1o)(𝐺 < ((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦) → (𝐹𝑦) = 0 )))
3421, 33bitr3id 285 . 2 ((𝐹𝐵𝐺 ∈ ℝ*) → (∀𝑥 ∈ ℕ0 (𝐺 < 𝑥 → (𝐴𝑥) = 0 ) ↔ ∀𝑦 ∈ (ℕ0m 1o)(𝐺 < ((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦) → (𝐹𝑦) = 0 )))
3510, 34bitr4d 282 1 ((𝐹𝐵𝐺 ∈ ℝ*) → ((𝐷𝐹) ≤ 𝐺 ↔ ∀𝑥 ∈ ℕ0 (𝐺 < 𝑥 → (𝐴𝑥) = 0 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3052  c0 4313   class class class wbr 5124  cmpt 5206  ontowfo 6534  1-1-ontowf1o 6535  cfv 6536  (class class class)co 7410  1oc1o 8478  m cmap 8845  *cxr 11273   < clt 11274  cle 11275  0cn0 12506  Basecbs 17233  0gc0g 17458   mPoly cmpl 21871  Poly1cpl1 22117  coe1cco1 22118  deg1cdg1 26016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212  ax-addf 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-sup 9459  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-fz 13530  df-fzo 13677  df-seq 14025  df-hash 14354  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-starv 17291  df-sca 17292  df-vsca 17293  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-0g 17460  df-gsum 17461  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-grp 18924  df-minusg 18925  df-mulg 19056  df-cntz 19305  df-cmn 19768  df-abl 19769  df-mgp 20106  df-ur 20147  df-ring 20200  df-cring 20201  df-cnfld 21321  df-psr 21874  df-mpl 21876  df-opsr 21878  df-psr1 22120  df-ply1 22122  df-coe1 22123  df-mdeg 26017  df-deg1 26018
This theorem is referenced by:  deg1lt  26059  deg1tmle  26080
  Copyright terms: Public domain W3C validator