![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > deg1leb | Structured version Visualization version GIF version |
Description: Property of being of limited degree. (Contributed by Stefan O'Rear, 23-Mar-2015.) |
Ref | Expression |
---|---|
deg1leb.d | ⊢ 𝐷 = ( deg1 ‘𝑅) |
deg1leb.p | ⊢ 𝑃 = (Poly1‘𝑅) |
deg1leb.b | ⊢ 𝐵 = (Base‘𝑃) |
deg1leb.y | ⊢ 0 = (0g‘𝑅) |
deg1leb.a | ⊢ 𝐴 = (coe1‘𝐹) |
Ref | Expression |
---|---|
deg1leb | ⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ*) → ((𝐷‘𝐹) ≤ 𝐺 ↔ ∀𝑥 ∈ ℕ0 (𝐺 < 𝑥 → (𝐴‘𝑥) = 0 ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | deg1leb.d | . . . 4 ⊢ 𝐷 = ( deg1 ‘𝑅) | |
2 | 1 | deg1fval 25598 | . . 3 ⊢ 𝐷 = (1o mDeg 𝑅) |
3 | eqid 2733 | . . 3 ⊢ (1o mPoly 𝑅) = (1o mPoly 𝑅) | |
4 | deg1leb.p | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
5 | eqid 2733 | . . . 4 ⊢ (PwSer1‘𝑅) = (PwSer1‘𝑅) | |
6 | deg1leb.b | . . . 4 ⊢ 𝐵 = (Base‘𝑃) | |
7 | 4, 5, 6 | ply1bas 21719 | . . 3 ⊢ 𝐵 = (Base‘(1o mPoly 𝑅)) |
8 | deg1leb.y | . . 3 ⊢ 0 = (0g‘𝑅) | |
9 | psr1baslem 21709 | . . 3 ⊢ (ℕ0 ↑m 1o) = {𝑎 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑎 “ ℕ) ∈ Fin} | |
10 | tdeglem2 25579 | . . 3 ⊢ (𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅)) = (𝑏 ∈ (ℕ0 ↑m 1o) ↦ (ℂfld Σg 𝑏)) | |
11 | 2, 3, 7, 8, 9, 10 | mdegleb 25582 | . 2 ⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ*) → ((𝐷‘𝐹) ≤ 𝐺 ↔ ∀𝑦 ∈ (ℕ0 ↑m 1o)(𝐺 < ((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦) → (𝐹‘𝑦) = 0 ))) |
12 | df1o2 8473 | . . . . 5 ⊢ 1o = {∅} | |
13 | nn0ex 12478 | . . . . 5 ⊢ ℕ0 ∈ V | |
14 | 0ex 5308 | . . . . 5 ⊢ ∅ ∈ V | |
15 | eqid 2733 | . . . . 5 ⊢ (𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅)) = (𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅)) | |
16 | 12, 13, 14, 15 | mapsnf1o2 8888 | . . . 4 ⊢ (𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅)):(ℕ0 ↑m 1o)–1-1-onto→ℕ0 |
17 | f1ofo 6841 | . . . 4 ⊢ ((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅)):(ℕ0 ↑m 1o)–1-1-onto→ℕ0 → (𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅)):(ℕ0 ↑m 1o)–onto→ℕ0) | |
18 | breq2 5153 | . . . . . 6 ⊢ (((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦) = 𝑥 → (𝐺 < ((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦) ↔ 𝐺 < 𝑥)) | |
19 | fveqeq2 6901 | . . . . . 6 ⊢ (((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦) = 𝑥 → ((𝐴‘((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦)) = 0 ↔ (𝐴‘𝑥) = 0 )) | |
20 | 18, 19 | imbi12d 345 | . . . . 5 ⊢ (((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦) = 𝑥 → ((𝐺 < ((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦) → (𝐴‘((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦)) = 0 ) ↔ (𝐺 < 𝑥 → (𝐴‘𝑥) = 0 ))) |
21 | 20 | cbvfo 7287 | . . . 4 ⊢ ((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅)):(ℕ0 ↑m 1o)–onto→ℕ0 → (∀𝑦 ∈ (ℕ0 ↑m 1o)(𝐺 < ((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦) → (𝐴‘((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦)) = 0 ) ↔ ∀𝑥 ∈ ℕ0 (𝐺 < 𝑥 → (𝐴‘𝑥) = 0 ))) |
22 | 16, 17, 21 | mp2b 10 | . . 3 ⊢ (∀𝑦 ∈ (ℕ0 ↑m 1o)(𝐺 < ((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦) → (𝐴‘((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦)) = 0 ) ↔ ∀𝑥 ∈ ℕ0 (𝐺 < 𝑥 → (𝐴‘𝑥) = 0 )) |
23 | fveq1 6891 | . . . . . . . . . 10 ⊢ (𝑏 = 𝑦 → (𝑏‘∅) = (𝑦‘∅)) | |
24 | fvex 6905 | . . . . . . . . . 10 ⊢ (𝑦‘∅) ∈ V | |
25 | 23, 15, 24 | fvmpt 6999 | . . . . . . . . 9 ⊢ (𝑦 ∈ (ℕ0 ↑m 1o) → ((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦) = (𝑦‘∅)) |
26 | 25 | fveq2d 6896 | . . . . . . . 8 ⊢ (𝑦 ∈ (ℕ0 ↑m 1o) → (𝐴‘((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦)) = (𝐴‘(𝑦‘∅))) |
27 | 26 | adantl 483 | . . . . . . 7 ⊢ (((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ*) ∧ 𝑦 ∈ (ℕ0 ↑m 1o)) → (𝐴‘((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦)) = (𝐴‘(𝑦‘∅))) |
28 | deg1leb.a | . . . . . . . . 9 ⊢ 𝐴 = (coe1‘𝐹) | |
29 | 28 | fvcoe1 21731 | . . . . . . . 8 ⊢ ((𝐹 ∈ 𝐵 ∧ 𝑦 ∈ (ℕ0 ↑m 1o)) → (𝐹‘𝑦) = (𝐴‘(𝑦‘∅))) |
30 | 29 | adantlr 714 | . . . . . . 7 ⊢ (((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ*) ∧ 𝑦 ∈ (ℕ0 ↑m 1o)) → (𝐹‘𝑦) = (𝐴‘(𝑦‘∅))) |
31 | 27, 30 | eqtr4d 2776 | . . . . . 6 ⊢ (((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ*) ∧ 𝑦 ∈ (ℕ0 ↑m 1o)) → (𝐴‘((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦)) = (𝐹‘𝑦)) |
32 | 31 | eqeq1d 2735 | . . . . 5 ⊢ (((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ*) ∧ 𝑦 ∈ (ℕ0 ↑m 1o)) → ((𝐴‘((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦)) = 0 ↔ (𝐹‘𝑦) = 0 )) |
33 | 32 | imbi2d 341 | . . . 4 ⊢ (((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ*) ∧ 𝑦 ∈ (ℕ0 ↑m 1o)) → ((𝐺 < ((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦) → (𝐴‘((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦)) = 0 ) ↔ (𝐺 < ((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦) → (𝐹‘𝑦) = 0 ))) |
34 | 33 | ralbidva 3176 | . . 3 ⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ*) → (∀𝑦 ∈ (ℕ0 ↑m 1o)(𝐺 < ((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦) → (𝐴‘((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦)) = 0 ) ↔ ∀𝑦 ∈ (ℕ0 ↑m 1o)(𝐺 < ((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦) → (𝐹‘𝑦) = 0 ))) |
35 | 22, 34 | bitr3id 285 | . 2 ⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ*) → (∀𝑥 ∈ ℕ0 (𝐺 < 𝑥 → (𝐴‘𝑥) = 0 ) ↔ ∀𝑦 ∈ (ℕ0 ↑m 1o)(𝐺 < ((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦) → (𝐹‘𝑦) = 0 ))) |
36 | 11, 35 | bitr4d 282 | 1 ⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ*) → ((𝐷‘𝐹) ≤ 𝐺 ↔ ∀𝑥 ∈ ℕ0 (𝐺 < 𝑥 → (𝐴‘𝑥) = 0 ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∀wral 3062 ∅c0 4323 class class class wbr 5149 ↦ cmpt 5232 –onto→wfo 6542 –1-1-onto→wf1o 6543 ‘cfv 6544 (class class class)co 7409 1oc1o 8459 ↑m cmap 8820 ℝ*cxr 11247 < clt 11248 ≤ cle 11249 ℕ0cn0 12472 Basecbs 17144 0gc0g 17385 mPoly cmpl 21459 PwSer1cps1 21699 Poly1cpl1 21701 coe1cco1 21702 deg1 cdg1 25569 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 ax-pre-sup 11188 ax-addf 11189 ax-mulf 11190 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-se 5633 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-isom 6553 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-of 7670 df-om 7856 df-1st 7975 df-2nd 7976 df-supp 8147 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-er 8703 df-map 8822 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-fsupp 9362 df-sup 9437 df-oi 9505 df-card 9934 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-2 12275 df-3 12276 df-4 12277 df-5 12278 df-6 12279 df-7 12280 df-8 12281 df-9 12282 df-n0 12473 df-z 12559 df-dec 12678 df-uz 12823 df-fz 13485 df-fzo 13628 df-seq 13967 df-hash 14291 df-struct 17080 df-sets 17097 df-slot 17115 df-ndx 17127 df-base 17145 df-ress 17174 df-plusg 17210 df-mulr 17211 df-starv 17212 df-sca 17213 df-vsca 17214 df-tset 17216 df-ple 17217 df-ds 17219 df-unif 17220 df-0g 17387 df-gsum 17388 df-mgm 18561 df-sgrp 18610 df-mnd 18626 df-submnd 18672 df-grp 18822 df-minusg 18823 df-mulg 18951 df-cntz 19181 df-cmn 19650 df-abl 19651 df-mgp 19988 df-ur 20005 df-ring 20058 df-cring 20059 df-cnfld 20945 df-psr 21462 df-mpl 21464 df-opsr 21466 df-psr1 21704 df-ply1 21706 df-coe1 21707 df-mdeg 25570 df-deg1 25571 |
This theorem is referenced by: deg1lt 25615 deg1tmle 25635 |
Copyright terms: Public domain | W3C validator |