| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > deg1leb | Structured version Visualization version GIF version | ||
| Description: Property of being of limited degree. (Contributed by Stefan O'Rear, 23-Mar-2015.) |
| Ref | Expression |
|---|---|
| deg1leb.d | ⊢ 𝐷 = (deg1‘𝑅) |
| deg1leb.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| deg1leb.b | ⊢ 𝐵 = (Base‘𝑃) |
| deg1leb.y | ⊢ 0 = (0g‘𝑅) |
| deg1leb.a | ⊢ 𝐴 = (coe1‘𝐹) |
| Ref | Expression |
|---|---|
| deg1leb | ⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ*) → ((𝐷‘𝐹) ≤ 𝐺 ↔ ∀𝑥 ∈ ℕ0 (𝐺 < 𝑥 → (𝐴‘𝑥) = 0 ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | deg1leb.d | . . . 4 ⊢ 𝐷 = (deg1‘𝑅) | |
| 2 | 1 | deg1fval 26074 | . . 3 ⊢ 𝐷 = (1o mDeg 𝑅) |
| 3 | eqid 2734 | . . 3 ⊢ (1o mPoly 𝑅) = (1o mPoly 𝑅) | |
| 4 | deg1leb.p | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 5 | deg1leb.b | . . . 4 ⊢ 𝐵 = (Base‘𝑃) | |
| 6 | 4, 5 | ply1bas 22163 | . . 3 ⊢ 𝐵 = (Base‘(1o mPoly 𝑅)) |
| 7 | deg1leb.y | . . 3 ⊢ 0 = (0g‘𝑅) | |
| 8 | psr1baslem 22153 | . . 3 ⊢ (ℕ0 ↑m 1o) = {𝑎 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑎 “ ℕ) ∈ Fin} | |
| 9 | tdeglem2 26055 | . . 3 ⊢ (𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅)) = (𝑏 ∈ (ℕ0 ↑m 1o) ↦ (ℂfld Σg 𝑏)) | |
| 10 | 2, 3, 6, 7, 8, 9 | mdegleb 26058 | . 2 ⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ*) → ((𝐷‘𝐹) ≤ 𝐺 ↔ ∀𝑦 ∈ (ℕ0 ↑m 1o)(𝐺 < ((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦) → (𝐹‘𝑦) = 0 ))) |
| 11 | df1o2 8496 | . . . . 5 ⊢ 1o = {∅} | |
| 12 | nn0ex 12516 | . . . . 5 ⊢ ℕ0 ∈ V | |
| 13 | 0ex 5289 | . . . . 5 ⊢ ∅ ∈ V | |
| 14 | eqid 2734 | . . . . 5 ⊢ (𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅)) = (𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅)) | |
| 15 | 11, 12, 13, 14 | mapsnf1o2 8917 | . . . 4 ⊢ (𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅)):(ℕ0 ↑m 1o)–1-1-onto→ℕ0 |
| 16 | f1ofo 6836 | . . . 4 ⊢ ((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅)):(ℕ0 ↑m 1o)–1-1-onto→ℕ0 → (𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅)):(ℕ0 ↑m 1o)–onto→ℕ0) | |
| 17 | breq2 5129 | . . . . . 6 ⊢ (((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦) = 𝑥 → (𝐺 < ((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦) ↔ 𝐺 < 𝑥)) | |
| 18 | fveqeq2 6896 | . . . . . 6 ⊢ (((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦) = 𝑥 → ((𝐴‘((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦)) = 0 ↔ (𝐴‘𝑥) = 0 )) | |
| 19 | 17, 18 | imbi12d 344 | . . . . 5 ⊢ (((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦) = 𝑥 → ((𝐺 < ((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦) → (𝐴‘((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦)) = 0 ) ↔ (𝐺 < 𝑥 → (𝐴‘𝑥) = 0 ))) |
| 20 | 19 | cbvfo 7292 | . . . 4 ⊢ ((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅)):(ℕ0 ↑m 1o)–onto→ℕ0 → (∀𝑦 ∈ (ℕ0 ↑m 1o)(𝐺 < ((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦) → (𝐴‘((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦)) = 0 ) ↔ ∀𝑥 ∈ ℕ0 (𝐺 < 𝑥 → (𝐴‘𝑥) = 0 ))) |
| 21 | 15, 16, 20 | mp2b 10 | . . 3 ⊢ (∀𝑦 ∈ (ℕ0 ↑m 1o)(𝐺 < ((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦) → (𝐴‘((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦)) = 0 ) ↔ ∀𝑥 ∈ ℕ0 (𝐺 < 𝑥 → (𝐴‘𝑥) = 0 )) |
| 22 | fveq1 6886 | . . . . . . . . . 10 ⊢ (𝑏 = 𝑦 → (𝑏‘∅) = (𝑦‘∅)) | |
| 23 | fvex 6900 | . . . . . . . . . 10 ⊢ (𝑦‘∅) ∈ V | |
| 24 | 22, 14, 23 | fvmpt 6997 | . . . . . . . . 9 ⊢ (𝑦 ∈ (ℕ0 ↑m 1o) → ((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦) = (𝑦‘∅)) |
| 25 | 24 | fveq2d 6891 | . . . . . . . 8 ⊢ (𝑦 ∈ (ℕ0 ↑m 1o) → (𝐴‘((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦)) = (𝐴‘(𝑦‘∅))) |
| 26 | 25 | adantl 481 | . . . . . . 7 ⊢ (((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ*) ∧ 𝑦 ∈ (ℕ0 ↑m 1o)) → (𝐴‘((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦)) = (𝐴‘(𝑦‘∅))) |
| 27 | deg1leb.a | . . . . . . . . 9 ⊢ 𝐴 = (coe1‘𝐹) | |
| 28 | 27 | fvcoe1 22176 | . . . . . . . 8 ⊢ ((𝐹 ∈ 𝐵 ∧ 𝑦 ∈ (ℕ0 ↑m 1o)) → (𝐹‘𝑦) = (𝐴‘(𝑦‘∅))) |
| 29 | 28 | adantlr 715 | . . . . . . 7 ⊢ (((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ*) ∧ 𝑦 ∈ (ℕ0 ↑m 1o)) → (𝐹‘𝑦) = (𝐴‘(𝑦‘∅))) |
| 30 | 26, 29 | eqtr4d 2772 | . . . . . 6 ⊢ (((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ*) ∧ 𝑦 ∈ (ℕ0 ↑m 1o)) → (𝐴‘((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦)) = (𝐹‘𝑦)) |
| 31 | 30 | eqeq1d 2736 | . . . . 5 ⊢ (((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ*) ∧ 𝑦 ∈ (ℕ0 ↑m 1o)) → ((𝐴‘((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦)) = 0 ↔ (𝐹‘𝑦) = 0 )) |
| 32 | 31 | imbi2d 340 | . . . 4 ⊢ (((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ*) ∧ 𝑦 ∈ (ℕ0 ↑m 1o)) → ((𝐺 < ((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦) → (𝐴‘((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦)) = 0 ) ↔ (𝐺 < ((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦) → (𝐹‘𝑦) = 0 ))) |
| 33 | 32 | ralbidva 3163 | . . 3 ⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ*) → (∀𝑦 ∈ (ℕ0 ↑m 1o)(𝐺 < ((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦) → (𝐴‘((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦)) = 0 ) ↔ ∀𝑦 ∈ (ℕ0 ↑m 1o)(𝐺 < ((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦) → (𝐹‘𝑦) = 0 ))) |
| 34 | 21, 33 | bitr3id 285 | . 2 ⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ*) → (∀𝑥 ∈ ℕ0 (𝐺 < 𝑥 → (𝐴‘𝑥) = 0 ) ↔ ∀𝑦 ∈ (ℕ0 ↑m 1o)(𝐺 < ((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦) → (𝐹‘𝑦) = 0 ))) |
| 35 | 10, 34 | bitr4d 282 | 1 ⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ*) → ((𝐷‘𝐹) ≤ 𝐺 ↔ ∀𝑥 ∈ ℕ0 (𝐺 < 𝑥 → (𝐴‘𝑥) = 0 ))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3050 ∅c0 4315 class class class wbr 5125 ↦ cmpt 5207 –onto→wfo 6540 –1-1-onto→wf1o 6541 ‘cfv 6542 (class class class)co 7414 1oc1o 8482 ↑m cmap 8849 ℝ*cxr 11277 < clt 11278 ≤ cle 11279 ℕ0cn0 12510 Basecbs 17230 0gc0g 17460 mPoly cmpl 21893 Poly1cpl1 22145 coe1cco1 22146 deg1cdg1 26048 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-pre-sup 11216 ax-addf 11217 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-tp 4613 df-op 4615 df-uni 4890 df-int 4929 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-se 5620 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7371 df-ov 7417 df-oprab 7418 df-mpo 7419 df-of 7680 df-om 7871 df-1st 7997 df-2nd 7998 df-supp 8169 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-rdg 8433 df-1o 8489 df-er 8728 df-map 8851 df-en 8969 df-dom 8970 df-sdom 8971 df-fin 8972 df-fsupp 9385 df-sup 9465 df-oi 9533 df-card 9962 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11477 df-neg 11478 df-nn 12250 df-2 12312 df-3 12313 df-4 12314 df-5 12315 df-6 12316 df-7 12317 df-8 12318 df-9 12319 df-n0 12511 df-z 12598 df-dec 12718 df-uz 12862 df-fz 13531 df-fzo 13678 df-seq 14026 df-hash 14353 df-struct 17167 df-sets 17184 df-slot 17202 df-ndx 17214 df-base 17231 df-ress 17257 df-plusg 17290 df-mulr 17291 df-starv 17292 df-sca 17293 df-vsca 17294 df-tset 17296 df-ple 17297 df-ds 17299 df-unif 17300 df-0g 17462 df-gsum 17463 df-mgm 18627 df-sgrp 18706 df-mnd 18722 df-submnd 18771 df-grp 18928 df-minusg 18929 df-mulg 19060 df-cntz 19309 df-cmn 19773 df-abl 19774 df-mgp 20111 df-ur 20152 df-ring 20205 df-cring 20206 df-cnfld 21332 df-psr 21896 df-mpl 21898 df-opsr 21900 df-psr1 22148 df-ply1 22150 df-coe1 22151 df-mdeg 26049 df-deg1 26050 |
| This theorem is referenced by: deg1lt 26091 deg1tmle 26112 |
| Copyright terms: Public domain | W3C validator |