| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > deg1leb | Structured version Visualization version GIF version | ||
| Description: Property of being of limited degree. (Contributed by Stefan O'Rear, 23-Mar-2015.) |
| Ref | Expression |
|---|---|
| deg1leb.d | ⊢ 𝐷 = (deg1‘𝑅) |
| deg1leb.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| deg1leb.b | ⊢ 𝐵 = (Base‘𝑃) |
| deg1leb.y | ⊢ 0 = (0g‘𝑅) |
| deg1leb.a | ⊢ 𝐴 = (coe1‘𝐹) |
| Ref | Expression |
|---|---|
| deg1leb | ⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ*) → ((𝐷‘𝐹) ≤ 𝐺 ↔ ∀𝑥 ∈ ℕ0 (𝐺 < 𝑥 → (𝐴‘𝑥) = 0 ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | deg1leb.d | . . . 4 ⊢ 𝐷 = (deg1‘𝑅) | |
| 2 | 1 | deg1fval 26012 | . . 3 ⊢ 𝐷 = (1o mDeg 𝑅) |
| 3 | eqid 2731 | . . 3 ⊢ (1o mPoly 𝑅) = (1o mPoly 𝑅) | |
| 4 | deg1leb.p | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 5 | deg1leb.b | . . . 4 ⊢ 𝐵 = (Base‘𝑃) | |
| 6 | 4, 5 | ply1bas 22107 | . . 3 ⊢ 𝐵 = (Base‘(1o mPoly 𝑅)) |
| 7 | deg1leb.y | . . 3 ⊢ 0 = (0g‘𝑅) | |
| 8 | psr1baslem 22097 | . . 3 ⊢ (ℕ0 ↑m 1o) = {𝑎 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑎 “ ℕ) ∈ Fin} | |
| 9 | tdeglem2 25993 | . . 3 ⊢ (𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅)) = (𝑏 ∈ (ℕ0 ↑m 1o) ↦ (ℂfld Σg 𝑏)) | |
| 10 | 2, 3, 6, 7, 8, 9 | mdegleb 25996 | . 2 ⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ*) → ((𝐷‘𝐹) ≤ 𝐺 ↔ ∀𝑦 ∈ (ℕ0 ↑m 1o)(𝐺 < ((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦) → (𝐹‘𝑦) = 0 ))) |
| 11 | df1o2 8392 | . . . . 5 ⊢ 1o = {∅} | |
| 12 | nn0ex 12387 | . . . . 5 ⊢ ℕ0 ∈ V | |
| 13 | 0ex 5243 | . . . . 5 ⊢ ∅ ∈ V | |
| 14 | eqid 2731 | . . . . 5 ⊢ (𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅)) = (𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅)) | |
| 15 | 11, 12, 13, 14 | mapsnf1o2 8818 | . . . 4 ⊢ (𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅)):(ℕ0 ↑m 1o)–1-1-onto→ℕ0 |
| 16 | f1ofo 6770 | . . . 4 ⊢ ((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅)):(ℕ0 ↑m 1o)–1-1-onto→ℕ0 → (𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅)):(ℕ0 ↑m 1o)–onto→ℕ0) | |
| 17 | breq2 5093 | . . . . . 6 ⊢ (((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦) = 𝑥 → (𝐺 < ((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦) ↔ 𝐺 < 𝑥)) | |
| 18 | fveqeq2 6831 | . . . . . 6 ⊢ (((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦) = 𝑥 → ((𝐴‘((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦)) = 0 ↔ (𝐴‘𝑥) = 0 )) | |
| 19 | 17, 18 | imbi12d 344 | . . . . 5 ⊢ (((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦) = 𝑥 → ((𝐺 < ((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦) → (𝐴‘((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦)) = 0 ) ↔ (𝐺 < 𝑥 → (𝐴‘𝑥) = 0 ))) |
| 20 | 19 | cbvfo 7223 | . . . 4 ⊢ ((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅)):(ℕ0 ↑m 1o)–onto→ℕ0 → (∀𝑦 ∈ (ℕ0 ↑m 1o)(𝐺 < ((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦) → (𝐴‘((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦)) = 0 ) ↔ ∀𝑥 ∈ ℕ0 (𝐺 < 𝑥 → (𝐴‘𝑥) = 0 ))) |
| 21 | 15, 16, 20 | mp2b 10 | . . 3 ⊢ (∀𝑦 ∈ (ℕ0 ↑m 1o)(𝐺 < ((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦) → (𝐴‘((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦)) = 0 ) ↔ ∀𝑥 ∈ ℕ0 (𝐺 < 𝑥 → (𝐴‘𝑥) = 0 )) |
| 22 | fveq1 6821 | . . . . . . . . . 10 ⊢ (𝑏 = 𝑦 → (𝑏‘∅) = (𝑦‘∅)) | |
| 23 | fvex 6835 | . . . . . . . . . 10 ⊢ (𝑦‘∅) ∈ V | |
| 24 | 22, 14, 23 | fvmpt 6929 | . . . . . . . . 9 ⊢ (𝑦 ∈ (ℕ0 ↑m 1o) → ((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦) = (𝑦‘∅)) |
| 25 | 24 | fveq2d 6826 | . . . . . . . 8 ⊢ (𝑦 ∈ (ℕ0 ↑m 1o) → (𝐴‘((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦)) = (𝐴‘(𝑦‘∅))) |
| 26 | 25 | adantl 481 | . . . . . . 7 ⊢ (((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ*) ∧ 𝑦 ∈ (ℕ0 ↑m 1o)) → (𝐴‘((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦)) = (𝐴‘(𝑦‘∅))) |
| 27 | deg1leb.a | . . . . . . . . 9 ⊢ 𝐴 = (coe1‘𝐹) | |
| 28 | 27 | fvcoe1 22120 | . . . . . . . 8 ⊢ ((𝐹 ∈ 𝐵 ∧ 𝑦 ∈ (ℕ0 ↑m 1o)) → (𝐹‘𝑦) = (𝐴‘(𝑦‘∅))) |
| 29 | 28 | adantlr 715 | . . . . . . 7 ⊢ (((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ*) ∧ 𝑦 ∈ (ℕ0 ↑m 1o)) → (𝐹‘𝑦) = (𝐴‘(𝑦‘∅))) |
| 30 | 26, 29 | eqtr4d 2769 | . . . . . 6 ⊢ (((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ*) ∧ 𝑦 ∈ (ℕ0 ↑m 1o)) → (𝐴‘((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦)) = (𝐹‘𝑦)) |
| 31 | 30 | eqeq1d 2733 | . . . . 5 ⊢ (((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ*) ∧ 𝑦 ∈ (ℕ0 ↑m 1o)) → ((𝐴‘((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦)) = 0 ↔ (𝐹‘𝑦) = 0 )) |
| 32 | 31 | imbi2d 340 | . . . 4 ⊢ (((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ*) ∧ 𝑦 ∈ (ℕ0 ↑m 1o)) → ((𝐺 < ((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦) → (𝐴‘((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦)) = 0 ) ↔ (𝐺 < ((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦) → (𝐹‘𝑦) = 0 ))) |
| 33 | 32 | ralbidva 3153 | . . 3 ⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ*) → (∀𝑦 ∈ (ℕ0 ↑m 1o)(𝐺 < ((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦) → (𝐴‘((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦)) = 0 ) ↔ ∀𝑦 ∈ (ℕ0 ↑m 1o)(𝐺 < ((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦) → (𝐹‘𝑦) = 0 ))) |
| 34 | 21, 33 | bitr3id 285 | . 2 ⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ*) → (∀𝑥 ∈ ℕ0 (𝐺 < 𝑥 → (𝐴‘𝑥) = 0 ) ↔ ∀𝑦 ∈ (ℕ0 ↑m 1o)(𝐺 < ((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦) → (𝐹‘𝑦) = 0 ))) |
| 35 | 10, 34 | bitr4d 282 | 1 ⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ*) → ((𝐷‘𝐹) ≤ 𝐺 ↔ ∀𝑥 ∈ ℕ0 (𝐺 < 𝑥 → (𝐴‘𝑥) = 0 ))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∅c0 4280 class class class wbr 5089 ↦ cmpt 5170 –onto→wfo 6479 –1-1-onto→wf1o 6480 ‘cfv 6481 (class class class)co 7346 1oc1o 8378 ↑m cmap 8750 ℝ*cxr 11145 < clt 11146 ≤ cle 11147 ℕ0cn0 12381 Basecbs 17120 0gc0g 17343 mPoly cmpl 21843 Poly1cpl1 22089 coe1cco1 22090 deg1cdg1 25986 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 ax-addf 11085 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-sup 9326 df-oi 9396 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-fz 13408 df-fzo 13555 df-seq 13909 df-hash 14238 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-0g 17345 df-gsum 17346 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-submnd 18692 df-grp 18849 df-minusg 18850 df-mulg 18981 df-cntz 19229 df-cmn 19694 df-abl 19695 df-mgp 20059 df-ur 20100 df-ring 20153 df-cring 20154 df-cnfld 21292 df-psr 21846 df-mpl 21848 df-opsr 21850 df-psr1 22092 df-ply1 22094 df-coe1 22095 df-mdeg 25987 df-deg1 25988 |
| This theorem is referenced by: deg1lt 26029 deg1tmle 26050 |
| Copyright terms: Public domain | W3C validator |