Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > deg1leb | Structured version Visualization version GIF version |
Description: Property of being of limited degree. (Contributed by Stefan O'Rear, 23-Mar-2015.) |
Ref | Expression |
---|---|
deg1leb.d | ⊢ 𝐷 = ( deg1 ‘𝑅) |
deg1leb.p | ⊢ 𝑃 = (Poly1‘𝑅) |
deg1leb.b | ⊢ 𝐵 = (Base‘𝑃) |
deg1leb.y | ⊢ 0 = (0g‘𝑅) |
deg1leb.a | ⊢ 𝐴 = (coe1‘𝐹) |
Ref | Expression |
---|---|
deg1leb | ⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ*) → ((𝐷‘𝐹) ≤ 𝐺 ↔ ∀𝑥 ∈ ℕ0 (𝐺 < 𝑥 → (𝐴‘𝑥) = 0 ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | deg1leb.d | . . . 4 ⊢ 𝐷 = ( deg1 ‘𝑅) | |
2 | 1 | deg1fval 25294 | . . 3 ⊢ 𝐷 = (1o mDeg 𝑅) |
3 | eqid 2736 | . . 3 ⊢ (1o mPoly 𝑅) = (1o mPoly 𝑅) | |
4 | deg1leb.p | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
5 | eqid 2736 | . . . 4 ⊢ (PwSer1‘𝑅) = (PwSer1‘𝑅) | |
6 | deg1leb.b | . . . 4 ⊢ 𝐵 = (Base‘𝑃) | |
7 | 4, 5, 6 | ply1bas 21415 | . . 3 ⊢ 𝐵 = (Base‘(1o mPoly 𝑅)) |
8 | deg1leb.y | . . 3 ⊢ 0 = (0g‘𝑅) | |
9 | psr1baslem 21405 | . . 3 ⊢ (ℕ0 ↑m 1o) = {𝑎 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑎 “ ℕ) ∈ Fin} | |
10 | tdeglem2 25275 | . . 3 ⊢ (𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅)) = (𝑏 ∈ (ℕ0 ↑m 1o) ↦ (ℂfld Σg 𝑏)) | |
11 | 2, 3, 7, 8, 9, 10 | mdegleb 25278 | . 2 ⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ*) → ((𝐷‘𝐹) ≤ 𝐺 ↔ ∀𝑦 ∈ (ℕ0 ↑m 1o)(𝐺 < ((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦) → (𝐹‘𝑦) = 0 ))) |
12 | df1o2 8335 | . . . . 5 ⊢ 1o = {∅} | |
13 | nn0ex 12289 | . . . . 5 ⊢ ℕ0 ∈ V | |
14 | 0ex 5240 | . . . . 5 ⊢ ∅ ∈ V | |
15 | eqid 2736 | . . . . 5 ⊢ (𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅)) = (𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅)) | |
16 | 12, 13, 14, 15 | mapsnf1o2 8713 | . . . 4 ⊢ (𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅)):(ℕ0 ↑m 1o)–1-1-onto→ℕ0 |
17 | f1ofo 6753 | . . . 4 ⊢ ((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅)):(ℕ0 ↑m 1o)–1-1-onto→ℕ0 → (𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅)):(ℕ0 ↑m 1o)–onto→ℕ0) | |
18 | breq2 5085 | . . . . . 6 ⊢ (((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦) = 𝑥 → (𝐺 < ((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦) ↔ 𝐺 < 𝑥)) | |
19 | fveqeq2 6813 | . . . . . 6 ⊢ (((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦) = 𝑥 → ((𝐴‘((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦)) = 0 ↔ (𝐴‘𝑥) = 0 )) | |
20 | 18, 19 | imbi12d 345 | . . . . 5 ⊢ (((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦) = 𝑥 → ((𝐺 < ((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦) → (𝐴‘((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦)) = 0 ) ↔ (𝐺 < 𝑥 → (𝐴‘𝑥) = 0 ))) |
21 | 20 | cbvfo 7193 | . . . 4 ⊢ ((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅)):(ℕ0 ↑m 1o)–onto→ℕ0 → (∀𝑦 ∈ (ℕ0 ↑m 1o)(𝐺 < ((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦) → (𝐴‘((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦)) = 0 ) ↔ ∀𝑥 ∈ ℕ0 (𝐺 < 𝑥 → (𝐴‘𝑥) = 0 ))) |
22 | 16, 17, 21 | mp2b 10 | . . 3 ⊢ (∀𝑦 ∈ (ℕ0 ↑m 1o)(𝐺 < ((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦) → (𝐴‘((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦)) = 0 ) ↔ ∀𝑥 ∈ ℕ0 (𝐺 < 𝑥 → (𝐴‘𝑥) = 0 )) |
23 | fveq1 6803 | . . . . . . . . . 10 ⊢ (𝑏 = 𝑦 → (𝑏‘∅) = (𝑦‘∅)) | |
24 | fvex 6817 | . . . . . . . . . 10 ⊢ (𝑦‘∅) ∈ V | |
25 | 23, 15, 24 | fvmpt 6907 | . . . . . . . . 9 ⊢ (𝑦 ∈ (ℕ0 ↑m 1o) → ((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦) = (𝑦‘∅)) |
26 | 25 | fveq2d 6808 | . . . . . . . 8 ⊢ (𝑦 ∈ (ℕ0 ↑m 1o) → (𝐴‘((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦)) = (𝐴‘(𝑦‘∅))) |
27 | 26 | adantl 483 | . . . . . . 7 ⊢ (((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ*) ∧ 𝑦 ∈ (ℕ0 ↑m 1o)) → (𝐴‘((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦)) = (𝐴‘(𝑦‘∅))) |
28 | deg1leb.a | . . . . . . . . 9 ⊢ 𝐴 = (coe1‘𝐹) | |
29 | 28 | fvcoe1 21427 | . . . . . . . 8 ⊢ ((𝐹 ∈ 𝐵 ∧ 𝑦 ∈ (ℕ0 ↑m 1o)) → (𝐹‘𝑦) = (𝐴‘(𝑦‘∅))) |
30 | 29 | adantlr 713 | . . . . . . 7 ⊢ (((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ*) ∧ 𝑦 ∈ (ℕ0 ↑m 1o)) → (𝐹‘𝑦) = (𝐴‘(𝑦‘∅))) |
31 | 27, 30 | eqtr4d 2779 | . . . . . 6 ⊢ (((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ*) ∧ 𝑦 ∈ (ℕ0 ↑m 1o)) → (𝐴‘((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦)) = (𝐹‘𝑦)) |
32 | 31 | eqeq1d 2738 | . . . . 5 ⊢ (((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ*) ∧ 𝑦 ∈ (ℕ0 ↑m 1o)) → ((𝐴‘((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦)) = 0 ↔ (𝐹‘𝑦) = 0 )) |
33 | 32 | imbi2d 341 | . . . 4 ⊢ (((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ*) ∧ 𝑦 ∈ (ℕ0 ↑m 1o)) → ((𝐺 < ((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦) → (𝐴‘((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦)) = 0 ) ↔ (𝐺 < ((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦) → (𝐹‘𝑦) = 0 ))) |
34 | 33 | ralbidva 3169 | . . 3 ⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ*) → (∀𝑦 ∈ (ℕ0 ↑m 1o)(𝐺 < ((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦) → (𝐴‘((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦)) = 0 ) ↔ ∀𝑦 ∈ (ℕ0 ↑m 1o)(𝐺 < ((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦) → (𝐹‘𝑦) = 0 ))) |
35 | 22, 34 | bitr3id 285 | . 2 ⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ*) → (∀𝑥 ∈ ℕ0 (𝐺 < 𝑥 → (𝐴‘𝑥) = 0 ) ↔ ∀𝑦 ∈ (ℕ0 ↑m 1o)(𝐺 < ((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦) → (𝐹‘𝑦) = 0 ))) |
36 | 11, 35 | bitr4d 282 | 1 ⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ*) → ((𝐷‘𝐹) ≤ 𝐺 ↔ ∀𝑥 ∈ ℕ0 (𝐺 < 𝑥 → (𝐴‘𝑥) = 0 ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1539 ∈ wcel 2104 ∀wral 3062 ∅c0 4262 class class class wbr 5081 ↦ cmpt 5164 –onto→wfo 6456 –1-1-onto→wf1o 6457 ‘cfv 6458 (class class class)co 7307 1oc1o 8321 ↑m cmap 8646 ℝ*cxr 11058 < clt 11059 ≤ cle 11060 ℕ0cn0 12283 Basecbs 16961 0gc0g 17199 mPoly cmpl 21158 PwSer1cps1 21395 Poly1cpl1 21397 coe1cco1 21398 deg1 cdg1 25265 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10977 ax-resscn 10978 ax-1cn 10979 ax-icn 10980 ax-addcl 10981 ax-addrcl 10982 ax-mulcl 10983 ax-mulrcl 10984 ax-mulcom 10985 ax-addass 10986 ax-mulass 10987 ax-distr 10988 ax-i2m1 10989 ax-1ne0 10990 ax-1rid 10991 ax-rnegex 10992 ax-rrecex 10993 ax-cnre 10994 ax-pre-lttri 10995 ax-pre-lttrn 10996 ax-pre-ltadd 10997 ax-pre-mulgt0 10998 ax-pre-sup 10999 ax-addf 11000 ax-mulf 11001 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3304 df-reu 3305 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-tp 4570 df-op 4572 df-uni 4845 df-int 4887 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-se 5556 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-isom 6467 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-of 7565 df-om 7745 df-1st 7863 df-2nd 7864 df-supp 8009 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-er 8529 df-map 8648 df-en 8765 df-dom 8766 df-sdom 8767 df-fin 8768 df-fsupp 9177 df-sup 9249 df-oi 9317 df-card 9745 df-pnf 11061 df-mnf 11062 df-xr 11063 df-ltxr 11064 df-le 11065 df-sub 11257 df-neg 11258 df-nn 12024 df-2 12086 df-3 12087 df-4 12088 df-5 12089 df-6 12090 df-7 12091 df-8 12092 df-9 12093 df-n0 12284 df-z 12370 df-dec 12488 df-uz 12633 df-fz 13290 df-fzo 13433 df-seq 13772 df-hash 14095 df-struct 16897 df-sets 16914 df-slot 16932 df-ndx 16944 df-base 16962 df-ress 16991 df-plusg 17024 df-mulr 17025 df-starv 17026 df-sca 17027 df-vsca 17028 df-tset 17030 df-ple 17031 df-ds 17033 df-unif 17034 df-0g 17201 df-gsum 17202 df-mgm 18375 df-sgrp 18424 df-mnd 18435 df-submnd 18480 df-grp 18629 df-minusg 18630 df-mulg 18750 df-cntz 18972 df-cmn 19437 df-abl 19438 df-mgp 19770 df-ur 19787 df-ring 19834 df-cring 19835 df-cnfld 20647 df-psr 21161 df-mpl 21163 df-opsr 21165 df-psr1 21400 df-ply1 21402 df-coe1 21403 df-mdeg 25266 df-deg1 25267 |
This theorem is referenced by: deg1lt 25311 deg1tmle 25331 |
Copyright terms: Public domain | W3C validator |