![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > deg1leb | Structured version Visualization version GIF version |
Description: Property of being of limited degree. (Contributed by Stefan O'Rear, 23-Mar-2015.) |
Ref | Expression |
---|---|
deg1leb.d | ⊢ 𝐷 = ( deg1 ‘𝑅) |
deg1leb.p | ⊢ 𝑃 = (Poly1‘𝑅) |
deg1leb.b | ⊢ 𝐵 = (Base‘𝑃) |
deg1leb.y | ⊢ 0 = (0g‘𝑅) |
deg1leb.a | ⊢ 𝐴 = (coe1‘𝐹) |
Ref | Expression |
---|---|
deg1leb | ⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ*) → ((𝐷‘𝐹) ≤ 𝐺 ↔ ∀𝑥 ∈ ℕ0 (𝐺 < 𝑥 → (𝐴‘𝑥) = 0 ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | deg1leb.d | . . . 4 ⊢ 𝐷 = ( deg1 ‘𝑅) | |
2 | 1 | deg1fval 26009 | . . 3 ⊢ 𝐷 = (1o mDeg 𝑅) |
3 | eqid 2727 | . . 3 ⊢ (1o mPoly 𝑅) = (1o mPoly 𝑅) | |
4 | deg1leb.p | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
5 | eqid 2727 | . . . 4 ⊢ (PwSer1‘𝑅) = (PwSer1‘𝑅) | |
6 | deg1leb.b | . . . 4 ⊢ 𝐵 = (Base‘𝑃) | |
7 | 4, 5, 6 | ply1bas 22107 | . . 3 ⊢ 𝐵 = (Base‘(1o mPoly 𝑅)) |
8 | deg1leb.y | . . 3 ⊢ 0 = (0g‘𝑅) | |
9 | psr1baslem 22097 | . . 3 ⊢ (ℕ0 ↑m 1o) = {𝑎 ∈ (ℕ0 ↑m 1o) ∣ (◡𝑎 “ ℕ) ∈ Fin} | |
10 | tdeglem2 25990 | . . 3 ⊢ (𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅)) = (𝑏 ∈ (ℕ0 ↑m 1o) ↦ (ℂfld Σg 𝑏)) | |
11 | 2, 3, 7, 8, 9, 10 | mdegleb 25993 | . 2 ⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ*) → ((𝐷‘𝐹) ≤ 𝐺 ↔ ∀𝑦 ∈ (ℕ0 ↑m 1o)(𝐺 < ((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦) → (𝐹‘𝑦) = 0 ))) |
12 | df1o2 8487 | . . . . 5 ⊢ 1o = {∅} | |
13 | nn0ex 12502 | . . . . 5 ⊢ ℕ0 ∈ V | |
14 | 0ex 5301 | . . . . 5 ⊢ ∅ ∈ V | |
15 | eqid 2727 | . . . . 5 ⊢ (𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅)) = (𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅)) | |
16 | 12, 13, 14, 15 | mapsnf1o2 8906 | . . . 4 ⊢ (𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅)):(ℕ0 ↑m 1o)–1-1-onto→ℕ0 |
17 | f1ofo 6840 | . . . 4 ⊢ ((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅)):(ℕ0 ↑m 1o)–1-1-onto→ℕ0 → (𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅)):(ℕ0 ↑m 1o)–onto→ℕ0) | |
18 | breq2 5146 | . . . . . 6 ⊢ (((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦) = 𝑥 → (𝐺 < ((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦) ↔ 𝐺 < 𝑥)) | |
19 | fveqeq2 6900 | . . . . . 6 ⊢ (((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦) = 𝑥 → ((𝐴‘((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦)) = 0 ↔ (𝐴‘𝑥) = 0 )) | |
20 | 18, 19 | imbi12d 344 | . . . . 5 ⊢ (((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦) = 𝑥 → ((𝐺 < ((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦) → (𝐴‘((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦)) = 0 ) ↔ (𝐺 < 𝑥 → (𝐴‘𝑥) = 0 ))) |
21 | 20 | cbvfo 7292 | . . . 4 ⊢ ((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅)):(ℕ0 ↑m 1o)–onto→ℕ0 → (∀𝑦 ∈ (ℕ0 ↑m 1o)(𝐺 < ((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦) → (𝐴‘((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦)) = 0 ) ↔ ∀𝑥 ∈ ℕ0 (𝐺 < 𝑥 → (𝐴‘𝑥) = 0 ))) |
22 | 16, 17, 21 | mp2b 10 | . . 3 ⊢ (∀𝑦 ∈ (ℕ0 ↑m 1o)(𝐺 < ((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦) → (𝐴‘((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦)) = 0 ) ↔ ∀𝑥 ∈ ℕ0 (𝐺 < 𝑥 → (𝐴‘𝑥) = 0 )) |
23 | fveq1 6890 | . . . . . . . . . 10 ⊢ (𝑏 = 𝑦 → (𝑏‘∅) = (𝑦‘∅)) | |
24 | fvex 6904 | . . . . . . . . . 10 ⊢ (𝑦‘∅) ∈ V | |
25 | 23, 15, 24 | fvmpt 6999 | . . . . . . . . 9 ⊢ (𝑦 ∈ (ℕ0 ↑m 1o) → ((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦) = (𝑦‘∅)) |
26 | 25 | fveq2d 6895 | . . . . . . . 8 ⊢ (𝑦 ∈ (ℕ0 ↑m 1o) → (𝐴‘((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦)) = (𝐴‘(𝑦‘∅))) |
27 | 26 | adantl 481 | . . . . . . 7 ⊢ (((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ*) ∧ 𝑦 ∈ (ℕ0 ↑m 1o)) → (𝐴‘((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦)) = (𝐴‘(𝑦‘∅))) |
28 | deg1leb.a | . . . . . . . . 9 ⊢ 𝐴 = (coe1‘𝐹) | |
29 | 28 | fvcoe1 22119 | . . . . . . . 8 ⊢ ((𝐹 ∈ 𝐵 ∧ 𝑦 ∈ (ℕ0 ↑m 1o)) → (𝐹‘𝑦) = (𝐴‘(𝑦‘∅))) |
30 | 29 | adantlr 714 | . . . . . . 7 ⊢ (((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ*) ∧ 𝑦 ∈ (ℕ0 ↑m 1o)) → (𝐹‘𝑦) = (𝐴‘(𝑦‘∅))) |
31 | 27, 30 | eqtr4d 2770 | . . . . . 6 ⊢ (((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ*) ∧ 𝑦 ∈ (ℕ0 ↑m 1o)) → (𝐴‘((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦)) = (𝐹‘𝑦)) |
32 | 31 | eqeq1d 2729 | . . . . 5 ⊢ (((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ*) ∧ 𝑦 ∈ (ℕ0 ↑m 1o)) → ((𝐴‘((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦)) = 0 ↔ (𝐹‘𝑦) = 0 )) |
33 | 32 | imbi2d 340 | . . . 4 ⊢ (((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ*) ∧ 𝑦 ∈ (ℕ0 ↑m 1o)) → ((𝐺 < ((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦) → (𝐴‘((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦)) = 0 ) ↔ (𝐺 < ((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦) → (𝐹‘𝑦) = 0 ))) |
34 | 33 | ralbidva 3170 | . . 3 ⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ*) → (∀𝑦 ∈ (ℕ0 ↑m 1o)(𝐺 < ((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦) → (𝐴‘((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦)) = 0 ) ↔ ∀𝑦 ∈ (ℕ0 ↑m 1o)(𝐺 < ((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦) → (𝐹‘𝑦) = 0 ))) |
35 | 22, 34 | bitr3id 285 | . 2 ⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ*) → (∀𝑥 ∈ ℕ0 (𝐺 < 𝑥 → (𝐴‘𝑥) = 0 ) ↔ ∀𝑦 ∈ (ℕ0 ↑m 1o)(𝐺 < ((𝑏 ∈ (ℕ0 ↑m 1o) ↦ (𝑏‘∅))‘𝑦) → (𝐹‘𝑦) = 0 ))) |
36 | 11, 35 | bitr4d 282 | 1 ⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ ℝ*) → ((𝐷‘𝐹) ≤ 𝐺 ↔ ∀𝑥 ∈ ℕ0 (𝐺 < 𝑥 → (𝐴‘𝑥) = 0 ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∀wral 3056 ∅c0 4318 class class class wbr 5142 ↦ cmpt 5225 –onto→wfo 6540 –1-1-onto→wf1o 6541 ‘cfv 6542 (class class class)co 7414 1oc1o 8473 ↑m cmap 8838 ℝ*cxr 11271 < clt 11272 ≤ cle 11273 ℕ0cn0 12496 Basecbs 17173 0gc0g 17414 mPoly cmpl 21832 PwSer1cps1 22087 Poly1cpl1 22089 coe1cco1 22090 deg1 cdg1 25980 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11188 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 ax-pre-sup 11210 ax-addf 11211 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-of 7679 df-om 7865 df-1st 7987 df-2nd 7988 df-supp 8160 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-map 8840 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-fsupp 9380 df-sup 9459 df-oi 9527 df-card 9956 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-nn 12237 df-2 12299 df-3 12300 df-4 12301 df-5 12302 df-6 12303 df-7 12304 df-8 12305 df-9 12306 df-n0 12497 df-z 12583 df-dec 12702 df-uz 12847 df-fz 13511 df-fzo 13654 df-seq 13993 df-hash 14316 df-struct 17109 df-sets 17126 df-slot 17144 df-ndx 17156 df-base 17174 df-ress 17203 df-plusg 17239 df-mulr 17240 df-starv 17241 df-sca 17242 df-vsca 17243 df-tset 17245 df-ple 17246 df-ds 17248 df-unif 17249 df-0g 17416 df-gsum 17417 df-mgm 18593 df-sgrp 18672 df-mnd 18688 df-submnd 18734 df-grp 18886 df-minusg 18887 df-mulg 19017 df-cntz 19261 df-cmn 19730 df-abl 19731 df-mgp 20068 df-ur 20115 df-ring 20168 df-cring 20169 df-cnfld 21273 df-psr 21835 df-mpl 21837 df-opsr 21839 df-psr1 22092 df-ply1 22094 df-coe1 22095 df-mdeg 25981 df-deg1 25982 |
This theorem is referenced by: deg1lt 26026 deg1tmle 26046 |
Copyright terms: Public domain | W3C validator |