MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  deg1leb Structured version   Visualization version   GIF version

Theorem deg1leb 25613
Description: Property of being of limited degree. (Contributed by Stefan O'Rear, 23-Mar-2015.)
Hypotheses
Ref Expression
deg1leb.d 𝐷 = ( deg1𝑅)
deg1leb.p 𝑃 = (Poly1𝑅)
deg1leb.b 𝐵 = (Base‘𝑃)
deg1leb.y 0 = (0g𝑅)
deg1leb.a 𝐴 = (coe1𝐹)
Assertion
Ref Expression
deg1leb ((𝐹𝐵𝐺 ∈ ℝ*) → ((𝐷𝐹) ≤ 𝐺 ↔ ∀𝑥 ∈ ℕ0 (𝐺 < 𝑥 → (𝐴𝑥) = 0 )))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐺   𝑥, 0
Allowed substitution hints:   𝐵(𝑥)   𝐷(𝑥)   𝑃(𝑥)   𝑅(𝑥)   𝐹(𝑥)

Proof of Theorem deg1leb
Dummy variables 𝑦 𝑏 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 deg1leb.d . . . 4 𝐷 = ( deg1𝑅)
21deg1fval 25598 . . 3 𝐷 = (1o mDeg 𝑅)
3 eqid 2733 . . 3 (1o mPoly 𝑅) = (1o mPoly 𝑅)
4 deg1leb.p . . . 4 𝑃 = (Poly1𝑅)
5 eqid 2733 . . . 4 (PwSer1𝑅) = (PwSer1𝑅)
6 deg1leb.b . . . 4 𝐵 = (Base‘𝑃)
74, 5, 6ply1bas 21719 . . 3 𝐵 = (Base‘(1o mPoly 𝑅))
8 deg1leb.y . . 3 0 = (0g𝑅)
9 psr1baslem 21709 . . 3 (ℕ0m 1o) = {𝑎 ∈ (ℕ0m 1o) ∣ (𝑎 “ ℕ) ∈ Fin}
10 tdeglem2 25579 . . 3 (𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅)) = (𝑏 ∈ (ℕ0m 1o) ↦ (ℂfld Σg 𝑏))
112, 3, 7, 8, 9, 10mdegleb 25582 . 2 ((𝐹𝐵𝐺 ∈ ℝ*) → ((𝐷𝐹) ≤ 𝐺 ↔ ∀𝑦 ∈ (ℕ0m 1o)(𝐺 < ((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦) → (𝐹𝑦) = 0 )))
12 df1o2 8473 . . . . 5 1o = {∅}
13 nn0ex 12478 . . . . 5 0 ∈ V
14 0ex 5308 . . . . 5 ∅ ∈ V
15 eqid 2733 . . . . 5 (𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅)) = (𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))
1612, 13, 14, 15mapsnf1o2 8888 . . . 4 (𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅)):(ℕ0m 1o)–1-1-onto→ℕ0
17 f1ofo 6841 . . . 4 ((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅)):(ℕ0m 1o)–1-1-onto→ℕ0 → (𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅)):(ℕ0m 1o)–onto→ℕ0)
18 breq2 5153 . . . . . 6 (((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦) = 𝑥 → (𝐺 < ((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦) ↔ 𝐺 < 𝑥))
19 fveqeq2 6901 . . . . . 6 (((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦) = 𝑥 → ((𝐴‘((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦)) = 0 ↔ (𝐴𝑥) = 0 ))
2018, 19imbi12d 345 . . . . 5 (((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦) = 𝑥 → ((𝐺 < ((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦) → (𝐴‘((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦)) = 0 ) ↔ (𝐺 < 𝑥 → (𝐴𝑥) = 0 )))
2120cbvfo 7287 . . . 4 ((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅)):(ℕ0m 1o)–onto→ℕ0 → (∀𝑦 ∈ (ℕ0m 1o)(𝐺 < ((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦) → (𝐴‘((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦)) = 0 ) ↔ ∀𝑥 ∈ ℕ0 (𝐺 < 𝑥 → (𝐴𝑥) = 0 )))
2216, 17, 21mp2b 10 . . 3 (∀𝑦 ∈ (ℕ0m 1o)(𝐺 < ((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦) → (𝐴‘((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦)) = 0 ) ↔ ∀𝑥 ∈ ℕ0 (𝐺 < 𝑥 → (𝐴𝑥) = 0 ))
23 fveq1 6891 . . . . . . . . . 10 (𝑏 = 𝑦 → (𝑏‘∅) = (𝑦‘∅))
24 fvex 6905 . . . . . . . . . 10 (𝑦‘∅) ∈ V
2523, 15, 24fvmpt 6999 . . . . . . . . 9 (𝑦 ∈ (ℕ0m 1o) → ((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦) = (𝑦‘∅))
2625fveq2d 6896 . . . . . . . 8 (𝑦 ∈ (ℕ0m 1o) → (𝐴‘((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦)) = (𝐴‘(𝑦‘∅)))
2726adantl 483 . . . . . . 7 (((𝐹𝐵𝐺 ∈ ℝ*) ∧ 𝑦 ∈ (ℕ0m 1o)) → (𝐴‘((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦)) = (𝐴‘(𝑦‘∅)))
28 deg1leb.a . . . . . . . . 9 𝐴 = (coe1𝐹)
2928fvcoe1 21731 . . . . . . . 8 ((𝐹𝐵𝑦 ∈ (ℕ0m 1o)) → (𝐹𝑦) = (𝐴‘(𝑦‘∅)))
3029adantlr 714 . . . . . . 7 (((𝐹𝐵𝐺 ∈ ℝ*) ∧ 𝑦 ∈ (ℕ0m 1o)) → (𝐹𝑦) = (𝐴‘(𝑦‘∅)))
3127, 30eqtr4d 2776 . . . . . 6 (((𝐹𝐵𝐺 ∈ ℝ*) ∧ 𝑦 ∈ (ℕ0m 1o)) → (𝐴‘((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦)) = (𝐹𝑦))
3231eqeq1d 2735 . . . . 5 (((𝐹𝐵𝐺 ∈ ℝ*) ∧ 𝑦 ∈ (ℕ0m 1o)) → ((𝐴‘((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦)) = 0 ↔ (𝐹𝑦) = 0 ))
3332imbi2d 341 . . . 4 (((𝐹𝐵𝐺 ∈ ℝ*) ∧ 𝑦 ∈ (ℕ0m 1o)) → ((𝐺 < ((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦) → (𝐴‘((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦)) = 0 ) ↔ (𝐺 < ((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦) → (𝐹𝑦) = 0 )))
3433ralbidva 3176 . . 3 ((𝐹𝐵𝐺 ∈ ℝ*) → (∀𝑦 ∈ (ℕ0m 1o)(𝐺 < ((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦) → (𝐴‘((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦)) = 0 ) ↔ ∀𝑦 ∈ (ℕ0m 1o)(𝐺 < ((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦) → (𝐹𝑦) = 0 )))
3522, 34bitr3id 285 . 2 ((𝐹𝐵𝐺 ∈ ℝ*) → (∀𝑥 ∈ ℕ0 (𝐺 < 𝑥 → (𝐴𝑥) = 0 ) ↔ ∀𝑦 ∈ (ℕ0m 1o)(𝐺 < ((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦) → (𝐹𝑦) = 0 )))
3611, 35bitr4d 282 1 ((𝐹𝐵𝐺 ∈ ℝ*) → ((𝐷𝐹) ≤ 𝐺 ↔ ∀𝑥 ∈ ℕ0 (𝐺 < 𝑥 → (𝐴𝑥) = 0 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  wral 3062  c0 4323   class class class wbr 5149  cmpt 5232  ontowfo 6542  1-1-ontowf1o 6543  cfv 6544  (class class class)co 7409  1oc1o 8459  m cmap 8820  *cxr 11247   < clt 11248  cle 11249  0cn0 12472  Basecbs 17144  0gc0g 17385   mPoly cmpl 21459  PwSer1cps1 21699  Poly1cpl1 21701  coe1cco1 21702   deg1 cdg1 25569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187  ax-pre-sup 11188  ax-addf 11189  ax-mulf 11190
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-isom 6553  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-of 7670  df-om 7856  df-1st 7975  df-2nd 7976  df-supp 8147  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-er 8703  df-map 8822  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-fsupp 9362  df-sup 9437  df-oi 9505  df-card 9934  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-nn 12213  df-2 12275  df-3 12276  df-4 12277  df-5 12278  df-6 12279  df-7 12280  df-8 12281  df-9 12282  df-n0 12473  df-z 12559  df-dec 12678  df-uz 12823  df-fz 13485  df-fzo 13628  df-seq 13967  df-hash 14291  df-struct 17080  df-sets 17097  df-slot 17115  df-ndx 17127  df-base 17145  df-ress 17174  df-plusg 17210  df-mulr 17211  df-starv 17212  df-sca 17213  df-vsca 17214  df-tset 17216  df-ple 17217  df-ds 17219  df-unif 17220  df-0g 17387  df-gsum 17388  df-mgm 18561  df-sgrp 18610  df-mnd 18626  df-submnd 18672  df-grp 18822  df-minusg 18823  df-mulg 18951  df-cntz 19181  df-cmn 19650  df-abl 19651  df-mgp 19988  df-ur 20005  df-ring 20058  df-cring 20059  df-cnfld 20945  df-psr 21462  df-mpl 21464  df-opsr 21466  df-psr1 21704  df-ply1 21706  df-coe1 21707  df-mdeg 25570  df-deg1 25571
This theorem is referenced by:  deg1lt  25615  deg1tmle  25635
  Copyright terms: Public domain W3C validator