MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  deg1leb Structured version   Visualization version   GIF version

Theorem deg1leb 24691
Description: Property of being of limited degree. (Contributed by Stefan O'Rear, 23-Mar-2015.)
Hypotheses
Ref Expression
deg1leb.d 𝐷 = ( deg1𝑅)
deg1leb.p 𝑃 = (Poly1𝑅)
deg1leb.b 𝐵 = (Base‘𝑃)
deg1leb.y 0 = (0g𝑅)
deg1leb.a 𝐴 = (coe1𝐹)
Assertion
Ref Expression
deg1leb ((𝐹𝐵𝐺 ∈ ℝ*) → ((𝐷𝐹) ≤ 𝐺 ↔ ∀𝑥 ∈ ℕ0 (𝐺 < 𝑥 → (𝐴𝑥) = 0 )))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐺   𝑥, 0
Allowed substitution hints:   𝐵(𝑥)   𝐷(𝑥)   𝑃(𝑥)   𝑅(𝑥)   𝐹(𝑥)

Proof of Theorem deg1leb
Dummy variables 𝑦 𝑏 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 deg1leb.d . . . 4 𝐷 = ( deg1𝑅)
21deg1fval 24676 . . 3 𝐷 = (1o mDeg 𝑅)
3 eqid 2823 . . 3 (1o mPoly 𝑅) = (1o mPoly 𝑅)
4 deg1leb.p . . . 4 𝑃 = (Poly1𝑅)
5 eqid 2823 . . . 4 (PwSer1𝑅) = (PwSer1𝑅)
6 deg1leb.b . . . 4 𝐵 = (Base‘𝑃)
74, 5, 6ply1bas 20365 . . 3 𝐵 = (Base‘(1o mPoly 𝑅))
8 deg1leb.y . . 3 0 = (0g𝑅)
9 psr1baslem 20355 . . 3 (ℕ0m 1o) = {𝑎 ∈ (ℕ0m 1o) ∣ (𝑎 “ ℕ) ∈ Fin}
10 tdeglem2 24657 . . 3 (𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅)) = (𝑏 ∈ (ℕ0m 1o) ↦ (ℂfld Σg 𝑏))
112, 3, 7, 8, 9, 10mdegleb 24660 . 2 ((𝐹𝐵𝐺 ∈ ℝ*) → ((𝐷𝐹) ≤ 𝐺 ↔ ∀𝑦 ∈ (ℕ0m 1o)(𝐺 < ((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦) → (𝐹𝑦) = 0 )))
12 df1o2 8118 . . . . 5 1o = {∅}
13 nn0ex 11906 . . . . 5 0 ∈ V
14 0ex 5213 . . . . 5 ∅ ∈ V
15 eqid 2823 . . . . 5 (𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅)) = (𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))
1612, 13, 14, 15mapsnf1o2 8460 . . . 4 (𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅)):(ℕ0m 1o)–1-1-onto→ℕ0
17 f1ofo 6624 . . . 4 ((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅)):(ℕ0m 1o)–1-1-onto→ℕ0 → (𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅)):(ℕ0m 1o)–onto→ℕ0)
18 breq2 5072 . . . . . 6 (((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦) = 𝑥 → (𝐺 < ((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦) ↔ 𝐺 < 𝑥))
19 fveqeq2 6681 . . . . . 6 (((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦) = 𝑥 → ((𝐴‘((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦)) = 0 ↔ (𝐴𝑥) = 0 ))
2018, 19imbi12d 347 . . . . 5 (((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦) = 𝑥 → ((𝐺 < ((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦) → (𝐴‘((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦)) = 0 ) ↔ (𝐺 < 𝑥 → (𝐴𝑥) = 0 )))
2120cbvfo 7047 . . . 4 ((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅)):(ℕ0m 1o)–onto→ℕ0 → (∀𝑦 ∈ (ℕ0m 1o)(𝐺 < ((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦) → (𝐴‘((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦)) = 0 ) ↔ ∀𝑥 ∈ ℕ0 (𝐺 < 𝑥 → (𝐴𝑥) = 0 )))
2216, 17, 21mp2b 10 . . 3 (∀𝑦 ∈ (ℕ0m 1o)(𝐺 < ((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦) → (𝐴‘((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦)) = 0 ) ↔ ∀𝑥 ∈ ℕ0 (𝐺 < 𝑥 → (𝐴𝑥) = 0 ))
23 fveq1 6671 . . . . . . . . . 10 (𝑏 = 𝑦 → (𝑏‘∅) = (𝑦‘∅))
24 fvex 6685 . . . . . . . . . 10 (𝑦‘∅) ∈ V
2523, 15, 24fvmpt 6770 . . . . . . . . 9 (𝑦 ∈ (ℕ0m 1o) → ((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦) = (𝑦‘∅))
2625fveq2d 6676 . . . . . . . 8 (𝑦 ∈ (ℕ0m 1o) → (𝐴‘((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦)) = (𝐴‘(𝑦‘∅)))
2726adantl 484 . . . . . . 7 (((𝐹𝐵𝐺 ∈ ℝ*) ∧ 𝑦 ∈ (ℕ0m 1o)) → (𝐴‘((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦)) = (𝐴‘(𝑦‘∅)))
28 deg1leb.a . . . . . . . . 9 𝐴 = (coe1𝐹)
2928fvcoe1 20377 . . . . . . . 8 ((𝐹𝐵𝑦 ∈ (ℕ0m 1o)) → (𝐹𝑦) = (𝐴‘(𝑦‘∅)))
3029adantlr 713 . . . . . . 7 (((𝐹𝐵𝐺 ∈ ℝ*) ∧ 𝑦 ∈ (ℕ0m 1o)) → (𝐹𝑦) = (𝐴‘(𝑦‘∅)))
3127, 30eqtr4d 2861 . . . . . 6 (((𝐹𝐵𝐺 ∈ ℝ*) ∧ 𝑦 ∈ (ℕ0m 1o)) → (𝐴‘((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦)) = (𝐹𝑦))
3231eqeq1d 2825 . . . . 5 (((𝐹𝐵𝐺 ∈ ℝ*) ∧ 𝑦 ∈ (ℕ0m 1o)) → ((𝐴‘((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦)) = 0 ↔ (𝐹𝑦) = 0 ))
3332imbi2d 343 . . . 4 (((𝐹𝐵𝐺 ∈ ℝ*) ∧ 𝑦 ∈ (ℕ0m 1o)) → ((𝐺 < ((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦) → (𝐴‘((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦)) = 0 ) ↔ (𝐺 < ((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦) → (𝐹𝑦) = 0 )))
3433ralbidva 3198 . . 3 ((𝐹𝐵𝐺 ∈ ℝ*) → (∀𝑦 ∈ (ℕ0m 1o)(𝐺 < ((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦) → (𝐴‘((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦)) = 0 ) ↔ ∀𝑦 ∈ (ℕ0m 1o)(𝐺 < ((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦) → (𝐹𝑦) = 0 )))
3522, 34syl5bbr 287 . 2 ((𝐹𝐵𝐺 ∈ ℝ*) → (∀𝑥 ∈ ℕ0 (𝐺 < 𝑥 → (𝐴𝑥) = 0 ) ↔ ∀𝑦 ∈ (ℕ0m 1o)(𝐺 < ((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦) → (𝐹𝑦) = 0 )))
3611, 35bitr4d 284 1 ((𝐹𝐵𝐺 ∈ ℝ*) → ((𝐷𝐹) ≤ 𝐺 ↔ ∀𝑥 ∈ ℕ0 (𝐺 < 𝑥 → (𝐴𝑥) = 0 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wral 3140  c0 4293   class class class wbr 5068  cmpt 5148  ontowfo 6355  1-1-ontowf1o 6356  cfv 6357  (class class class)co 7158  1oc1o 8097  m cmap 8408  *cxr 10676   < clt 10677  cle 10678  0cn0 11900  Basecbs 16485  0gc0g 16715   mPoly cmpl 20135  PwSer1cps1 20345  Poly1cpl1 20347  coe1cco1 20348   deg1 cdg1 24650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617  ax-addf 10618  ax-mulf 10619
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-sup 8908  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-fz 12896  df-fzo 13037  df-seq 13373  df-hash 13694  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-starv 16582  df-sca 16583  df-vsca 16584  df-tset 16586  df-ple 16587  df-ds 16589  df-unif 16590  df-0g 16717  df-gsum 16718  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-submnd 17959  df-grp 18108  df-minusg 18109  df-mulg 18227  df-cntz 18449  df-cmn 18910  df-abl 18911  df-mgp 19242  df-ur 19254  df-ring 19301  df-cring 19302  df-psr 20138  df-mpl 20140  df-opsr 20142  df-psr1 20350  df-ply1 20352  df-coe1 20353  df-cnfld 20548  df-mdeg 24651  df-deg1 24652
This theorem is referenced by:  deg1lt  24693  deg1tmle  24713
  Copyright terms: Public domain W3C validator