MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  deg1leb Structured version   Visualization version   GIF version

Theorem deg1leb 26024
Description: Property of being of limited degree. (Contributed by Stefan O'Rear, 23-Mar-2015.)
Hypotheses
Ref Expression
deg1leb.d 𝐷 = ( deg1𝑅)
deg1leb.p 𝑃 = (Poly1𝑅)
deg1leb.b 𝐵 = (Base‘𝑃)
deg1leb.y 0 = (0g𝑅)
deg1leb.a 𝐴 = (coe1𝐹)
Assertion
Ref Expression
deg1leb ((𝐹𝐵𝐺 ∈ ℝ*) → ((𝐷𝐹) ≤ 𝐺 ↔ ∀𝑥 ∈ ℕ0 (𝐺 < 𝑥 → (𝐴𝑥) = 0 )))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐺   𝑥, 0
Allowed substitution hints:   𝐵(𝑥)   𝐷(𝑥)   𝑃(𝑥)   𝑅(𝑥)   𝐹(𝑥)

Proof of Theorem deg1leb
Dummy variables 𝑦 𝑏 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 deg1leb.d . . . 4 𝐷 = ( deg1𝑅)
21deg1fval 26009 . . 3 𝐷 = (1o mDeg 𝑅)
3 eqid 2727 . . 3 (1o mPoly 𝑅) = (1o mPoly 𝑅)
4 deg1leb.p . . . 4 𝑃 = (Poly1𝑅)
5 eqid 2727 . . . 4 (PwSer1𝑅) = (PwSer1𝑅)
6 deg1leb.b . . . 4 𝐵 = (Base‘𝑃)
74, 5, 6ply1bas 22107 . . 3 𝐵 = (Base‘(1o mPoly 𝑅))
8 deg1leb.y . . 3 0 = (0g𝑅)
9 psr1baslem 22097 . . 3 (ℕ0m 1o) = {𝑎 ∈ (ℕ0m 1o) ∣ (𝑎 “ ℕ) ∈ Fin}
10 tdeglem2 25990 . . 3 (𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅)) = (𝑏 ∈ (ℕ0m 1o) ↦ (ℂfld Σg 𝑏))
112, 3, 7, 8, 9, 10mdegleb 25993 . 2 ((𝐹𝐵𝐺 ∈ ℝ*) → ((𝐷𝐹) ≤ 𝐺 ↔ ∀𝑦 ∈ (ℕ0m 1o)(𝐺 < ((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦) → (𝐹𝑦) = 0 )))
12 df1o2 8487 . . . . 5 1o = {∅}
13 nn0ex 12502 . . . . 5 0 ∈ V
14 0ex 5301 . . . . 5 ∅ ∈ V
15 eqid 2727 . . . . 5 (𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅)) = (𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))
1612, 13, 14, 15mapsnf1o2 8906 . . . 4 (𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅)):(ℕ0m 1o)–1-1-onto→ℕ0
17 f1ofo 6840 . . . 4 ((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅)):(ℕ0m 1o)–1-1-onto→ℕ0 → (𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅)):(ℕ0m 1o)–onto→ℕ0)
18 breq2 5146 . . . . . 6 (((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦) = 𝑥 → (𝐺 < ((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦) ↔ 𝐺 < 𝑥))
19 fveqeq2 6900 . . . . . 6 (((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦) = 𝑥 → ((𝐴‘((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦)) = 0 ↔ (𝐴𝑥) = 0 ))
2018, 19imbi12d 344 . . . . 5 (((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦) = 𝑥 → ((𝐺 < ((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦) → (𝐴‘((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦)) = 0 ) ↔ (𝐺 < 𝑥 → (𝐴𝑥) = 0 )))
2120cbvfo 7292 . . . 4 ((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅)):(ℕ0m 1o)–onto→ℕ0 → (∀𝑦 ∈ (ℕ0m 1o)(𝐺 < ((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦) → (𝐴‘((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦)) = 0 ) ↔ ∀𝑥 ∈ ℕ0 (𝐺 < 𝑥 → (𝐴𝑥) = 0 )))
2216, 17, 21mp2b 10 . . 3 (∀𝑦 ∈ (ℕ0m 1o)(𝐺 < ((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦) → (𝐴‘((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦)) = 0 ) ↔ ∀𝑥 ∈ ℕ0 (𝐺 < 𝑥 → (𝐴𝑥) = 0 ))
23 fveq1 6890 . . . . . . . . . 10 (𝑏 = 𝑦 → (𝑏‘∅) = (𝑦‘∅))
24 fvex 6904 . . . . . . . . . 10 (𝑦‘∅) ∈ V
2523, 15, 24fvmpt 6999 . . . . . . . . 9 (𝑦 ∈ (ℕ0m 1o) → ((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦) = (𝑦‘∅))
2625fveq2d 6895 . . . . . . . 8 (𝑦 ∈ (ℕ0m 1o) → (𝐴‘((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦)) = (𝐴‘(𝑦‘∅)))
2726adantl 481 . . . . . . 7 (((𝐹𝐵𝐺 ∈ ℝ*) ∧ 𝑦 ∈ (ℕ0m 1o)) → (𝐴‘((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦)) = (𝐴‘(𝑦‘∅)))
28 deg1leb.a . . . . . . . . 9 𝐴 = (coe1𝐹)
2928fvcoe1 22119 . . . . . . . 8 ((𝐹𝐵𝑦 ∈ (ℕ0m 1o)) → (𝐹𝑦) = (𝐴‘(𝑦‘∅)))
3029adantlr 714 . . . . . . 7 (((𝐹𝐵𝐺 ∈ ℝ*) ∧ 𝑦 ∈ (ℕ0m 1o)) → (𝐹𝑦) = (𝐴‘(𝑦‘∅)))
3127, 30eqtr4d 2770 . . . . . 6 (((𝐹𝐵𝐺 ∈ ℝ*) ∧ 𝑦 ∈ (ℕ0m 1o)) → (𝐴‘((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦)) = (𝐹𝑦))
3231eqeq1d 2729 . . . . 5 (((𝐹𝐵𝐺 ∈ ℝ*) ∧ 𝑦 ∈ (ℕ0m 1o)) → ((𝐴‘((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦)) = 0 ↔ (𝐹𝑦) = 0 ))
3332imbi2d 340 . . . 4 (((𝐹𝐵𝐺 ∈ ℝ*) ∧ 𝑦 ∈ (ℕ0m 1o)) → ((𝐺 < ((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦) → (𝐴‘((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦)) = 0 ) ↔ (𝐺 < ((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦) → (𝐹𝑦) = 0 )))
3433ralbidva 3170 . . 3 ((𝐹𝐵𝐺 ∈ ℝ*) → (∀𝑦 ∈ (ℕ0m 1o)(𝐺 < ((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦) → (𝐴‘((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦)) = 0 ) ↔ ∀𝑦 ∈ (ℕ0m 1o)(𝐺 < ((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦) → (𝐹𝑦) = 0 )))
3522, 34bitr3id 285 . 2 ((𝐹𝐵𝐺 ∈ ℝ*) → (∀𝑥 ∈ ℕ0 (𝐺 < 𝑥 → (𝐴𝑥) = 0 ) ↔ ∀𝑦 ∈ (ℕ0m 1o)(𝐺 < ((𝑏 ∈ (ℕ0m 1o) ↦ (𝑏‘∅))‘𝑦) → (𝐹𝑦) = 0 )))
3611, 35bitr4d 282 1 ((𝐹𝐵𝐺 ∈ ℝ*) → ((𝐷𝐹) ≤ 𝐺 ↔ ∀𝑥 ∈ ℕ0 (𝐺 < 𝑥 → (𝐴𝑥) = 0 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1534  wcel 2099  wral 3056  c0 4318   class class class wbr 5142  cmpt 5225  ontowfo 6540  1-1-ontowf1o 6541  cfv 6542  (class class class)co 7414  1oc1o 8473  m cmap 8838  *cxr 11271   < clt 11272  cle 11273  0cn0 12496  Basecbs 17173  0gc0g 17414   mPoly cmpl 21832  PwSer1cps1 22087  Poly1cpl1 22089  coe1cco1 22090   deg1 cdg1 25980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-pre-mulgt0 11209  ax-pre-sup 11210  ax-addf 11211
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-of 7679  df-om 7865  df-1st 7987  df-2nd 7988  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-map 8840  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fsupp 9380  df-sup 9459  df-oi 9527  df-card 9956  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-sub 11470  df-neg 11471  df-nn 12237  df-2 12299  df-3 12300  df-4 12301  df-5 12302  df-6 12303  df-7 12304  df-8 12305  df-9 12306  df-n0 12497  df-z 12583  df-dec 12702  df-uz 12847  df-fz 13511  df-fzo 13654  df-seq 13993  df-hash 14316  df-struct 17109  df-sets 17126  df-slot 17144  df-ndx 17156  df-base 17174  df-ress 17203  df-plusg 17239  df-mulr 17240  df-starv 17241  df-sca 17242  df-vsca 17243  df-tset 17245  df-ple 17246  df-ds 17248  df-unif 17249  df-0g 17416  df-gsum 17417  df-mgm 18593  df-sgrp 18672  df-mnd 18688  df-submnd 18734  df-grp 18886  df-minusg 18887  df-mulg 19017  df-cntz 19261  df-cmn 19730  df-abl 19731  df-mgp 20068  df-ur 20115  df-ring 20168  df-cring 20169  df-cnfld 21273  df-psr 21835  df-mpl 21837  df-opsr 21839  df-psr1 22092  df-ply1 22094  df-coe1 22095  df-mdeg 25981  df-deg1 25982
This theorem is referenced by:  deg1lt  26026  deg1tmle  26046
  Copyright terms: Public domain W3C validator