MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  deg1addle Structured version   Visualization version   GIF version

Theorem deg1addle 25146
Description: The degree of a sum is at most the maximum of the degrees of the factors. (Contributed by Stefan O'Rear, 26-Mar-2015.)
Hypotheses
Ref Expression
deg1addle.y 𝑌 = (Poly1𝑅)
deg1addle.d 𝐷 = ( deg1𝑅)
deg1addle.r (𝜑𝑅 ∈ Ring)
deg1addle.b 𝐵 = (Base‘𝑌)
deg1addle.p + = (+g𝑌)
deg1addle.f (𝜑𝐹𝐵)
deg1addle.g (𝜑𝐺𝐵)
Assertion
Ref Expression
deg1addle (𝜑 → (𝐷‘(𝐹 + 𝐺)) ≤ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)))

Proof of Theorem deg1addle
StepHypRef Expression
1 eqid 2739 . 2 (1o mPoly 𝑅) = (1o mPoly 𝑅)
2 deg1addle.d . . 3 𝐷 = ( deg1𝑅)
32deg1fval 25125 . 2 𝐷 = (1o mDeg 𝑅)
4 1on 8251 . . 3 1o ∈ On
54a1i 11 . 2 (𝜑 → 1o ∈ On)
6 deg1addle.r . 2 (𝜑𝑅 ∈ Ring)
7 eqid 2739 . 2 (Base‘(1o mPoly 𝑅)) = (Base‘(1o mPoly 𝑅))
8 deg1addle.y . . 3 𝑌 = (Poly1𝑅)
9 deg1addle.p . . 3 + = (+g𝑌)
108, 1, 9ply1plusg 21281 . 2 + = (+g‘(1o mPoly 𝑅))
11 deg1addle.f . . 3 (𝜑𝐹𝐵)
12 deg1addle.b . . . 4 𝐵 = (Base‘𝑌)
138, 12ply1bascl2 21260 . . 3 (𝐹𝐵𝐹 ∈ (Base‘(1o mPoly 𝑅)))
1411, 13syl 17 . 2 (𝜑𝐹 ∈ (Base‘(1o mPoly 𝑅)))
15 deg1addle.g . . 3 (𝜑𝐺𝐵)
168, 12ply1bascl2 21260 . . 3 (𝐺𝐵𝐺 ∈ (Base‘(1o mPoly 𝑅)))
1715, 16syl 17 . 2 (𝜑𝐺 ∈ (Base‘(1o mPoly 𝑅)))
181, 3, 5, 6, 7, 10, 14, 17mdegaddle 25119 1 (𝜑 → (𝐷‘(𝐹 + 𝐺)) ≤ if((𝐷𝐹) ≤ (𝐷𝐺), (𝐷𝐺), (𝐷𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1543  wcel 2112  ifcif 4456   class class class wbr 5070  Oncon0 6248  cfv 6415  (class class class)co 7252  1oc1o 8237  cle 10916  Basecbs 16815  +gcplusg 16863  Ringcrg 19673   mPoly cmpl 20994  Poly1cpl1 21233   deg1 cdg1 25096
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2710  ax-rep 5203  ax-sep 5216  ax-nul 5223  ax-pow 5282  ax-pr 5346  ax-un 7563  ax-cnex 10833  ax-resscn 10834  ax-1cn 10835  ax-icn 10836  ax-addcl 10837  ax-addrcl 10838  ax-mulcl 10839  ax-mulrcl 10840  ax-mulcom 10841  ax-addass 10842  ax-mulass 10843  ax-distr 10844  ax-i2m1 10845  ax-1ne0 10846  ax-1rid 10847  ax-rnegex 10848  ax-rrecex 10849  ax-cnre 10850  ax-pre-lttri 10851  ax-pre-lttrn 10852  ax-pre-ltadd 10853  ax-pre-mulgt0 10854  ax-pre-sup 10855  ax-addf 10856  ax-mulf 10857
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2818  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3425  df-sbc 3713  df-csb 3830  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4255  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5153  df-tr 5186  df-id 5479  df-eprel 5485  df-po 5493  df-so 5494  df-fr 5534  df-se 5535  df-we 5536  df-xp 5585  df-rel 5586  df-cnv 5587  df-co 5588  df-dm 5589  df-rn 5590  df-res 5591  df-ima 5592  df-pred 6189  df-ord 6251  df-on 6252  df-lim 6253  df-suc 6254  df-iota 6373  df-fun 6417  df-fn 6418  df-f 6419  df-f1 6420  df-fo 6421  df-f1o 6422  df-fv 6423  df-isom 6424  df-riota 7209  df-ov 7255  df-oprab 7256  df-mpo 7257  df-of 7508  df-ofr 7509  df-om 7685  df-1st 7801  df-2nd 7802  df-supp 7946  df-wrecs 8089  df-recs 8150  df-rdg 8188  df-1o 8244  df-er 8433  df-map 8552  df-pm 8553  df-ixp 8621  df-en 8669  df-dom 8670  df-sdom 8671  df-fin 8672  df-fsupp 9034  df-sup 9106  df-oi 9174  df-card 9603  df-pnf 10917  df-mnf 10918  df-xr 10919  df-ltxr 10920  df-le 10921  df-sub 11112  df-neg 11113  df-nn 11879  df-2 11941  df-3 11942  df-4 11943  df-5 11944  df-6 11945  df-7 11946  df-8 11947  df-9 11948  df-n0 12139  df-z 12225  df-dec 12342  df-uz 12487  df-fz 13144  df-fzo 13287  df-seq 13625  df-hash 13948  df-struct 16751  df-sets 16768  df-slot 16786  df-ndx 16798  df-base 16816  df-ress 16843  df-plusg 16876  df-mulr 16877  df-starv 16878  df-sca 16879  df-vsca 16880  df-tset 16882  df-ple 16883  df-ds 16885  df-unif 16886  df-0g 17044  df-gsum 17045  df-mre 17187  df-mrc 17188  df-acs 17190  df-mgm 18216  df-sgrp 18265  df-mnd 18276  df-mhm 18320  df-submnd 18321  df-grp 18470  df-minusg 18471  df-mulg 18591  df-subg 18642  df-ghm 18722  df-cntz 18813  df-cmn 19278  df-abl 19279  df-mgp 19611  df-ur 19628  df-ring 19675  df-cring 19676  df-subrg 19912  df-cnfld 20486  df-psr 20997  df-mpl 20999  df-opsr 21001  df-psr1 21236  df-ply1 21238  df-mdeg 25097  df-deg1 25098
This theorem is referenced by:  deg1addle2  25147  deg1add  25148  deg1suble  25152
  Copyright terms: Public domain W3C validator