Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > deg1addle | Structured version Visualization version GIF version |
Description: The degree of a sum is at most the maximum of the degrees of the factors. (Contributed by Stefan O'Rear, 26-Mar-2015.) |
Ref | Expression |
---|---|
deg1addle.y | ⊢ 𝑌 = (Poly1‘𝑅) |
deg1addle.d | ⊢ 𝐷 = ( deg1 ‘𝑅) |
deg1addle.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
deg1addle.b | ⊢ 𝐵 = (Base‘𝑌) |
deg1addle.p | ⊢ + = (+g‘𝑌) |
deg1addle.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
deg1addle.g | ⊢ (𝜑 → 𝐺 ∈ 𝐵) |
Ref | Expression |
---|---|
deg1addle | ⊢ (𝜑 → (𝐷‘(𝐹 + 𝐺)) ≤ if((𝐷‘𝐹) ≤ (𝐷‘𝐺), (𝐷‘𝐺), (𝐷‘𝐹))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2739 | . 2 ⊢ (1o mPoly 𝑅) = (1o mPoly 𝑅) | |
2 | deg1addle.d | . . 3 ⊢ 𝐷 = ( deg1 ‘𝑅) | |
3 | 2 | deg1fval 25125 | . 2 ⊢ 𝐷 = (1o mDeg 𝑅) |
4 | 1on 8251 | . . 3 ⊢ 1o ∈ On | |
5 | 4 | a1i 11 | . 2 ⊢ (𝜑 → 1o ∈ On) |
6 | deg1addle.r | . 2 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
7 | eqid 2739 | . 2 ⊢ (Base‘(1o mPoly 𝑅)) = (Base‘(1o mPoly 𝑅)) | |
8 | deg1addle.y | . . 3 ⊢ 𝑌 = (Poly1‘𝑅) | |
9 | deg1addle.p | . . 3 ⊢ + = (+g‘𝑌) | |
10 | 8, 1, 9 | ply1plusg 21281 | . 2 ⊢ + = (+g‘(1o mPoly 𝑅)) |
11 | deg1addle.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
12 | deg1addle.b | . . . 4 ⊢ 𝐵 = (Base‘𝑌) | |
13 | 8, 12 | ply1bascl2 21260 | . . 3 ⊢ (𝐹 ∈ 𝐵 → 𝐹 ∈ (Base‘(1o mPoly 𝑅))) |
14 | 11, 13 | syl 17 | . 2 ⊢ (𝜑 → 𝐹 ∈ (Base‘(1o mPoly 𝑅))) |
15 | deg1addle.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝐵) | |
16 | 8, 12 | ply1bascl2 21260 | . . 3 ⊢ (𝐺 ∈ 𝐵 → 𝐺 ∈ (Base‘(1o mPoly 𝑅))) |
17 | 15, 16 | syl 17 | . 2 ⊢ (𝜑 → 𝐺 ∈ (Base‘(1o mPoly 𝑅))) |
18 | 1, 3, 5, 6, 7, 10, 14, 17 | mdegaddle 25119 | 1 ⊢ (𝜑 → (𝐷‘(𝐹 + 𝐺)) ≤ if((𝐷‘𝐹) ≤ (𝐷‘𝐺), (𝐷‘𝐺), (𝐷‘𝐹))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 ∈ wcel 2112 ifcif 4456 class class class wbr 5070 Oncon0 6248 ‘cfv 6415 (class class class)co 7252 1oc1o 8237 ≤ cle 10916 Basecbs 16815 +gcplusg 16863 Ringcrg 19673 mPoly cmpl 20994 Poly1cpl1 21233 deg1 cdg1 25096 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-rep 5203 ax-sep 5216 ax-nul 5223 ax-pow 5282 ax-pr 5346 ax-un 7563 ax-cnex 10833 ax-resscn 10834 ax-1cn 10835 ax-icn 10836 ax-addcl 10837 ax-addrcl 10838 ax-mulcl 10839 ax-mulrcl 10840 ax-mulcom 10841 ax-addass 10842 ax-mulass 10843 ax-distr 10844 ax-i2m1 10845 ax-1ne0 10846 ax-1rid 10847 ax-rnegex 10848 ax-rrecex 10849 ax-cnre 10850 ax-pre-lttri 10851 ax-pre-lttrn 10852 ax-pre-ltadd 10853 ax-pre-mulgt0 10854 ax-pre-sup 10855 ax-addf 10856 ax-mulf 10857 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3425 df-sbc 3713 df-csb 3830 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-pss 3903 df-nul 4255 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5153 df-tr 5186 df-id 5479 df-eprel 5485 df-po 5493 df-so 5494 df-fr 5534 df-se 5535 df-we 5536 df-xp 5585 df-rel 5586 df-cnv 5587 df-co 5588 df-dm 5589 df-rn 5590 df-res 5591 df-ima 5592 df-pred 6189 df-ord 6251 df-on 6252 df-lim 6253 df-suc 6254 df-iota 6373 df-fun 6417 df-fn 6418 df-f 6419 df-f1 6420 df-fo 6421 df-f1o 6422 df-fv 6423 df-isom 6424 df-riota 7209 df-ov 7255 df-oprab 7256 df-mpo 7257 df-of 7508 df-ofr 7509 df-om 7685 df-1st 7801 df-2nd 7802 df-supp 7946 df-wrecs 8089 df-recs 8150 df-rdg 8188 df-1o 8244 df-er 8433 df-map 8552 df-pm 8553 df-ixp 8621 df-en 8669 df-dom 8670 df-sdom 8671 df-fin 8672 df-fsupp 9034 df-sup 9106 df-oi 9174 df-card 9603 df-pnf 10917 df-mnf 10918 df-xr 10919 df-ltxr 10920 df-le 10921 df-sub 11112 df-neg 11113 df-nn 11879 df-2 11941 df-3 11942 df-4 11943 df-5 11944 df-6 11945 df-7 11946 df-8 11947 df-9 11948 df-n0 12139 df-z 12225 df-dec 12342 df-uz 12487 df-fz 13144 df-fzo 13287 df-seq 13625 df-hash 13948 df-struct 16751 df-sets 16768 df-slot 16786 df-ndx 16798 df-base 16816 df-ress 16843 df-plusg 16876 df-mulr 16877 df-starv 16878 df-sca 16879 df-vsca 16880 df-tset 16882 df-ple 16883 df-ds 16885 df-unif 16886 df-0g 17044 df-gsum 17045 df-mre 17187 df-mrc 17188 df-acs 17190 df-mgm 18216 df-sgrp 18265 df-mnd 18276 df-mhm 18320 df-submnd 18321 df-grp 18470 df-minusg 18471 df-mulg 18591 df-subg 18642 df-ghm 18722 df-cntz 18813 df-cmn 19278 df-abl 19279 df-mgp 19611 df-ur 19628 df-ring 19675 df-cring 19676 df-subrg 19912 df-cnfld 20486 df-psr 20997 df-mpl 20999 df-opsr 21001 df-psr1 21236 df-ply1 21238 df-mdeg 25097 df-deg1 25098 |
This theorem is referenced by: deg1addle2 25147 deg1add 25148 deg1suble 25152 |
Copyright terms: Public domain | W3C validator |