MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  deg1cl Structured version   Visualization version   GIF version

Theorem deg1cl 25293
Description: Sharp closure of univariate polynomial degree. (Contributed by Stefan O'Rear, 23-Mar-2015.)
Hypotheses
Ref Expression
deg1xrf.d 𝐷 = ( deg1𝑅)
deg1xrf.p 𝑃 = (Poly1𝑅)
deg1xrf.b 𝐵 = (Base‘𝑃)
Assertion
Ref Expression
deg1cl (𝐹𝐵 → (𝐷𝐹) ∈ (ℕ0 ∪ {-∞}))

Proof of Theorem deg1cl
StepHypRef Expression
1 deg1xrf.d . . 3 𝐷 = ( deg1𝑅)
21deg1fval 25290 . 2 𝐷 = (1o mDeg 𝑅)
3 eqid 2736 . 2 (1o mPoly 𝑅) = (1o mPoly 𝑅)
4 deg1xrf.p . . 3 𝑃 = (Poly1𝑅)
5 eqid 2736 . . 3 (PwSer1𝑅) = (PwSer1𝑅)
6 deg1xrf.b . . 3 𝐵 = (Base‘𝑃)
74, 5, 6ply1bas 21411 . 2 𝐵 = (Base‘(1o mPoly 𝑅))
82, 3, 7mdegcl 25279 1 (𝐹𝐵 → (𝐷𝐹) ∈ (ℕ0 ∪ {-∞}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2104  cun 3890  {csn 4565  cfv 6458  (class class class)co 7307  1oc1o 8321  -∞cmnf 11053  0cn0 12279  Basecbs 16957   mPoly cmpl 21154  PwSer1cps1 21391  Poly1cpl1 21393   deg1 cdg1 25261
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-cnex 10973  ax-resscn 10974  ax-1cn 10975  ax-icn 10976  ax-addcl 10977  ax-addrcl 10978  ax-mulcl 10979  ax-mulrcl 10980  ax-mulcom 10981  ax-addass 10982  ax-mulass 10983  ax-distr 10984  ax-i2m1 10985  ax-1ne0 10986  ax-1rid 10987  ax-rnegex 10988  ax-rrecex 10989  ax-cnre 10990  ax-pre-lttri 10991  ax-pre-lttrn 10992  ax-pre-ltadd 10993  ax-pre-mulgt0 10994  ax-addf 10996  ax-mulf 10997
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3285  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-tp 4570  df-op 4572  df-uni 4845  df-int 4887  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-se 5556  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-isom 6467  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-of 7565  df-om 7745  df-1st 7863  df-2nd 7864  df-supp 8009  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-rdg 8272  df-1o 8328  df-er 8529  df-map 8648  df-en 8765  df-dom 8766  df-sdom 8767  df-fin 8768  df-fsupp 9173  df-sup 9245  df-oi 9313  df-card 9741  df-pnf 11057  df-mnf 11058  df-xr 11059  df-ltxr 11060  df-le 11061  df-sub 11253  df-neg 11254  df-nn 12020  df-2 12082  df-3 12083  df-4 12084  df-5 12085  df-6 12086  df-7 12087  df-8 12088  df-9 12089  df-n0 12280  df-z 12366  df-dec 12484  df-uz 12629  df-fz 13286  df-fzo 13429  df-seq 13768  df-hash 14091  df-struct 16893  df-sets 16910  df-slot 16928  df-ndx 16940  df-base 16958  df-ress 16987  df-plusg 17020  df-mulr 17021  df-starv 17022  df-sca 17023  df-vsca 17024  df-tset 17026  df-ple 17027  df-ds 17029  df-unif 17030  df-0g 17197  df-gsum 17198  df-mgm 18371  df-sgrp 18420  df-mnd 18431  df-submnd 18476  df-grp 18625  df-minusg 18626  df-cntz 18968  df-cmn 19433  df-abl 19434  df-mgp 19766  df-ur 19783  df-ring 19830  df-cring 19831  df-cnfld 20643  df-psr 21157  df-mpl 21159  df-opsr 21161  df-psr1 21396  df-ply1 21398  df-mdeg 25262  df-deg1 25263
This theorem is referenced by:  ply1divex  25346  ply1rem  25373  plypf1  25418  hbtlem5  40991
  Copyright terms: Public domain W3C validator