MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  deg1mulle2 Structured version   Visualization version   GIF version

Theorem deg1mulle2 24630
Description: Produce a bound on the product of two univariate polynomials given bounds on the factors. (Contributed by Stefan O'Rear, 26-Mar-2015.)
Hypotheses
Ref Expression
deg1addle.y 𝑌 = (Poly1𝑅)
deg1addle.d 𝐷 = ( deg1𝑅)
deg1addle.r (𝜑𝑅 ∈ Ring)
deg1mulle2.b 𝐵 = (Base‘𝑌)
deg1mulle2.t · = (.r𝑌)
deg1mulle2.f (𝜑𝐹𝐵)
deg1mulle2.g (𝜑𝐺𝐵)
deg1mulle2.j1 (𝜑𝐽 ∈ ℕ0)
deg1mulle2.k1 (𝜑𝐾 ∈ ℕ0)
deg1mulle2.j2 (𝜑 → (𝐷𝐹) ≤ 𝐽)
deg1mulle2.k2 (𝜑 → (𝐷𝐺) ≤ 𝐾)
Assertion
Ref Expression
deg1mulle2 (𝜑 → (𝐷‘(𝐹 · 𝐺)) ≤ (𝐽 + 𝐾))

Proof of Theorem deg1mulle2
StepHypRef Expression
1 eqid 2818 . 2 (1o mPoly 𝑅) = (1o mPoly 𝑅)
2 deg1addle.d . . 3 𝐷 = ( deg1𝑅)
32deg1fval 24601 . 2 𝐷 = (1o mDeg 𝑅)
4 1on 8098 . . 3 1o ∈ On
54a1i 11 . 2 (𝜑 → 1o ∈ On)
6 deg1addle.r . 2 (𝜑𝑅 ∈ Ring)
7 deg1addle.y . . 3 𝑌 = (Poly1𝑅)
8 eqid 2818 . . 3 (PwSer1𝑅) = (PwSer1𝑅)
9 deg1mulle2.b . . 3 𝐵 = (Base‘𝑌)
107, 8, 9ply1bas 20291 . 2 𝐵 = (Base‘(1o mPoly 𝑅))
11 deg1mulle2.t . . 3 · = (.r𝑌)
127, 1, 11ply1mulr 20323 . 2 · = (.r‘(1o mPoly 𝑅))
13 deg1mulle2.f . 2 (𝜑𝐹𝐵)
14 deg1mulle2.g . 2 (𝜑𝐺𝐵)
15 deg1mulle2.j1 . 2 (𝜑𝐽 ∈ ℕ0)
16 deg1mulle2.k1 . 2 (𝜑𝐾 ∈ ℕ0)
17 deg1mulle2.j2 . 2 (𝜑 → (𝐷𝐹) ≤ 𝐽)
18 deg1mulle2.k2 . 2 (𝜑 → (𝐷𝐺) ≤ 𝐾)
191, 3, 5, 6, 10, 12, 13, 14, 15, 16, 17, 18mdegmulle2 24600 1 (𝜑 → (𝐷‘(𝐹 · 𝐺)) ≤ (𝐽 + 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1528  wcel 2105   class class class wbr 5057  Oncon0 6184  cfv 6348  (class class class)co 7145  1oc1o 8084   + caddc 10528  cle 10664  0cn0 11885  Basecbs 16471  .rcmulr 16554  Ringcrg 19226   mPoly cmpl 20061  PwSer1cps1 20271  Poly1cpl1 20273   deg1 cdg1 24575
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603  ax-addf 10604  ax-mulf 10605
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7398  df-ofr 7399  df-om 7570  df-1st 7678  df-2nd 7679  df-supp 7820  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-2o 8092  df-oadd 8095  df-er 8278  df-map 8397  df-pm 8398  df-ixp 8450  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-fsupp 8822  df-sup 8894  df-oi 8962  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-fz 12881  df-fzo 13022  df-seq 13358  df-hash 13679  df-struct 16473  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-ress 16479  df-plusg 16566  df-mulr 16567  df-starv 16568  df-sca 16569  df-vsca 16570  df-tset 16572  df-ple 16573  df-ds 16575  df-unif 16576  df-0g 16703  df-gsum 16704  df-mre 16845  df-mrc 16846  df-acs 16848  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-mhm 17944  df-submnd 17945  df-grp 18044  df-minusg 18045  df-mulg 18163  df-subg 18214  df-ghm 18294  df-cntz 18385  df-cmn 18837  df-abl 18838  df-mgp 19169  df-ur 19181  df-ring 19228  df-cring 19229  df-subrg 19462  df-psr 20064  df-mpl 20066  df-opsr 20068  df-psr1 20276  df-ply1 20278  df-cnfld 20474  df-mdeg 24576  df-deg1 24577
This theorem is referenced by:  deg1mul2  24635  ply1divex  24657  hbtlem4  39604
  Copyright terms: Public domain W3C validator