| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > deg1nn0cl | Structured version Visualization version GIF version | ||
| Description: Degree of a nonzero univariate polynomial. (Contributed by Stefan O'Rear, 23-Mar-2015.) (Revised by Mario Carneiro, 7-Oct-2015.) |
| Ref | Expression |
|---|---|
| deg1z.d | ⊢ 𝐷 = (deg1‘𝑅) |
| deg1z.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| deg1z.z | ⊢ 0 = (0g‘𝑃) |
| deg1nn0cl.b | ⊢ 𝐵 = (Base‘𝑃) |
| Ref | Expression |
|---|---|
| deg1nn0cl | ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → (𝐷‘𝐹) ∈ ℕ0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | deg1z.d | . . 3 ⊢ 𝐷 = (deg1‘𝑅) | |
| 2 | 1 | deg1fval 25983 | . 2 ⊢ 𝐷 = (1o mDeg 𝑅) |
| 3 | eqid 2729 | . 2 ⊢ (1o mPoly 𝑅) = (1o mPoly 𝑅) | |
| 4 | deg1z.p | . . 3 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 5 | deg1z.z | . . 3 ⊢ 0 = (0g‘𝑃) | |
| 6 | 3, 4, 5 | ply1mpl0 22139 | . 2 ⊢ 0 = (0g‘(1o mPoly 𝑅)) |
| 7 | deg1nn0cl.b | . . 3 ⊢ 𝐵 = (Base‘𝑃) | |
| 8 | 4, 7 | ply1bas 22077 | . 2 ⊢ 𝐵 = (Base‘(1o mPoly 𝑅)) |
| 9 | 2, 3, 6, 8 | mdegnn0cl 25974 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → (𝐷‘𝐹) ∈ ℕ0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ‘cfv 6482 (class class class)co 7349 1oc1o 8381 ℕ0cn0 12384 Basecbs 17120 0gc0g 17343 Ringcrg 20118 mPoly cmpl 21813 Poly1cpl1 22059 deg1cdg1 25957 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-addf 11088 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-of 7613 df-om 7800 df-1st 7924 df-2nd 7925 df-supp 8094 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-map 8755 df-ixp 8825 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-fsupp 9252 df-sup 9332 df-oi 9402 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-fz 13411 df-fzo 13558 df-seq 13909 df-hash 14238 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-0g 17345 df-gsum 17346 df-prds 17351 df-pws 17353 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-submnd 18658 df-grp 18815 df-minusg 18816 df-subg 19002 df-cntz 19196 df-cmn 19661 df-abl 19662 df-mgp 20026 df-ur 20067 df-ring 20120 df-cring 20121 df-cnfld 21262 df-psr 21816 df-mpl 21818 df-opsr 21820 df-psr1 22062 df-ply1 22064 df-mdeg 25958 df-deg1 25959 |
| This theorem is referenced by: deg1n0ima 25992 deg1nn0clb 25993 deg1lt0 25994 deg1ldg 25995 deg1ldgdomn 25997 coe1mul4 26003 deg1add 26006 deg1scl 26016 deg1mul2 26017 deg1mul 26018 ply1domn 26027 ply1divmo 26039 ply1divex 26040 uc1pdeg 26051 deg1submon1p 26056 fta1glem1 26071 fta1g 26073 drnguc1p 26077 ply1unit 33510 ply1dg3rt0irred 33518 ply1degltel 33527 ply1degleel 33528 ig1pmindeg 33534 irngnzply1lem 33657 minplyirredlem 33677 irredminply 33683 algextdeglem7 33690 algextdeglem8 33691 deg1gprod 42117 deg1pow 42118 mon1psubm 43176 deg1mhm 43177 |
| Copyright terms: Public domain | W3C validator |