MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infpwfien Structured version   Visualization version   GIF version

Theorem infpwfien 9998
Description: Any infinite well-orderable set is equinumerous to its set of finite subsets. (Contributed by Mario Carneiro, 18-May-2015.)
Assertion
Ref Expression
infpwfien ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝒫 𝐴 ∩ Fin) ≈ 𝐴)

Proof of Theorem infpwfien
Dummy variables 𝑚 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 infxpidm2 9953 . . . . . . 7 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴 × 𝐴) ≈ 𝐴)
2 infn0 9251 . . . . . . . 8 (ω ≼ 𝐴𝐴 ≠ ∅)
32adantl 482 . . . . . . 7 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → 𝐴 ≠ ∅)
4 fseqen 9963 . . . . . . 7 (((𝐴 × 𝐴) ≈ 𝐴𝐴 ≠ ∅) → 𝑛 ∈ ω (𝐴m 𝑛) ≈ (ω × 𝐴))
51, 3, 4syl2anc 584 . . . . . 6 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → 𝑛 ∈ ω (𝐴m 𝑛) ≈ (ω × 𝐴))
6 xpdom1g 9013 . . . . . . 7 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (ω × 𝐴) ≼ (𝐴 × 𝐴))
7 domentr 8953 . . . . . . 7 (((ω × 𝐴) ≼ (𝐴 × 𝐴) ∧ (𝐴 × 𝐴) ≈ 𝐴) → (ω × 𝐴) ≼ 𝐴)
86, 1, 7syl2anc 584 . . . . . 6 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (ω × 𝐴) ≼ 𝐴)
9 endomtr 8952 . . . . . 6 (( 𝑛 ∈ ω (𝐴m 𝑛) ≈ (ω × 𝐴) ∧ (ω × 𝐴) ≼ 𝐴) → 𝑛 ∈ ω (𝐴m 𝑛) ≼ 𝐴)
105, 8, 9syl2anc 584 . . . . 5 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → 𝑛 ∈ ω (𝐴m 𝑛) ≼ 𝐴)
11 numdom 9974 . . . . 5 ((𝐴 ∈ dom card ∧ 𝑛 ∈ ω (𝐴m 𝑛) ≼ 𝐴) → 𝑛 ∈ ω (𝐴m 𝑛) ∈ dom card)
1210, 11syldan 591 . . . 4 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → 𝑛 ∈ ω (𝐴m 𝑛) ∈ dom card)
13 eliun 4958 . . . . . . . . 9 (𝑥 𝑛 ∈ ω (𝐴m 𝑛) ↔ ∃𝑛 ∈ ω 𝑥 ∈ (𝐴m 𝑛))
14 elmapi 8787 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝐴m 𝑛) → 𝑥:𝑛𝐴)
1514ad2antll 727 . . . . . . . . . . . . . 14 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝑛 ∈ ω ∧ 𝑥 ∈ (𝐴m 𝑛))) → 𝑥:𝑛𝐴)
1615frnd 6676 . . . . . . . . . . . . 13 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝑛 ∈ ω ∧ 𝑥 ∈ (𝐴m 𝑛))) → ran 𝑥𝐴)
17 vex 3449 . . . . . . . . . . . . . . 15 𝑥 ∈ V
1817rnex 7849 . . . . . . . . . . . . . 14 ran 𝑥 ∈ V
1918elpw 4564 . . . . . . . . . . . . 13 (ran 𝑥 ∈ 𝒫 𝐴 ↔ ran 𝑥𝐴)
2016, 19sylibr 233 . . . . . . . . . . . 12 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝑛 ∈ ω ∧ 𝑥 ∈ (𝐴m 𝑛))) → ran 𝑥 ∈ 𝒫 𝐴)
21 simprl 769 . . . . . . . . . . . . . 14 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝑛 ∈ ω ∧ 𝑥 ∈ (𝐴m 𝑛))) → 𝑛 ∈ ω)
22 ssid 3966 . . . . . . . . . . . . . 14 𝑛𝑛
23 ssnnfi 9113 . . . . . . . . . . . . . 14 ((𝑛 ∈ ω ∧ 𝑛𝑛) → 𝑛 ∈ Fin)
2421, 22, 23sylancl 586 . . . . . . . . . . . . 13 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝑛 ∈ ω ∧ 𝑥 ∈ (𝐴m 𝑛))) → 𝑛 ∈ Fin)
25 ffn 6668 . . . . . . . . . . . . . . 15 (𝑥:𝑛𝐴𝑥 Fn 𝑛)
26 dffn4 6762 . . . . . . . . . . . . . . 15 (𝑥 Fn 𝑛𝑥:𝑛onto→ran 𝑥)
2725, 26sylib 217 . . . . . . . . . . . . . 14 (𝑥:𝑛𝐴𝑥:𝑛onto→ran 𝑥)
2815, 27syl 17 . . . . . . . . . . . . 13 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝑛 ∈ ω ∧ 𝑥 ∈ (𝐴m 𝑛))) → 𝑥:𝑛onto→ran 𝑥)
29 fofi 9282 . . . . . . . . . . . . 13 ((𝑛 ∈ Fin ∧ 𝑥:𝑛onto→ran 𝑥) → ran 𝑥 ∈ Fin)
3024, 28, 29syl2anc 584 . . . . . . . . . . . 12 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝑛 ∈ ω ∧ 𝑥 ∈ (𝐴m 𝑛))) → ran 𝑥 ∈ Fin)
3120, 30elind 4154 . . . . . . . . . . 11 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝑛 ∈ ω ∧ 𝑥 ∈ (𝐴m 𝑛))) → ran 𝑥 ∈ (𝒫 𝐴 ∩ Fin))
3231expr 457 . . . . . . . . . 10 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → (𝑥 ∈ (𝐴m 𝑛) → ran 𝑥 ∈ (𝒫 𝐴 ∩ Fin)))
3332rexlimdva 3152 . . . . . . . . 9 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (∃𝑛 ∈ ω 𝑥 ∈ (𝐴m 𝑛) → ran 𝑥 ∈ (𝒫 𝐴 ∩ Fin)))
3413, 33biimtrid 241 . . . . . . . 8 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝑥 𝑛 ∈ ω (𝐴m 𝑛) → ran 𝑥 ∈ (𝒫 𝐴 ∩ Fin)))
3534imp 407 . . . . . . 7 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝑥 𝑛 ∈ ω (𝐴m 𝑛)) → ran 𝑥 ∈ (𝒫 𝐴 ∩ Fin))
3635fmpttd 7063 . . . . . 6 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝑥 𝑛 ∈ ω (𝐴m 𝑛) ↦ ran 𝑥): 𝑛 ∈ ω (𝐴m 𝑛)⟶(𝒫 𝐴 ∩ Fin))
3736ffnd 6669 . . . . 5 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝑥 𝑛 ∈ ω (𝐴m 𝑛) ↦ ran 𝑥) Fn 𝑛 ∈ ω (𝐴m 𝑛))
3836frnd 6676 . . . . . 6 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ran (𝑥 𝑛 ∈ ω (𝐴m 𝑛) ↦ ran 𝑥) ⊆ (𝒫 𝐴 ∩ Fin))
39 simpr 485 . . . . . . . . . . . 12 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑦 ∈ (𝒫 𝐴 ∩ Fin))
4039elin2d 4159 . . . . . . . . . . 11 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑦 ∈ Fin)
41 isfi 8916 . . . . . . . . . . 11 (𝑦 ∈ Fin ↔ ∃𝑚 ∈ ω 𝑦𝑚)
4240, 41sylib 217 . . . . . . . . . 10 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ∃𝑚 ∈ ω 𝑦𝑚)
43 ensym 8943 . . . . . . . . . . . . 13 (𝑦𝑚𝑚𝑦)
44 bren 8893 . . . . . . . . . . . . 13 (𝑚𝑦 ↔ ∃𝑥 𝑥:𝑚1-1-onto𝑦)
4543, 44sylib 217 . . . . . . . . . . . 12 (𝑦𝑚 → ∃𝑥 𝑥:𝑚1-1-onto𝑦)
46 simprl 769 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑚 ∈ ω ∧ 𝑥:𝑚1-1-onto𝑦)) → 𝑚 ∈ ω)
47 f1of 6784 . . . . . . . . . . . . . . . . . . . 20 (𝑥:𝑚1-1-onto𝑦𝑥:𝑚𝑦)
4847ad2antll 727 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑚 ∈ ω ∧ 𝑥:𝑚1-1-onto𝑦)) → 𝑥:𝑚𝑦)
49 simplr 767 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑚 ∈ ω ∧ 𝑥:𝑚1-1-onto𝑦)) → 𝑦 ∈ (𝒫 𝐴 ∩ Fin))
5049elin1d 4158 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑚 ∈ ω ∧ 𝑥:𝑚1-1-onto𝑦)) → 𝑦 ∈ 𝒫 𝐴)
5150elpwid 4569 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑚 ∈ ω ∧ 𝑥:𝑚1-1-onto𝑦)) → 𝑦𝐴)
5248, 51fssd 6686 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑚 ∈ ω ∧ 𝑥:𝑚1-1-onto𝑦)) → 𝑥:𝑚𝐴)
53 simplll 773 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑚 ∈ ω ∧ 𝑥:𝑚1-1-onto𝑦)) → 𝐴 ∈ dom card)
54 vex 3449 . . . . . . . . . . . . . . . . . . 19 𝑚 ∈ V
55 elmapg 8778 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ dom card ∧ 𝑚 ∈ V) → (𝑥 ∈ (𝐴m 𝑚) ↔ 𝑥:𝑚𝐴))
5653, 54, 55sylancl 586 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑚 ∈ ω ∧ 𝑥:𝑚1-1-onto𝑦)) → (𝑥 ∈ (𝐴m 𝑚) ↔ 𝑥:𝑚𝐴))
5752, 56mpbird 256 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑚 ∈ ω ∧ 𝑥:𝑚1-1-onto𝑦)) → 𝑥 ∈ (𝐴m 𝑚))
58 oveq2 7365 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑚 → (𝐴m 𝑛) = (𝐴m 𝑚))
5958eleq2d 2823 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑚 → (𝑥 ∈ (𝐴m 𝑛) ↔ 𝑥 ∈ (𝐴m 𝑚)))
6059rspcev 3581 . . . . . . . . . . . . . . . . 17 ((𝑚 ∈ ω ∧ 𝑥 ∈ (𝐴m 𝑚)) → ∃𝑛 ∈ ω 𝑥 ∈ (𝐴m 𝑛))
6146, 57, 60syl2anc 584 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑚 ∈ ω ∧ 𝑥:𝑚1-1-onto𝑦)) → ∃𝑛 ∈ ω 𝑥 ∈ (𝐴m 𝑛))
6261, 13sylibr 233 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑚 ∈ ω ∧ 𝑥:𝑚1-1-onto𝑦)) → 𝑥 𝑛 ∈ ω (𝐴m 𝑛))
63 f1ofo 6791 . . . . . . . . . . . . . . . . . 18 (𝑥:𝑚1-1-onto𝑦𝑥:𝑚onto𝑦)
6463ad2antll 727 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑚 ∈ ω ∧ 𝑥:𝑚1-1-onto𝑦)) → 𝑥:𝑚onto𝑦)
65 forn 6759 . . . . . . . . . . . . . . . . 17 (𝑥:𝑚onto𝑦 → ran 𝑥 = 𝑦)
6664, 65syl 17 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑚 ∈ ω ∧ 𝑥:𝑚1-1-onto𝑦)) → ran 𝑥 = 𝑦)
6766eqcomd 2742 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑚 ∈ ω ∧ 𝑥:𝑚1-1-onto𝑦)) → 𝑦 = ran 𝑥)
6862, 67jca 512 . . . . . . . . . . . . . 14 ((((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑚 ∈ ω ∧ 𝑥:𝑚1-1-onto𝑦)) → (𝑥 𝑛 ∈ ω (𝐴m 𝑛) ∧ 𝑦 = ran 𝑥))
6968expr 457 . . . . . . . . . . . . 13 ((((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑚 ∈ ω) → (𝑥:𝑚1-1-onto𝑦 → (𝑥 𝑛 ∈ ω (𝐴m 𝑛) ∧ 𝑦 = ran 𝑥)))
7069eximdv 1920 . . . . . . . . . . . 12 ((((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑚 ∈ ω) → (∃𝑥 𝑥:𝑚1-1-onto𝑦 → ∃𝑥(𝑥 𝑛 ∈ ω (𝐴m 𝑛) ∧ 𝑦 = ran 𝑥)))
7145, 70syl5 34 . . . . . . . . . . 11 ((((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑚 ∈ ω) → (𝑦𝑚 → ∃𝑥(𝑥 𝑛 ∈ ω (𝐴m 𝑛) ∧ 𝑦 = ran 𝑥)))
7271rexlimdva 3152 . . . . . . . . . 10 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (∃𝑚 ∈ ω 𝑦𝑚 → ∃𝑥(𝑥 𝑛 ∈ ω (𝐴m 𝑛) ∧ 𝑦 = ran 𝑥)))
7342, 72mpd 15 . . . . . . . . 9 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ∃𝑥(𝑥 𝑛 ∈ ω (𝐴m 𝑛) ∧ 𝑦 = ran 𝑥))
7473ex 413 . . . . . . . 8 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → ∃𝑥(𝑥 𝑛 ∈ ω (𝐴m 𝑛) ∧ 𝑦 = ran 𝑥)))
75 eqid 2736 . . . . . . . . . . 11 (𝑥 𝑛 ∈ ω (𝐴m 𝑛) ↦ ran 𝑥) = (𝑥 𝑛 ∈ ω (𝐴m 𝑛) ↦ ran 𝑥)
7675elrnmpt 5911 . . . . . . . . . 10 (𝑦 ∈ V → (𝑦 ∈ ran (𝑥 𝑛 ∈ ω (𝐴m 𝑛) ↦ ran 𝑥) ↔ ∃𝑥 𝑛 ∈ ω (𝐴m 𝑛)𝑦 = ran 𝑥))
7776elv 3451 . . . . . . . . 9 (𝑦 ∈ ran (𝑥 𝑛 ∈ ω (𝐴m 𝑛) ↦ ran 𝑥) ↔ ∃𝑥 𝑛 ∈ ω (𝐴m 𝑛)𝑦 = ran 𝑥)
78 df-rex 3074 . . . . . . . . 9 (∃𝑥 𝑛 ∈ ω (𝐴m 𝑛)𝑦 = ran 𝑥 ↔ ∃𝑥(𝑥 𝑛 ∈ ω (𝐴m 𝑛) ∧ 𝑦 = ran 𝑥))
7977, 78bitri 274 . . . . . . . 8 (𝑦 ∈ ran (𝑥 𝑛 ∈ ω (𝐴m 𝑛) ↦ ran 𝑥) ↔ ∃𝑥(𝑥 𝑛 ∈ ω (𝐴m 𝑛) ∧ 𝑦 = ran 𝑥))
8074, 79syl6ibr 251 . . . . . . 7 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦 ∈ ran (𝑥 𝑛 ∈ ω (𝐴m 𝑛) ↦ ran 𝑥)))
8180ssrdv 3950 . . . . . 6 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝒫 𝐴 ∩ Fin) ⊆ ran (𝑥 𝑛 ∈ ω (𝐴m 𝑛) ↦ ran 𝑥))
8238, 81eqssd 3961 . . . . 5 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ran (𝑥 𝑛 ∈ ω (𝐴m 𝑛) ↦ ran 𝑥) = (𝒫 𝐴 ∩ Fin))
83 df-fo 6502 . . . . 5 ((𝑥 𝑛 ∈ ω (𝐴m 𝑛) ↦ ran 𝑥): 𝑛 ∈ ω (𝐴m 𝑛)–onto→(𝒫 𝐴 ∩ Fin) ↔ ((𝑥 𝑛 ∈ ω (𝐴m 𝑛) ↦ ran 𝑥) Fn 𝑛 ∈ ω (𝐴m 𝑛) ∧ ran (𝑥 𝑛 ∈ ω (𝐴m 𝑛) ↦ ran 𝑥) = (𝒫 𝐴 ∩ Fin)))
8437, 82, 83sylanbrc 583 . . . 4 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝑥 𝑛 ∈ ω (𝐴m 𝑛) ↦ ran 𝑥): 𝑛 ∈ ω (𝐴m 𝑛)–onto→(𝒫 𝐴 ∩ Fin))
85 fodomnum 9993 . . . 4 ( 𝑛 ∈ ω (𝐴m 𝑛) ∈ dom card → ((𝑥 𝑛 ∈ ω (𝐴m 𝑛) ↦ ran 𝑥): 𝑛 ∈ ω (𝐴m 𝑛)–onto→(𝒫 𝐴 ∩ Fin) → (𝒫 𝐴 ∩ Fin) ≼ 𝑛 ∈ ω (𝐴m 𝑛)))
8612, 84, 85sylc 65 . . 3 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝒫 𝐴 ∩ Fin) ≼ 𝑛 ∈ ω (𝐴m 𝑛))
87 domtr 8947 . . 3 (((𝒫 𝐴 ∩ Fin) ≼ 𝑛 ∈ ω (𝐴m 𝑛) ∧ 𝑛 ∈ ω (𝐴m 𝑛) ≼ 𝐴) → (𝒫 𝐴 ∩ Fin) ≼ 𝐴)
8886, 10, 87syl2anc 584 . 2 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝒫 𝐴 ∩ Fin) ≼ 𝐴)
89 pwexg 5333 . . . . 5 (𝐴 ∈ dom card → 𝒫 𝐴 ∈ V)
9089adantr 481 . . . 4 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → 𝒫 𝐴 ∈ V)
91 inex1g 5276 . . . 4 (𝒫 𝐴 ∈ V → (𝒫 𝐴 ∩ Fin) ∈ V)
9290, 91syl 17 . . 3 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝒫 𝐴 ∩ Fin) ∈ V)
93 infpwfidom 9964 . . 3 ((𝒫 𝐴 ∩ Fin) ∈ V → 𝐴 ≼ (𝒫 𝐴 ∩ Fin))
9492, 93syl 17 . 2 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → 𝐴 ≼ (𝒫 𝐴 ∩ Fin))
95 sbth 9037 . 2 (((𝒫 𝐴 ∩ Fin) ≼ 𝐴𝐴 ≼ (𝒫 𝐴 ∩ Fin)) → (𝒫 𝐴 ∩ Fin) ≈ 𝐴)
9688, 94, 95syl2anc 584 1 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝒫 𝐴 ∩ Fin) ≈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wex 1781  wcel 2106  wne 2943  wrex 3073  Vcvv 3445  cin 3909  wss 3910  c0 4282  𝒫 cpw 4560   ciun 4954   class class class wbr 5105  cmpt 5188   × cxp 5631  dom cdm 5633  ran crn 5634   Fn wfn 6491  wf 6492  ontowfo 6494  1-1-ontowf1o 6495  (class class class)co 7357  ωcom 7802  m cmap 8765  cen 8880  cdom 8881  Fincfn 8883  cardccrd 9871
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-seqom 8394  df-1o 8412  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-oi 9446  df-card 9875  df-acn 9878
This theorem is referenced by:  inffien  9999  isnumbasgrplem3  41418
  Copyright terms: Public domain W3C validator