MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infpwfien Structured version   Visualization version   GIF version

Theorem infpwfien 9220
Description: Any infinite well-orderable set is equinumerous to its set of finite subsets. (Contributed by Mario Carneiro, 18-May-2015.)
Assertion
Ref Expression
infpwfien ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝒫 𝐴 ∩ Fin) ≈ 𝐴)

Proof of Theorem infpwfien
Dummy variables 𝑚 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 infxpidm2 9175 . . . . . . 7 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴 × 𝐴) ≈ 𝐴)
2 infn0 8512 . . . . . . . 8 (ω ≼ 𝐴𝐴 ≠ ∅)
32adantl 475 . . . . . . 7 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → 𝐴 ≠ ∅)
4 fseqen 9185 . . . . . . 7 (((𝐴 × 𝐴) ≈ 𝐴𝐴 ≠ ∅) → 𝑛 ∈ ω (𝐴𝑚 𝑛) ≈ (ω × 𝐴))
51, 3, 4syl2anc 579 . . . . . 6 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → 𝑛 ∈ ω (𝐴𝑚 𝑛) ≈ (ω × 𝐴))
6 xpdom1g 8347 . . . . . . 7 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (ω × 𝐴) ≼ (𝐴 × 𝐴))
7 domentr 8302 . . . . . . 7 (((ω × 𝐴) ≼ (𝐴 × 𝐴) ∧ (𝐴 × 𝐴) ≈ 𝐴) → (ω × 𝐴) ≼ 𝐴)
86, 1, 7syl2anc 579 . . . . . 6 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (ω × 𝐴) ≼ 𝐴)
9 endomtr 8301 . . . . . 6 (( 𝑛 ∈ ω (𝐴𝑚 𝑛) ≈ (ω × 𝐴) ∧ (ω × 𝐴) ≼ 𝐴) → 𝑛 ∈ ω (𝐴𝑚 𝑛) ≼ 𝐴)
105, 8, 9syl2anc 579 . . . . 5 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → 𝑛 ∈ ω (𝐴𝑚 𝑛) ≼ 𝐴)
11 numdom 9196 . . . . 5 ((𝐴 ∈ dom card ∧ 𝑛 ∈ ω (𝐴𝑚 𝑛) ≼ 𝐴) → 𝑛 ∈ ω (𝐴𝑚 𝑛) ∈ dom card)
1210, 11syldan 585 . . . 4 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → 𝑛 ∈ ω (𝐴𝑚 𝑛) ∈ dom card)
13 eliun 4759 . . . . . . . . 9 (𝑥 𝑛 ∈ ω (𝐴𝑚 𝑛) ↔ ∃𝑛 ∈ ω 𝑥 ∈ (𝐴𝑚 𝑛))
14 elmapi 8164 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝐴𝑚 𝑛) → 𝑥:𝑛𝐴)
1514ad2antll 719 . . . . . . . . . . . . . 14 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝑛 ∈ ω ∧ 𝑥 ∈ (𝐴𝑚 𝑛))) → 𝑥:𝑛𝐴)
1615frnd 6300 . . . . . . . . . . . . 13 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝑛 ∈ ω ∧ 𝑥 ∈ (𝐴𝑚 𝑛))) → ran 𝑥𝐴)
17 vex 3401 . . . . . . . . . . . . . . 15 𝑥 ∈ V
1817rnex 7381 . . . . . . . . . . . . . 14 ran 𝑥 ∈ V
1918elpw 4385 . . . . . . . . . . . . 13 (ran 𝑥 ∈ 𝒫 𝐴 ↔ ran 𝑥𝐴)
2016, 19sylibr 226 . . . . . . . . . . . 12 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝑛 ∈ ω ∧ 𝑥 ∈ (𝐴𝑚 𝑛))) → ran 𝑥 ∈ 𝒫 𝐴)
21 simprl 761 . . . . . . . . . . . . . 14 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝑛 ∈ ω ∧ 𝑥 ∈ (𝐴𝑚 𝑛))) → 𝑛 ∈ ω)
22 ssid 3842 . . . . . . . . . . . . . 14 𝑛𝑛
23 ssnnfi 8469 . . . . . . . . . . . . . 14 ((𝑛 ∈ ω ∧ 𝑛𝑛) → 𝑛 ∈ Fin)
2421, 22, 23sylancl 580 . . . . . . . . . . . . 13 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝑛 ∈ ω ∧ 𝑥 ∈ (𝐴𝑚 𝑛))) → 𝑛 ∈ Fin)
25 ffn 6293 . . . . . . . . . . . . . . 15 (𝑥:𝑛𝐴𝑥 Fn 𝑛)
26 dffn4 6374 . . . . . . . . . . . . . . 15 (𝑥 Fn 𝑛𝑥:𝑛onto→ran 𝑥)
2725, 26sylib 210 . . . . . . . . . . . . . 14 (𝑥:𝑛𝐴𝑥:𝑛onto→ran 𝑥)
2815, 27syl 17 . . . . . . . . . . . . 13 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝑛 ∈ ω ∧ 𝑥 ∈ (𝐴𝑚 𝑛))) → 𝑥:𝑛onto→ran 𝑥)
29 fofi 8542 . . . . . . . . . . . . 13 ((𝑛 ∈ Fin ∧ 𝑥:𝑛onto→ran 𝑥) → ran 𝑥 ∈ Fin)
3024, 28, 29syl2anc 579 . . . . . . . . . . . 12 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝑛 ∈ ω ∧ 𝑥 ∈ (𝐴𝑚 𝑛))) → ran 𝑥 ∈ Fin)
3120, 30elind 4021 . . . . . . . . . . 11 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝑛 ∈ ω ∧ 𝑥 ∈ (𝐴𝑚 𝑛))) → ran 𝑥 ∈ (𝒫 𝐴 ∩ Fin))
3231expr 450 . . . . . . . . . 10 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → (𝑥 ∈ (𝐴𝑚 𝑛) → ran 𝑥 ∈ (𝒫 𝐴 ∩ Fin)))
3332rexlimdva 3213 . . . . . . . . 9 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (∃𝑛 ∈ ω 𝑥 ∈ (𝐴𝑚 𝑛) → ran 𝑥 ∈ (𝒫 𝐴 ∩ Fin)))
3413, 33syl5bi 234 . . . . . . . 8 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝑥 𝑛 ∈ ω (𝐴𝑚 𝑛) → ran 𝑥 ∈ (𝒫 𝐴 ∩ Fin)))
3534imp 397 . . . . . . 7 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝑥 𝑛 ∈ ω (𝐴𝑚 𝑛)) → ran 𝑥 ∈ (𝒫 𝐴 ∩ Fin))
3635fmpttd 6651 . . . . . 6 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝑥 𝑛 ∈ ω (𝐴𝑚 𝑛) ↦ ran 𝑥): 𝑛 ∈ ω (𝐴𝑚 𝑛)⟶(𝒫 𝐴 ∩ Fin))
3736ffnd 6294 . . . . 5 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝑥 𝑛 ∈ ω (𝐴𝑚 𝑛) ↦ ran 𝑥) Fn 𝑛 ∈ ω (𝐴𝑚 𝑛))
3836frnd 6300 . . . . . 6 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ran (𝑥 𝑛 ∈ ω (𝐴𝑚 𝑛) ↦ ran 𝑥) ⊆ (𝒫 𝐴 ∩ Fin))
39 simpr 479 . . . . . . . . . . . 12 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑦 ∈ (𝒫 𝐴 ∩ Fin))
4039elin2d 4026 . . . . . . . . . . 11 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑦 ∈ Fin)
41 isfi 8267 . . . . . . . . . . 11 (𝑦 ∈ Fin ↔ ∃𝑚 ∈ ω 𝑦𝑚)
4240, 41sylib 210 . . . . . . . . . 10 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ∃𝑚 ∈ ω 𝑦𝑚)
43 ensym 8292 . . . . . . . . . . . . 13 (𝑦𝑚𝑚𝑦)
44 bren 8252 . . . . . . . . . . . . 13 (𝑚𝑦 ↔ ∃𝑥 𝑥:𝑚1-1-onto𝑦)
4543, 44sylib 210 . . . . . . . . . . . 12 (𝑦𝑚 → ∃𝑥 𝑥:𝑚1-1-onto𝑦)
46 simprl 761 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑚 ∈ ω ∧ 𝑥:𝑚1-1-onto𝑦)) → 𝑚 ∈ ω)
47 f1of 6393 . . . . . . . . . . . . . . . . . . . 20 (𝑥:𝑚1-1-onto𝑦𝑥:𝑚𝑦)
4847ad2antll 719 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑚 ∈ ω ∧ 𝑥:𝑚1-1-onto𝑦)) → 𝑥:𝑚𝑦)
49 simplr 759 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑚 ∈ ω ∧ 𝑥:𝑚1-1-onto𝑦)) → 𝑦 ∈ (𝒫 𝐴 ∩ Fin))
5049elin1d 4025 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑚 ∈ ω ∧ 𝑥:𝑚1-1-onto𝑦)) → 𝑦 ∈ 𝒫 𝐴)
5150elpwid 4391 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑚 ∈ ω ∧ 𝑥:𝑚1-1-onto𝑦)) → 𝑦𝐴)
5248, 51fssd 6307 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑚 ∈ ω ∧ 𝑥:𝑚1-1-onto𝑦)) → 𝑥:𝑚𝐴)
53 simplll 765 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑚 ∈ ω ∧ 𝑥:𝑚1-1-onto𝑦)) → 𝐴 ∈ dom card)
54 vex 3401 . . . . . . . . . . . . . . . . . . 19 𝑚 ∈ V
55 elmapg 8155 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ dom card ∧ 𝑚 ∈ V) → (𝑥 ∈ (𝐴𝑚 𝑚) ↔ 𝑥:𝑚𝐴))
5653, 54, 55sylancl 580 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑚 ∈ ω ∧ 𝑥:𝑚1-1-onto𝑦)) → (𝑥 ∈ (𝐴𝑚 𝑚) ↔ 𝑥:𝑚𝐴))
5752, 56mpbird 249 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑚 ∈ ω ∧ 𝑥:𝑚1-1-onto𝑦)) → 𝑥 ∈ (𝐴𝑚 𝑚))
58 oveq2 6932 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑚 → (𝐴𝑚 𝑛) = (𝐴𝑚 𝑚))
5958eleq2d 2845 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑚 → (𝑥 ∈ (𝐴𝑚 𝑛) ↔ 𝑥 ∈ (𝐴𝑚 𝑚)))
6059rspcev 3511 . . . . . . . . . . . . . . . . 17 ((𝑚 ∈ ω ∧ 𝑥 ∈ (𝐴𝑚 𝑚)) → ∃𝑛 ∈ ω 𝑥 ∈ (𝐴𝑚 𝑛))
6146, 57, 60syl2anc 579 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑚 ∈ ω ∧ 𝑥:𝑚1-1-onto𝑦)) → ∃𝑛 ∈ ω 𝑥 ∈ (𝐴𝑚 𝑛))
6261, 13sylibr 226 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑚 ∈ ω ∧ 𝑥:𝑚1-1-onto𝑦)) → 𝑥 𝑛 ∈ ω (𝐴𝑚 𝑛))
63 f1ofo 6400 . . . . . . . . . . . . . . . . . 18 (𝑥:𝑚1-1-onto𝑦𝑥:𝑚onto𝑦)
6463ad2antll 719 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑚 ∈ ω ∧ 𝑥:𝑚1-1-onto𝑦)) → 𝑥:𝑚onto𝑦)
65 forn 6371 . . . . . . . . . . . . . . . . 17 (𝑥:𝑚onto𝑦 → ran 𝑥 = 𝑦)
6664, 65syl 17 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑚 ∈ ω ∧ 𝑥:𝑚1-1-onto𝑦)) → ran 𝑥 = 𝑦)
6766eqcomd 2784 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑚 ∈ ω ∧ 𝑥:𝑚1-1-onto𝑦)) → 𝑦 = ran 𝑥)
6862, 67jca 507 . . . . . . . . . . . . . 14 ((((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑚 ∈ ω ∧ 𝑥:𝑚1-1-onto𝑦)) → (𝑥 𝑛 ∈ ω (𝐴𝑚 𝑛) ∧ 𝑦 = ran 𝑥))
6968expr 450 . . . . . . . . . . . . 13 ((((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑚 ∈ ω) → (𝑥:𝑚1-1-onto𝑦 → (𝑥 𝑛 ∈ ω (𝐴𝑚 𝑛) ∧ 𝑦 = ran 𝑥)))
7069eximdv 1960 . . . . . . . . . . . 12 ((((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑚 ∈ ω) → (∃𝑥 𝑥:𝑚1-1-onto𝑦 → ∃𝑥(𝑥 𝑛 ∈ ω (𝐴𝑚 𝑛) ∧ 𝑦 = ran 𝑥)))
7145, 70syl5 34 . . . . . . . . . . 11 ((((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑚 ∈ ω) → (𝑦𝑚 → ∃𝑥(𝑥 𝑛 ∈ ω (𝐴𝑚 𝑛) ∧ 𝑦 = ran 𝑥)))
7271rexlimdva 3213 . . . . . . . . . 10 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (∃𝑚 ∈ ω 𝑦𝑚 → ∃𝑥(𝑥 𝑛 ∈ ω (𝐴𝑚 𝑛) ∧ 𝑦 = ran 𝑥)))
7342, 72mpd 15 . . . . . . . . 9 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ∃𝑥(𝑥 𝑛 ∈ ω (𝐴𝑚 𝑛) ∧ 𝑦 = ran 𝑥))
7473ex 403 . . . . . . . 8 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → ∃𝑥(𝑥 𝑛 ∈ ω (𝐴𝑚 𝑛) ∧ 𝑦 = ran 𝑥)))
75 eqid 2778 . . . . . . . . . . 11 (𝑥 𝑛 ∈ ω (𝐴𝑚 𝑛) ↦ ran 𝑥) = (𝑥 𝑛 ∈ ω (𝐴𝑚 𝑛) ↦ ran 𝑥)
7675elrnmpt 5620 . . . . . . . . . 10 (𝑦 ∈ V → (𝑦 ∈ ran (𝑥 𝑛 ∈ ω (𝐴𝑚 𝑛) ↦ ran 𝑥) ↔ ∃𝑥 𝑛 ∈ ω (𝐴𝑚 𝑛)𝑦 = ran 𝑥))
7776elv 3402 . . . . . . . . 9 (𝑦 ∈ ran (𝑥 𝑛 ∈ ω (𝐴𝑚 𝑛) ↦ ran 𝑥) ↔ ∃𝑥 𝑛 ∈ ω (𝐴𝑚 𝑛)𝑦 = ran 𝑥)
78 df-rex 3096 . . . . . . . . 9 (∃𝑥 𝑛 ∈ ω (𝐴𝑚 𝑛)𝑦 = ran 𝑥 ↔ ∃𝑥(𝑥 𝑛 ∈ ω (𝐴𝑚 𝑛) ∧ 𝑦 = ran 𝑥))
7977, 78bitri 267 . . . . . . . 8 (𝑦 ∈ ran (𝑥 𝑛 ∈ ω (𝐴𝑚 𝑛) ↦ ran 𝑥) ↔ ∃𝑥(𝑥 𝑛 ∈ ω (𝐴𝑚 𝑛) ∧ 𝑦 = ran 𝑥))
8074, 79syl6ibr 244 . . . . . . 7 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦 ∈ ran (𝑥 𝑛 ∈ ω (𝐴𝑚 𝑛) ↦ ran 𝑥)))
8180ssrdv 3827 . . . . . 6 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝒫 𝐴 ∩ Fin) ⊆ ran (𝑥 𝑛 ∈ ω (𝐴𝑚 𝑛) ↦ ran 𝑥))
8238, 81eqssd 3838 . . . . 5 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ran (𝑥 𝑛 ∈ ω (𝐴𝑚 𝑛) ↦ ran 𝑥) = (𝒫 𝐴 ∩ Fin))
83 df-fo 6143 . . . . 5 ((𝑥 𝑛 ∈ ω (𝐴𝑚 𝑛) ↦ ran 𝑥): 𝑛 ∈ ω (𝐴𝑚 𝑛)–onto→(𝒫 𝐴 ∩ Fin) ↔ ((𝑥 𝑛 ∈ ω (𝐴𝑚 𝑛) ↦ ran 𝑥) Fn 𝑛 ∈ ω (𝐴𝑚 𝑛) ∧ ran (𝑥 𝑛 ∈ ω (𝐴𝑚 𝑛) ↦ ran 𝑥) = (𝒫 𝐴 ∩ Fin)))
8437, 82, 83sylanbrc 578 . . . 4 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝑥 𝑛 ∈ ω (𝐴𝑚 𝑛) ↦ ran 𝑥): 𝑛 ∈ ω (𝐴𝑚 𝑛)–onto→(𝒫 𝐴 ∩ Fin))
85 fodomnum 9215 . . . 4 ( 𝑛 ∈ ω (𝐴𝑚 𝑛) ∈ dom card → ((𝑥 𝑛 ∈ ω (𝐴𝑚 𝑛) ↦ ran 𝑥): 𝑛 ∈ ω (𝐴𝑚 𝑛)–onto→(𝒫 𝐴 ∩ Fin) → (𝒫 𝐴 ∩ Fin) ≼ 𝑛 ∈ ω (𝐴𝑚 𝑛)))
8612, 84, 85sylc 65 . . 3 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝒫 𝐴 ∩ Fin) ≼ 𝑛 ∈ ω (𝐴𝑚 𝑛))
87 domtr 8296 . . 3 (((𝒫 𝐴 ∩ Fin) ≼ 𝑛 ∈ ω (𝐴𝑚 𝑛) ∧ 𝑛 ∈ ω (𝐴𝑚 𝑛) ≼ 𝐴) → (𝒫 𝐴 ∩ Fin) ≼ 𝐴)
8886, 10, 87syl2anc 579 . 2 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝒫 𝐴 ∩ Fin) ≼ 𝐴)
89 pwexg 5092 . . . . 5 (𝐴 ∈ dom card → 𝒫 𝐴 ∈ V)
9089adantr 474 . . . 4 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → 𝒫 𝐴 ∈ V)
91 inex1g 5040 . . . 4 (𝒫 𝐴 ∈ V → (𝒫 𝐴 ∩ Fin) ∈ V)
9290, 91syl 17 . . 3 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝒫 𝐴 ∩ Fin) ∈ V)
93 infpwfidom 9186 . . 3 ((𝒫 𝐴 ∩ Fin) ∈ V → 𝐴 ≼ (𝒫 𝐴 ∩ Fin))
9492, 93syl 17 . 2 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → 𝐴 ≼ (𝒫 𝐴 ∩ Fin))
95 sbth 8370 . 2 (((𝒫 𝐴 ∩ Fin) ≼ 𝐴𝐴 ≼ (𝒫 𝐴 ∩ Fin)) → (𝒫 𝐴 ∩ Fin) ≈ 𝐴)
9688, 94, 95syl2anc 579 1 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝒫 𝐴 ∩ Fin) ≈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386   = wceq 1601  wex 1823  wcel 2107  wne 2969  wrex 3091  Vcvv 3398  cin 3791  wss 3792  c0 4141  𝒫 cpw 4379   ciun 4755   class class class wbr 4888  cmpt 4967   × cxp 5355  dom cdm 5357  ran crn 5358   Fn wfn 6132  wf 6133  ontowfo 6135  1-1-ontowf1o 6136  (class class class)co 6924  ωcom 7345  𝑚 cmap 8142  cen 8240  cdom 8241  Fincfn 8243  cardccrd 9096
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-inf2 8837
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-int 4713  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-se 5317  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-isom 6146  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-om 7346  df-1st 7447  df-2nd 7448  df-wrecs 7691  df-recs 7753  df-rdg 7791  df-seqom 7828  df-1o 7845  df-oadd 7849  df-er 8028  df-map 8144  df-en 8244  df-dom 8245  df-sdom 8246  df-fin 8247  df-oi 8706  df-card 9100  df-acn 9103
This theorem is referenced by:  inffien  9221  isnumbasgrplem3  38648
  Copyright terms: Public domain W3C validator