MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infpwfien Structured version   Visualization version   GIF version

Theorem infpwfien 9486
Description: Any infinite well-orderable set is equinumerous to its set of finite subsets. (Contributed by Mario Carneiro, 18-May-2015.)
Assertion
Ref Expression
infpwfien ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝒫 𝐴 ∩ Fin) ≈ 𝐴)

Proof of Theorem infpwfien
Dummy variables 𝑚 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 infxpidm2 9441 . . . . . . 7 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴 × 𝐴) ≈ 𝐴)
2 infn0 8777 . . . . . . . 8 (ω ≼ 𝐴𝐴 ≠ ∅)
32adantl 485 . . . . . . 7 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → 𝐴 ≠ ∅)
4 fseqen 9451 . . . . . . 7 (((𝐴 × 𝐴) ≈ 𝐴𝐴 ≠ ∅) → 𝑛 ∈ ω (𝐴m 𝑛) ≈ (ω × 𝐴))
51, 3, 4syl2anc 587 . . . . . 6 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → 𝑛 ∈ ω (𝐴m 𝑛) ≈ (ω × 𝐴))
6 xpdom1g 8610 . . . . . . 7 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (ω × 𝐴) ≼ (𝐴 × 𝐴))
7 domentr 8564 . . . . . . 7 (((ω × 𝐴) ≼ (𝐴 × 𝐴) ∧ (𝐴 × 𝐴) ≈ 𝐴) → (ω × 𝐴) ≼ 𝐴)
86, 1, 7syl2anc 587 . . . . . 6 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (ω × 𝐴) ≼ 𝐴)
9 endomtr 8563 . . . . . 6 (( 𝑛 ∈ ω (𝐴m 𝑛) ≈ (ω × 𝐴) ∧ (ω × 𝐴) ≼ 𝐴) → 𝑛 ∈ ω (𝐴m 𝑛) ≼ 𝐴)
105, 8, 9syl2anc 587 . . . . 5 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → 𝑛 ∈ ω (𝐴m 𝑛) ≼ 𝐴)
11 numdom 9462 . . . . 5 ((𝐴 ∈ dom card ∧ 𝑛 ∈ ω (𝐴m 𝑛) ≼ 𝐴) → 𝑛 ∈ ω (𝐴m 𝑛) ∈ dom card)
1210, 11syldan 594 . . . 4 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → 𝑛 ∈ ω (𝐴m 𝑛) ∈ dom card)
13 eliun 4909 . . . . . . . . 9 (𝑥 𝑛 ∈ ω (𝐴m 𝑛) ↔ ∃𝑛 ∈ ω 𝑥 ∈ (𝐴m 𝑛))
14 elmapi 8424 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝐴m 𝑛) → 𝑥:𝑛𝐴)
1514ad2antll 728 . . . . . . . . . . . . . 14 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝑛 ∈ ω ∧ 𝑥 ∈ (𝐴m 𝑛))) → 𝑥:𝑛𝐴)
1615frnd 6510 . . . . . . . . . . . . 13 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝑛 ∈ ω ∧ 𝑥 ∈ (𝐴m 𝑛))) → ran 𝑥𝐴)
17 vex 3483 . . . . . . . . . . . . . . 15 𝑥 ∈ V
1817rnex 7612 . . . . . . . . . . . . . 14 ran 𝑥 ∈ V
1918elpw 4526 . . . . . . . . . . . . 13 (ran 𝑥 ∈ 𝒫 𝐴 ↔ ran 𝑥𝐴)
2016, 19sylibr 237 . . . . . . . . . . . 12 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝑛 ∈ ω ∧ 𝑥 ∈ (𝐴m 𝑛))) → ran 𝑥 ∈ 𝒫 𝐴)
21 simprl 770 . . . . . . . . . . . . . 14 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝑛 ∈ ω ∧ 𝑥 ∈ (𝐴m 𝑛))) → 𝑛 ∈ ω)
22 ssid 3975 . . . . . . . . . . . . . 14 𝑛𝑛
23 ssnnfi 8734 . . . . . . . . . . . . . 14 ((𝑛 ∈ ω ∧ 𝑛𝑛) → 𝑛 ∈ Fin)
2421, 22, 23sylancl 589 . . . . . . . . . . . . 13 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝑛 ∈ ω ∧ 𝑥 ∈ (𝐴m 𝑛))) → 𝑛 ∈ Fin)
25 ffn 6503 . . . . . . . . . . . . . . 15 (𝑥:𝑛𝐴𝑥 Fn 𝑛)
26 dffn4 6587 . . . . . . . . . . . . . . 15 (𝑥 Fn 𝑛𝑥:𝑛onto→ran 𝑥)
2725, 26sylib 221 . . . . . . . . . . . . . 14 (𝑥:𝑛𝐴𝑥:𝑛onto→ran 𝑥)
2815, 27syl 17 . . . . . . . . . . . . 13 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝑛 ∈ ω ∧ 𝑥 ∈ (𝐴m 𝑛))) → 𝑥:𝑛onto→ran 𝑥)
29 fofi 8807 . . . . . . . . . . . . 13 ((𝑛 ∈ Fin ∧ 𝑥:𝑛onto→ran 𝑥) → ran 𝑥 ∈ Fin)
3024, 28, 29syl2anc 587 . . . . . . . . . . . 12 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝑛 ∈ ω ∧ 𝑥 ∈ (𝐴m 𝑛))) → ran 𝑥 ∈ Fin)
3120, 30elind 4156 . . . . . . . . . . 11 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝑛 ∈ ω ∧ 𝑥 ∈ (𝐴m 𝑛))) → ran 𝑥 ∈ (𝒫 𝐴 ∩ Fin))
3231expr 460 . . . . . . . . . 10 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → (𝑥 ∈ (𝐴m 𝑛) → ran 𝑥 ∈ (𝒫 𝐴 ∩ Fin)))
3332rexlimdva 3276 . . . . . . . . 9 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (∃𝑛 ∈ ω 𝑥 ∈ (𝐴m 𝑛) → ran 𝑥 ∈ (𝒫 𝐴 ∩ Fin)))
3413, 33syl5bi 245 . . . . . . . 8 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝑥 𝑛 ∈ ω (𝐴m 𝑛) → ran 𝑥 ∈ (𝒫 𝐴 ∩ Fin)))
3534imp 410 . . . . . . 7 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝑥 𝑛 ∈ ω (𝐴m 𝑛)) → ran 𝑥 ∈ (𝒫 𝐴 ∩ Fin))
3635fmpttd 6870 . . . . . 6 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝑥 𝑛 ∈ ω (𝐴m 𝑛) ↦ ran 𝑥): 𝑛 ∈ ω (𝐴m 𝑛)⟶(𝒫 𝐴 ∩ Fin))
3736ffnd 6504 . . . . 5 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝑥 𝑛 ∈ ω (𝐴m 𝑛) ↦ ran 𝑥) Fn 𝑛 ∈ ω (𝐴m 𝑛))
3836frnd 6510 . . . . . 6 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ran (𝑥 𝑛 ∈ ω (𝐴m 𝑛) ↦ ran 𝑥) ⊆ (𝒫 𝐴 ∩ Fin))
39 simpr 488 . . . . . . . . . . . 12 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑦 ∈ (𝒫 𝐴 ∩ Fin))
4039elin2d 4161 . . . . . . . . . . 11 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑦 ∈ Fin)
41 isfi 8529 . . . . . . . . . . 11 (𝑦 ∈ Fin ↔ ∃𝑚 ∈ ω 𝑦𝑚)
4240, 41sylib 221 . . . . . . . . . 10 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ∃𝑚 ∈ ω 𝑦𝑚)
43 ensym 8554 . . . . . . . . . . . . 13 (𝑦𝑚𝑚𝑦)
44 bren 8514 . . . . . . . . . . . . 13 (𝑚𝑦 ↔ ∃𝑥 𝑥:𝑚1-1-onto𝑦)
4543, 44sylib 221 . . . . . . . . . . . 12 (𝑦𝑚 → ∃𝑥 𝑥:𝑚1-1-onto𝑦)
46 simprl 770 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑚 ∈ ω ∧ 𝑥:𝑚1-1-onto𝑦)) → 𝑚 ∈ ω)
47 f1of 6606 . . . . . . . . . . . . . . . . . . . 20 (𝑥:𝑚1-1-onto𝑦𝑥:𝑚𝑦)
4847ad2antll 728 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑚 ∈ ω ∧ 𝑥:𝑚1-1-onto𝑦)) → 𝑥:𝑚𝑦)
49 simplr 768 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑚 ∈ ω ∧ 𝑥:𝑚1-1-onto𝑦)) → 𝑦 ∈ (𝒫 𝐴 ∩ Fin))
5049elin1d 4160 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑚 ∈ ω ∧ 𝑥:𝑚1-1-onto𝑦)) → 𝑦 ∈ 𝒫 𝐴)
5150elpwid 4533 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑚 ∈ ω ∧ 𝑥:𝑚1-1-onto𝑦)) → 𝑦𝐴)
5248, 51fssd 6518 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑚 ∈ ω ∧ 𝑥:𝑚1-1-onto𝑦)) → 𝑥:𝑚𝐴)
53 simplll 774 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑚 ∈ ω ∧ 𝑥:𝑚1-1-onto𝑦)) → 𝐴 ∈ dom card)
54 vex 3483 . . . . . . . . . . . . . . . . . . 19 𝑚 ∈ V
55 elmapg 8415 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ dom card ∧ 𝑚 ∈ V) → (𝑥 ∈ (𝐴m 𝑚) ↔ 𝑥:𝑚𝐴))
5653, 54, 55sylancl 589 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑚 ∈ ω ∧ 𝑥:𝑚1-1-onto𝑦)) → (𝑥 ∈ (𝐴m 𝑚) ↔ 𝑥:𝑚𝐴))
5752, 56mpbird 260 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑚 ∈ ω ∧ 𝑥:𝑚1-1-onto𝑦)) → 𝑥 ∈ (𝐴m 𝑚))
58 oveq2 7157 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑚 → (𝐴m 𝑛) = (𝐴m 𝑚))
5958eleq2d 2901 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑚 → (𝑥 ∈ (𝐴m 𝑛) ↔ 𝑥 ∈ (𝐴m 𝑚)))
6059rspcev 3609 . . . . . . . . . . . . . . . . 17 ((𝑚 ∈ ω ∧ 𝑥 ∈ (𝐴m 𝑚)) → ∃𝑛 ∈ ω 𝑥 ∈ (𝐴m 𝑛))
6146, 57, 60syl2anc 587 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑚 ∈ ω ∧ 𝑥:𝑚1-1-onto𝑦)) → ∃𝑛 ∈ ω 𝑥 ∈ (𝐴m 𝑛))
6261, 13sylibr 237 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑚 ∈ ω ∧ 𝑥:𝑚1-1-onto𝑦)) → 𝑥 𝑛 ∈ ω (𝐴m 𝑛))
63 f1ofo 6613 . . . . . . . . . . . . . . . . . 18 (𝑥:𝑚1-1-onto𝑦𝑥:𝑚onto𝑦)
6463ad2antll 728 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑚 ∈ ω ∧ 𝑥:𝑚1-1-onto𝑦)) → 𝑥:𝑚onto𝑦)
65 forn 6584 . . . . . . . . . . . . . . . . 17 (𝑥:𝑚onto𝑦 → ran 𝑥 = 𝑦)
6664, 65syl 17 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑚 ∈ ω ∧ 𝑥:𝑚1-1-onto𝑦)) → ran 𝑥 = 𝑦)
6766eqcomd 2830 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑚 ∈ ω ∧ 𝑥:𝑚1-1-onto𝑦)) → 𝑦 = ran 𝑥)
6862, 67jca 515 . . . . . . . . . . . . . 14 ((((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑚 ∈ ω ∧ 𝑥:𝑚1-1-onto𝑦)) → (𝑥 𝑛 ∈ ω (𝐴m 𝑛) ∧ 𝑦 = ran 𝑥))
6968expr 460 . . . . . . . . . . . . 13 ((((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑚 ∈ ω) → (𝑥:𝑚1-1-onto𝑦 → (𝑥 𝑛 ∈ ω (𝐴m 𝑛) ∧ 𝑦 = ran 𝑥)))
7069eximdv 1919 . . . . . . . . . . . 12 ((((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑚 ∈ ω) → (∃𝑥 𝑥:𝑚1-1-onto𝑦 → ∃𝑥(𝑥 𝑛 ∈ ω (𝐴m 𝑛) ∧ 𝑦 = ran 𝑥)))
7145, 70syl5 34 . . . . . . . . . . 11 ((((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑚 ∈ ω) → (𝑦𝑚 → ∃𝑥(𝑥 𝑛 ∈ ω (𝐴m 𝑛) ∧ 𝑦 = ran 𝑥)))
7271rexlimdva 3276 . . . . . . . . . 10 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (∃𝑚 ∈ ω 𝑦𝑚 → ∃𝑥(𝑥 𝑛 ∈ ω (𝐴m 𝑛) ∧ 𝑦 = ran 𝑥)))
7342, 72mpd 15 . . . . . . . . 9 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ∃𝑥(𝑥 𝑛 ∈ ω (𝐴m 𝑛) ∧ 𝑦 = ran 𝑥))
7473ex 416 . . . . . . . 8 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → ∃𝑥(𝑥 𝑛 ∈ ω (𝐴m 𝑛) ∧ 𝑦 = ran 𝑥)))
75 eqid 2824 . . . . . . . . . . 11 (𝑥 𝑛 ∈ ω (𝐴m 𝑛) ↦ ran 𝑥) = (𝑥 𝑛 ∈ ω (𝐴m 𝑛) ↦ ran 𝑥)
7675elrnmpt 5815 . . . . . . . . . 10 (𝑦 ∈ V → (𝑦 ∈ ran (𝑥 𝑛 ∈ ω (𝐴m 𝑛) ↦ ran 𝑥) ↔ ∃𝑥 𝑛 ∈ ω (𝐴m 𝑛)𝑦 = ran 𝑥))
7776elv 3485 . . . . . . . . 9 (𝑦 ∈ ran (𝑥 𝑛 ∈ ω (𝐴m 𝑛) ↦ ran 𝑥) ↔ ∃𝑥 𝑛 ∈ ω (𝐴m 𝑛)𝑦 = ran 𝑥)
78 df-rex 3139 . . . . . . . . 9 (∃𝑥 𝑛 ∈ ω (𝐴m 𝑛)𝑦 = ran 𝑥 ↔ ∃𝑥(𝑥 𝑛 ∈ ω (𝐴m 𝑛) ∧ 𝑦 = ran 𝑥))
7977, 78bitri 278 . . . . . . . 8 (𝑦 ∈ ran (𝑥 𝑛 ∈ ω (𝐴m 𝑛) ↦ ran 𝑥) ↔ ∃𝑥(𝑥 𝑛 ∈ ω (𝐴m 𝑛) ∧ 𝑦 = ran 𝑥))
8074, 79syl6ibr 255 . . . . . . 7 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦 ∈ ran (𝑥 𝑛 ∈ ω (𝐴m 𝑛) ↦ ran 𝑥)))
8180ssrdv 3959 . . . . . 6 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝒫 𝐴 ∩ Fin) ⊆ ran (𝑥 𝑛 ∈ ω (𝐴m 𝑛) ↦ ran 𝑥))
8238, 81eqssd 3970 . . . . 5 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ran (𝑥 𝑛 ∈ ω (𝐴m 𝑛) ↦ ran 𝑥) = (𝒫 𝐴 ∩ Fin))
83 df-fo 6349 . . . . 5 ((𝑥 𝑛 ∈ ω (𝐴m 𝑛) ↦ ran 𝑥): 𝑛 ∈ ω (𝐴m 𝑛)–onto→(𝒫 𝐴 ∩ Fin) ↔ ((𝑥 𝑛 ∈ ω (𝐴m 𝑛) ↦ ran 𝑥) Fn 𝑛 ∈ ω (𝐴m 𝑛) ∧ ran (𝑥 𝑛 ∈ ω (𝐴m 𝑛) ↦ ran 𝑥) = (𝒫 𝐴 ∩ Fin)))
8437, 82, 83sylanbrc 586 . . . 4 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝑥 𝑛 ∈ ω (𝐴m 𝑛) ↦ ran 𝑥): 𝑛 ∈ ω (𝐴m 𝑛)–onto→(𝒫 𝐴 ∩ Fin))
85 fodomnum 9481 . . . 4 ( 𝑛 ∈ ω (𝐴m 𝑛) ∈ dom card → ((𝑥 𝑛 ∈ ω (𝐴m 𝑛) ↦ ran 𝑥): 𝑛 ∈ ω (𝐴m 𝑛)–onto→(𝒫 𝐴 ∩ Fin) → (𝒫 𝐴 ∩ Fin) ≼ 𝑛 ∈ ω (𝐴m 𝑛)))
8612, 84, 85sylc 65 . . 3 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝒫 𝐴 ∩ Fin) ≼ 𝑛 ∈ ω (𝐴m 𝑛))
87 domtr 8558 . . 3 (((𝒫 𝐴 ∩ Fin) ≼ 𝑛 ∈ ω (𝐴m 𝑛) ∧ 𝑛 ∈ ω (𝐴m 𝑛) ≼ 𝐴) → (𝒫 𝐴 ∩ Fin) ≼ 𝐴)
8886, 10, 87syl2anc 587 . 2 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝒫 𝐴 ∩ Fin) ≼ 𝐴)
89 pwexg 5266 . . . . 5 (𝐴 ∈ dom card → 𝒫 𝐴 ∈ V)
9089adantr 484 . . . 4 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → 𝒫 𝐴 ∈ V)
91 inex1g 5209 . . . 4 (𝒫 𝐴 ∈ V → (𝒫 𝐴 ∩ Fin) ∈ V)
9290, 91syl 17 . . 3 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝒫 𝐴 ∩ Fin) ∈ V)
93 infpwfidom 9452 . . 3 ((𝒫 𝐴 ∩ Fin) ∈ V → 𝐴 ≼ (𝒫 𝐴 ∩ Fin))
9492, 93syl 17 . 2 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → 𝐴 ≼ (𝒫 𝐴 ∩ Fin))
95 sbth 8634 . 2 (((𝒫 𝐴 ∩ Fin) ≼ 𝐴𝐴 ≼ (𝒫 𝐴 ∩ Fin)) → (𝒫 𝐴 ∩ Fin) ≈ 𝐴)
9688, 94, 95syl2anc 587 1 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝒫 𝐴 ∩ Fin) ≈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wex 1781  wcel 2115  wne 3014  wrex 3134  Vcvv 3480  cin 3918  wss 3919  c0 4276  𝒫 cpw 4522   ciun 4905   class class class wbr 5052  cmpt 5132   × cxp 5540  dom cdm 5542  ran crn 5543   Fn wfn 6338  wf 6339  ontowfo 6341  1-1-ontowf1o 6342  (class class class)co 7149  ωcom 7574  m cmap 8402  cen 8502  cdom 8503  Fincfn 8505  cardccrd 9361
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-inf2 9101
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-se 5502  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-isom 6352  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7575  df-1st 7684  df-2nd 7685  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-seqom 8080  df-1o 8098  df-oadd 8102  df-er 8285  df-map 8404  df-en 8506  df-dom 8507  df-sdom 8508  df-fin 8509  df-oi 8971  df-card 9365  df-acn 9368
This theorem is referenced by:  inffien  9487  isnumbasgrplem3  39965
  Copyright terms: Public domain W3C validator