MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qtopss Structured version   Visualization version   GIF version

Theorem qtopss 23602
Description: A surjective continuous function from 𝐽 to 𝐾 induces a topology 𝐽 qTop 𝐹 on the base set of 𝐾. This topology is in general finer than 𝐾. Together with qtopid 23592, this implies that 𝐽 qTop 𝐹 is the finest topology making 𝐹 continuous, i.e. the final topology with respect to the family {𝐹}. (Contributed by Mario Carneiro, 24-Mar-2015.)
Assertion
Ref Expression
qtopss ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 = 𝑌) → 𝐾 ⊆ (𝐽 qTop 𝐹))

Proof of Theorem qtopss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 toponss 22814 . . . . 5 ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝑥𝐾) → 𝑥𝑌)
213ad2antl2 1187 . . . 4 (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 = 𝑌) ∧ 𝑥𝐾) → 𝑥𝑌)
3 cnima 23152 . . . . 5 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑥𝐾) → (𝐹𝑥) ∈ 𝐽)
433ad2antl1 1186 . . . 4 (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 = 𝑌) ∧ 𝑥𝐾) → (𝐹𝑥) ∈ 𝐽)
5 simpl1 1192 . . . . . . 7 (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 = 𝑌) ∧ 𝑥𝐾) → 𝐹 ∈ (𝐽 Cn 𝐾))
6 cntop1 23127 . . . . . . 7 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)
75, 6syl 17 . . . . . 6 (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 = 𝑌) ∧ 𝑥𝐾) → 𝐽 ∈ Top)
8 toptopon2 22805 . . . . . 6 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
97, 8sylib 218 . . . . 5 (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 = 𝑌) ∧ 𝑥𝐾) → 𝐽 ∈ (TopOn‘ 𝐽))
10 simpl2 1193 . . . . . . . 8 (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 = 𝑌) ∧ 𝑥𝐾) → 𝐾 ∈ (TopOn‘𝑌))
11 cnf2 23136 . . . . . . . 8 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹: 𝐽𝑌)
129, 10, 5, 11syl3anc 1373 . . . . . . 7 (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 = 𝑌) ∧ 𝑥𝐾) → 𝐹: 𝐽𝑌)
1312ffnd 6689 . . . . . 6 (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 = 𝑌) ∧ 𝑥𝐾) → 𝐹 Fn 𝐽)
14 simpl3 1194 . . . . . 6 (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 = 𝑌) ∧ 𝑥𝐾) → ran 𝐹 = 𝑌)
15 df-fo 6517 . . . . . 6 (𝐹: 𝐽onto𝑌 ↔ (𝐹 Fn 𝐽 ∧ ran 𝐹 = 𝑌))
1613, 14, 15sylanbrc 583 . . . . 5 (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 = 𝑌) ∧ 𝑥𝐾) → 𝐹: 𝐽onto𝑌)
17 elqtop3 23590 . . . . 5 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝐹: 𝐽onto𝑌) → (𝑥 ∈ (𝐽 qTop 𝐹) ↔ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽)))
189, 16, 17syl2anc 584 . . . 4 (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 = 𝑌) ∧ 𝑥𝐾) → (𝑥 ∈ (𝐽 qTop 𝐹) ↔ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽)))
192, 4, 18mpbir2and 713 . . 3 (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 = 𝑌) ∧ 𝑥𝐾) → 𝑥 ∈ (𝐽 qTop 𝐹))
2019ex 412 . 2 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 = 𝑌) → (𝑥𝐾𝑥 ∈ (𝐽 qTop 𝐹)))
2120ssrdv 3952 1 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 = 𝑌) → 𝐾 ⊆ (𝐽 qTop 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wss 3914   cuni 4871  ccnv 5637  ran crn 5639  cima 5641   Fn wfn 6506  wf 6507  ontowfo 6509  cfv 6511  (class class class)co 7387   qTop cqtop 17466  Topctop 22780  TopOnctopon 22797   Cn ccn 23111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-map 8801  df-qtop 17470  df-top 22781  df-topon 22798  df-cn 23114
This theorem is referenced by:  qtoprest  23604  qtopomap  23605  qtopcmap  23606
  Copyright terms: Public domain W3C validator