Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > qtopss | Structured version Visualization version GIF version |
Description: A surjective continuous function from 𝐽 to 𝐾 induces a topology 𝐽 qTop 𝐹 on the base set of 𝐾. This topology is in general finer than 𝐾. Together with qtopid 22854, this implies that 𝐽 qTop 𝐹 is the finest topology making 𝐹 continuous, i.e. the final topology with respect to the family {𝐹}. (Contributed by Mario Carneiro, 24-Mar-2015.) |
Ref | Expression |
---|---|
qtopss | ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 = 𝑌) → 𝐾 ⊆ (𝐽 qTop 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | toponss 22074 | . . . . 5 ⊢ ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝑥 ∈ 𝐾) → 𝑥 ⊆ 𝑌) | |
2 | 1 | 3ad2antl2 1185 | . . . 4 ⊢ (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 = 𝑌) ∧ 𝑥 ∈ 𝐾) → 𝑥 ⊆ 𝑌) |
3 | cnima 22414 | . . . . 5 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑥 ∈ 𝐾) → (◡𝐹 “ 𝑥) ∈ 𝐽) | |
4 | 3 | 3ad2antl1 1184 | . . . 4 ⊢ (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 = 𝑌) ∧ 𝑥 ∈ 𝐾) → (◡𝐹 “ 𝑥) ∈ 𝐽) |
5 | simpl1 1190 | . . . . . . 7 ⊢ (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 = 𝑌) ∧ 𝑥 ∈ 𝐾) → 𝐹 ∈ (𝐽 Cn 𝐾)) | |
6 | cntop1 22389 | . . . . . . 7 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top) | |
7 | 5, 6 | syl 17 | . . . . . 6 ⊢ (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 = 𝑌) ∧ 𝑥 ∈ 𝐾) → 𝐽 ∈ Top) |
8 | toptopon2 22065 | . . . . . 6 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) | |
9 | 7, 8 | sylib 217 | . . . . 5 ⊢ (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 = 𝑌) ∧ 𝑥 ∈ 𝐾) → 𝐽 ∈ (TopOn‘∪ 𝐽)) |
10 | simpl2 1191 | . . . . . . . 8 ⊢ (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 = 𝑌) ∧ 𝑥 ∈ 𝐾) → 𝐾 ∈ (TopOn‘𝑌)) | |
11 | cnf2 22398 | . . . . . . . 8 ⊢ ((𝐽 ∈ (TopOn‘∪ 𝐽) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:∪ 𝐽⟶𝑌) | |
12 | 9, 10, 5, 11 | syl3anc 1370 | . . . . . . 7 ⊢ (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 = 𝑌) ∧ 𝑥 ∈ 𝐾) → 𝐹:∪ 𝐽⟶𝑌) |
13 | 12 | ffnd 6599 | . . . . . 6 ⊢ (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 = 𝑌) ∧ 𝑥 ∈ 𝐾) → 𝐹 Fn ∪ 𝐽) |
14 | simpl3 1192 | . . . . . 6 ⊢ (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 = 𝑌) ∧ 𝑥 ∈ 𝐾) → ran 𝐹 = 𝑌) | |
15 | df-fo 6438 | . . . . . 6 ⊢ (𝐹:∪ 𝐽–onto→𝑌 ↔ (𝐹 Fn ∪ 𝐽 ∧ ran 𝐹 = 𝑌)) | |
16 | 13, 14, 15 | sylanbrc 583 | . . . . 5 ⊢ (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 = 𝑌) ∧ 𝑥 ∈ 𝐾) → 𝐹:∪ 𝐽–onto→𝑌) |
17 | elqtop3 22852 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘∪ 𝐽) ∧ 𝐹:∪ 𝐽–onto→𝑌) → (𝑥 ∈ (𝐽 qTop 𝐹) ↔ (𝑥 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑥) ∈ 𝐽))) | |
18 | 9, 16, 17 | syl2anc 584 | . . . 4 ⊢ (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 = 𝑌) ∧ 𝑥 ∈ 𝐾) → (𝑥 ∈ (𝐽 qTop 𝐹) ↔ (𝑥 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑥) ∈ 𝐽))) |
19 | 2, 4, 18 | mpbir2and 710 | . . 3 ⊢ (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 = 𝑌) ∧ 𝑥 ∈ 𝐾) → 𝑥 ∈ (𝐽 qTop 𝐹)) |
20 | 19 | ex 413 | . 2 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 = 𝑌) → (𝑥 ∈ 𝐾 → 𝑥 ∈ (𝐽 qTop 𝐹))) |
21 | 20 | ssrdv 3932 | 1 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 = 𝑌) → 𝐾 ⊆ (𝐽 qTop 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1542 ∈ wcel 2110 ⊆ wss 3892 ∪ cuni 4845 ◡ccnv 5589 ran crn 5591 “ cima 5593 Fn wfn 6427 ⟶wf 6428 –onto→wfo 6430 ‘cfv 6432 (class class class)co 7271 qTop cqtop 17212 Topctop 22040 TopOnctopon 22057 Cn ccn 22373 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-ov 7274 df-oprab 7275 df-mpo 7276 df-map 8600 df-qtop 17216 df-top 22041 df-topon 22058 df-cn 22376 |
This theorem is referenced by: qtoprest 22866 qtopomap 22867 qtopcmap 22868 |
Copyright terms: Public domain | W3C validator |