MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qtopss Structured version   Visualization version   GIF version

Theorem qtopss 23218
Description: A surjective continuous function from 𝐽 to 𝐾 induces a topology 𝐽 qTop 𝐹 on the base set of 𝐾. This topology is in general finer than 𝐾. Together with qtopid 23208, this implies that 𝐽 qTop 𝐹 is the finest topology making 𝐹 continuous, i.e. the final topology with respect to the family {𝐹}. (Contributed by Mario Carneiro, 24-Mar-2015.)
Assertion
Ref Expression
qtopss ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ ran 𝐹 = π‘Œ) β†’ 𝐾 βŠ† (𝐽 qTop 𝐹))

Proof of Theorem qtopss
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 toponss 22428 . . . . 5 ((𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ π‘₯ ∈ 𝐾) β†’ π‘₯ βŠ† π‘Œ)
213ad2antl2 1186 . . . 4 (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ ran 𝐹 = π‘Œ) ∧ π‘₯ ∈ 𝐾) β†’ π‘₯ βŠ† π‘Œ)
3 cnima 22768 . . . . 5 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ π‘₯ ∈ 𝐾) β†’ (◑𝐹 β€œ π‘₯) ∈ 𝐽)
433ad2antl1 1185 . . . 4 (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ ran 𝐹 = π‘Œ) ∧ π‘₯ ∈ 𝐾) β†’ (◑𝐹 β€œ π‘₯) ∈ 𝐽)
5 simpl1 1191 . . . . . . 7 (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ ran 𝐹 = π‘Œ) ∧ π‘₯ ∈ 𝐾) β†’ 𝐹 ∈ (𝐽 Cn 𝐾))
6 cntop1 22743 . . . . . . 7 (𝐹 ∈ (𝐽 Cn 𝐾) β†’ 𝐽 ∈ Top)
75, 6syl 17 . . . . . 6 (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ ran 𝐹 = π‘Œ) ∧ π‘₯ ∈ 𝐾) β†’ 𝐽 ∈ Top)
8 toptopon2 22419 . . . . . 6 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOnβ€˜βˆͺ 𝐽))
97, 8sylib 217 . . . . 5 (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ ran 𝐹 = π‘Œ) ∧ π‘₯ ∈ 𝐾) β†’ 𝐽 ∈ (TopOnβ€˜βˆͺ 𝐽))
10 simpl2 1192 . . . . . . . 8 (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ ran 𝐹 = π‘Œ) ∧ π‘₯ ∈ 𝐾) β†’ 𝐾 ∈ (TopOnβ€˜π‘Œ))
11 cnf2 22752 . . . . . . . 8 ((𝐽 ∈ (TopOnβ€˜βˆͺ 𝐽) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) β†’ 𝐹:βˆͺ π½βŸΆπ‘Œ)
129, 10, 5, 11syl3anc 1371 . . . . . . 7 (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ ran 𝐹 = π‘Œ) ∧ π‘₯ ∈ 𝐾) β†’ 𝐹:βˆͺ π½βŸΆπ‘Œ)
1312ffnd 6718 . . . . . 6 (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ ran 𝐹 = π‘Œ) ∧ π‘₯ ∈ 𝐾) β†’ 𝐹 Fn βˆͺ 𝐽)
14 simpl3 1193 . . . . . 6 (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ ran 𝐹 = π‘Œ) ∧ π‘₯ ∈ 𝐾) β†’ ran 𝐹 = π‘Œ)
15 df-fo 6549 . . . . . 6 (𝐹:βˆͺ 𝐽–ontoβ†’π‘Œ ↔ (𝐹 Fn βˆͺ 𝐽 ∧ ran 𝐹 = π‘Œ))
1613, 14, 15sylanbrc 583 . . . . 5 (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ ran 𝐹 = π‘Œ) ∧ π‘₯ ∈ 𝐾) β†’ 𝐹:βˆͺ 𝐽–ontoβ†’π‘Œ)
17 elqtop3 23206 . . . . 5 ((𝐽 ∈ (TopOnβ€˜βˆͺ 𝐽) ∧ 𝐹:βˆͺ 𝐽–ontoβ†’π‘Œ) β†’ (π‘₯ ∈ (𝐽 qTop 𝐹) ↔ (π‘₯ βŠ† π‘Œ ∧ (◑𝐹 β€œ π‘₯) ∈ 𝐽)))
189, 16, 17syl2anc 584 . . . 4 (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ ran 𝐹 = π‘Œ) ∧ π‘₯ ∈ 𝐾) β†’ (π‘₯ ∈ (𝐽 qTop 𝐹) ↔ (π‘₯ βŠ† π‘Œ ∧ (◑𝐹 β€œ π‘₯) ∈ 𝐽)))
192, 4, 18mpbir2and 711 . . 3 (((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ ran 𝐹 = π‘Œ) ∧ π‘₯ ∈ 𝐾) β†’ π‘₯ ∈ (𝐽 qTop 𝐹))
2019ex 413 . 2 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ ran 𝐹 = π‘Œ) β†’ (π‘₯ ∈ 𝐾 β†’ π‘₯ ∈ (𝐽 qTop 𝐹)))
2120ssrdv 3988 1 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ ran 𝐹 = π‘Œ) β†’ 𝐾 βŠ† (𝐽 qTop 𝐹))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   βŠ† wss 3948  βˆͺ cuni 4908  β—‘ccnv 5675  ran crn 5677   β€œ cima 5679   Fn wfn 6538  βŸΆwf 6539  β€“ontoβ†’wfo 6541  β€˜cfv 6543  (class class class)co 7408   qTop cqtop 17448  Topctop 22394  TopOnctopon 22411   Cn ccn 22727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7411  df-oprab 7412  df-mpo 7413  df-map 8821  df-qtop 17452  df-top 22395  df-topon 22412  df-cn 22730
This theorem is referenced by:  qtoprest  23220  qtopomap  23221  qtopcmap  23222
  Copyright terms: Public domain W3C validator