MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qtopomap Structured version   Visualization version   GIF version

Theorem qtopomap 22777
Description: If 𝐹 is a surjective continuous open map, then it is a quotient map. (An open map is a function that maps open sets to open sets.) (Contributed by Mario Carneiro, 24-Mar-2015.)
Hypotheses
Ref Expression
qtopomap.4 (𝜑𝐾 ∈ (TopOn‘𝑌))
qtopomap.5 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
qtopomap.6 (𝜑 → ran 𝐹 = 𝑌)
qtopomap.7 ((𝜑𝑥𝐽) → (𝐹𝑥) ∈ 𝐾)
Assertion
Ref Expression
qtopomap (𝜑𝐾 = (𝐽 qTop 𝐹))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐽   𝑥,𝐾   𝜑,𝑥   𝑥,𝑌

Proof of Theorem qtopomap
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 qtopomap.5 . . 3 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
2 qtopomap.4 . . 3 (𝜑𝐾 ∈ (TopOn‘𝑌))
3 qtopomap.6 . . 3 (𝜑 → ran 𝐹 = 𝑌)
4 qtopss 22774 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 = 𝑌) → 𝐾 ⊆ (𝐽 qTop 𝐹))
51, 2, 3, 4syl3anc 1369 . 2 (𝜑𝐾 ⊆ (𝐽 qTop 𝐹))
6 cntop1 22299 . . . . . . 7 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)
71, 6syl 17 . . . . . 6 (𝜑𝐽 ∈ Top)
8 toptopon2 21975 . . . . . 6 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
97, 8sylib 217 . . . . 5 (𝜑𝐽 ∈ (TopOn‘ 𝐽))
10 cnf2 22308 . . . . . . . 8 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹: 𝐽𝑌)
119, 2, 1, 10syl3anc 1369 . . . . . . 7 (𝜑𝐹: 𝐽𝑌)
1211ffnd 6585 . . . . . 6 (𝜑𝐹 Fn 𝐽)
13 df-fo 6424 . . . . . 6 (𝐹: 𝐽onto𝑌 ↔ (𝐹 Fn 𝐽 ∧ ran 𝐹 = 𝑌))
1412, 3, 13sylanbrc 582 . . . . 5 (𝜑𝐹: 𝐽onto𝑌)
15 elqtop3 22762 . . . . 5 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝐹: 𝐽onto𝑌) → (𝑦 ∈ (𝐽 qTop 𝐹) ↔ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)))
169, 14, 15syl2anc 583 . . . 4 (𝜑 → (𝑦 ∈ (𝐽 qTop 𝐹) ↔ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)))
17 foimacnv 6717 . . . . . . . 8 ((𝐹: 𝐽onto𝑌𝑦𝑌) → (𝐹 “ (𝐹𝑦)) = 𝑦)
1814, 17sylan 579 . . . . . . 7 ((𝜑𝑦𝑌) → (𝐹 “ (𝐹𝑦)) = 𝑦)
1918adantrr 713 . . . . . 6 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → (𝐹 “ (𝐹𝑦)) = 𝑦)
20 imaeq2 5954 . . . . . . . 8 (𝑥 = (𝐹𝑦) → (𝐹𝑥) = (𝐹 “ (𝐹𝑦)))
2120eleq1d 2823 . . . . . . 7 (𝑥 = (𝐹𝑦) → ((𝐹𝑥) ∈ 𝐾 ↔ (𝐹 “ (𝐹𝑦)) ∈ 𝐾))
22 qtopomap.7 . . . . . . . . 9 ((𝜑𝑥𝐽) → (𝐹𝑥) ∈ 𝐾)
2322ralrimiva 3107 . . . . . . . 8 (𝜑 → ∀𝑥𝐽 (𝐹𝑥) ∈ 𝐾)
2423adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → ∀𝑥𝐽 (𝐹𝑥) ∈ 𝐾)
25 simprr 769 . . . . . . 7 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → (𝐹𝑦) ∈ 𝐽)
2621, 24, 25rspcdva 3554 . . . . . 6 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → (𝐹 “ (𝐹𝑦)) ∈ 𝐾)
2719, 26eqeltrrd 2840 . . . . 5 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → 𝑦𝐾)
2827ex 412 . . . 4 (𝜑 → ((𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽) → 𝑦𝐾))
2916, 28sylbid 239 . . 3 (𝜑 → (𝑦 ∈ (𝐽 qTop 𝐹) → 𝑦𝐾))
3029ssrdv 3923 . 2 (𝜑 → (𝐽 qTop 𝐹) ⊆ 𝐾)
315, 30eqssd 3934 1 (𝜑𝐾 = (𝐽 qTop 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  wss 3883   cuni 4836  ccnv 5579  ran crn 5581  cima 5583   Fn wfn 6413  wf 6414  ontowfo 6416  cfv 6418  (class class class)co 7255   qTop cqtop 17131  Topctop 21950  TopOnctopon 21967   Cn ccn 22283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-map 8575  df-qtop 17135  df-top 21951  df-topon 21968  df-cn 22286
This theorem is referenced by:  hmeoqtop  22834
  Copyright terms: Public domain W3C validator