MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qtopomap Structured version   Visualization version   GIF version

Theorem qtopomap 22869
Description: If 𝐹 is a surjective continuous open map, then it is a quotient map. (An open map is a function that maps open sets to open sets.) (Contributed by Mario Carneiro, 24-Mar-2015.)
Hypotheses
Ref Expression
qtopomap.4 (𝜑𝐾 ∈ (TopOn‘𝑌))
qtopomap.5 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
qtopomap.6 (𝜑 → ran 𝐹 = 𝑌)
qtopomap.7 ((𝜑𝑥𝐽) → (𝐹𝑥) ∈ 𝐾)
Assertion
Ref Expression
qtopomap (𝜑𝐾 = (𝐽 qTop 𝐹))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐽   𝑥,𝐾   𝜑,𝑥   𝑥,𝑌

Proof of Theorem qtopomap
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 qtopomap.5 . . 3 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
2 qtopomap.4 . . 3 (𝜑𝐾 ∈ (TopOn‘𝑌))
3 qtopomap.6 . . 3 (𝜑 → ran 𝐹 = 𝑌)
4 qtopss 22866 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 = 𝑌) → 𝐾 ⊆ (𝐽 qTop 𝐹))
51, 2, 3, 4syl3anc 1370 . 2 (𝜑𝐾 ⊆ (𝐽 qTop 𝐹))
6 cntop1 22391 . . . . . . 7 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)
71, 6syl 17 . . . . . 6 (𝜑𝐽 ∈ Top)
8 toptopon2 22067 . . . . . 6 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
97, 8sylib 217 . . . . 5 (𝜑𝐽 ∈ (TopOn‘ 𝐽))
10 cnf2 22400 . . . . . . . 8 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹: 𝐽𝑌)
119, 2, 1, 10syl3anc 1370 . . . . . . 7 (𝜑𝐹: 𝐽𝑌)
1211ffnd 6601 . . . . . 6 (𝜑𝐹 Fn 𝐽)
13 df-fo 6439 . . . . . 6 (𝐹: 𝐽onto𝑌 ↔ (𝐹 Fn 𝐽 ∧ ran 𝐹 = 𝑌))
1412, 3, 13sylanbrc 583 . . . . 5 (𝜑𝐹: 𝐽onto𝑌)
15 elqtop3 22854 . . . . 5 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝐹: 𝐽onto𝑌) → (𝑦 ∈ (𝐽 qTop 𝐹) ↔ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)))
169, 14, 15syl2anc 584 . . . 4 (𝜑 → (𝑦 ∈ (𝐽 qTop 𝐹) ↔ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)))
17 foimacnv 6733 . . . . . . . 8 ((𝐹: 𝐽onto𝑌𝑦𝑌) → (𝐹 “ (𝐹𝑦)) = 𝑦)
1814, 17sylan 580 . . . . . . 7 ((𝜑𝑦𝑌) → (𝐹 “ (𝐹𝑦)) = 𝑦)
1918adantrr 714 . . . . . 6 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → (𝐹 “ (𝐹𝑦)) = 𝑦)
20 imaeq2 5965 . . . . . . . 8 (𝑥 = (𝐹𝑦) → (𝐹𝑥) = (𝐹 “ (𝐹𝑦)))
2120eleq1d 2823 . . . . . . 7 (𝑥 = (𝐹𝑦) → ((𝐹𝑥) ∈ 𝐾 ↔ (𝐹 “ (𝐹𝑦)) ∈ 𝐾))
22 qtopomap.7 . . . . . . . . 9 ((𝜑𝑥𝐽) → (𝐹𝑥) ∈ 𝐾)
2322ralrimiva 3103 . . . . . . . 8 (𝜑 → ∀𝑥𝐽 (𝐹𝑥) ∈ 𝐾)
2423adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → ∀𝑥𝐽 (𝐹𝑥) ∈ 𝐾)
25 simprr 770 . . . . . . 7 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → (𝐹𝑦) ∈ 𝐽)
2621, 24, 25rspcdva 3562 . . . . . 6 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → (𝐹 “ (𝐹𝑦)) ∈ 𝐾)
2719, 26eqeltrrd 2840 . . . . 5 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → 𝑦𝐾)
2827ex 413 . . . 4 (𝜑 → ((𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽) → 𝑦𝐾))
2916, 28sylbid 239 . . 3 (𝜑 → (𝑦 ∈ (𝐽 qTop 𝐹) → 𝑦𝐾))
3029ssrdv 3927 . 2 (𝜑 → (𝐽 qTop 𝐹) ⊆ 𝐾)
315, 30eqssd 3938 1 (𝜑𝐾 = (𝐽 qTop 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  wss 3887   cuni 4839  ccnv 5588  ran crn 5590  cima 5592   Fn wfn 6428  wf 6429  ontowfo 6431  cfv 6433  (class class class)co 7275   qTop cqtop 17214  Topctop 22042  TopOnctopon 22059   Cn ccn 22375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-map 8617  df-qtop 17218  df-top 22043  df-topon 22060  df-cn 22378
This theorem is referenced by:  hmeoqtop  22926
  Copyright terms: Public domain W3C validator