| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > qtopomap | Structured version Visualization version GIF version | ||
| Description: If 𝐹 is a surjective continuous open map, then it is a quotient map. (An open map is a function that maps open sets to open sets.) (Contributed by Mario Carneiro, 24-Mar-2015.) |
| Ref | Expression |
|---|---|
| qtopomap.4 | ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) |
| qtopomap.5 | ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) |
| qtopomap.6 | ⊢ (𝜑 → ran 𝐹 = 𝑌) |
| qtopomap.7 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐽) → (𝐹 “ 𝑥) ∈ 𝐾) |
| Ref | Expression |
|---|---|
| qtopomap | ⊢ (𝜑 → 𝐾 = (𝐽 qTop 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qtopomap.5 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) | |
| 2 | qtopomap.4 | . . 3 ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) | |
| 3 | qtopomap.6 | . . 3 ⊢ (𝜑 → ran 𝐹 = 𝑌) | |
| 4 | qtopss 23658 | . . 3 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 = 𝑌) → 𝐾 ⊆ (𝐽 qTop 𝐹)) | |
| 5 | 1, 2, 3, 4 | syl3anc 1373 | . 2 ⊢ (𝜑 → 𝐾 ⊆ (𝐽 qTop 𝐹)) |
| 6 | cntop1 23183 | . . . . . . 7 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top) | |
| 7 | 1, 6 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐽 ∈ Top) |
| 8 | toptopon2 22861 | . . . . . 6 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) | |
| 9 | 7, 8 | sylib 218 | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘∪ 𝐽)) |
| 10 | cnf2 23192 | . . . . . . . 8 ⊢ ((𝐽 ∈ (TopOn‘∪ 𝐽) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:∪ 𝐽⟶𝑌) | |
| 11 | 9, 2, 1, 10 | syl3anc 1373 | . . . . . . 7 ⊢ (𝜑 → 𝐹:∪ 𝐽⟶𝑌) |
| 12 | 11 | ffnd 6712 | . . . . . 6 ⊢ (𝜑 → 𝐹 Fn ∪ 𝐽) |
| 13 | df-fo 6542 | . . . . . 6 ⊢ (𝐹:∪ 𝐽–onto→𝑌 ↔ (𝐹 Fn ∪ 𝐽 ∧ ran 𝐹 = 𝑌)) | |
| 14 | 12, 3, 13 | sylanbrc 583 | . . . . 5 ⊢ (𝜑 → 𝐹:∪ 𝐽–onto→𝑌) |
| 15 | elqtop3 23646 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘∪ 𝐽) ∧ 𝐹:∪ 𝐽–onto→𝑌) → (𝑦 ∈ (𝐽 qTop 𝐹) ↔ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽))) | |
| 16 | 9, 14, 15 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝑦 ∈ (𝐽 qTop 𝐹) ↔ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽))) |
| 17 | foimacnv 6840 | . . . . . . . 8 ⊢ ((𝐹:∪ 𝐽–onto→𝑌 ∧ 𝑦 ⊆ 𝑌) → (𝐹 “ (◡𝐹 “ 𝑦)) = 𝑦) | |
| 18 | 14, 17 | sylan 580 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ⊆ 𝑌) → (𝐹 “ (◡𝐹 “ 𝑦)) = 𝑦) |
| 19 | 18 | adantrr 717 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽)) → (𝐹 “ (◡𝐹 “ 𝑦)) = 𝑦) |
| 20 | imaeq2 6048 | . . . . . . . 8 ⊢ (𝑥 = (◡𝐹 “ 𝑦) → (𝐹 “ 𝑥) = (𝐹 “ (◡𝐹 “ 𝑦))) | |
| 21 | 20 | eleq1d 2820 | . . . . . . 7 ⊢ (𝑥 = (◡𝐹 “ 𝑦) → ((𝐹 “ 𝑥) ∈ 𝐾 ↔ (𝐹 “ (◡𝐹 “ 𝑦)) ∈ 𝐾)) |
| 22 | qtopomap.7 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐽) → (𝐹 “ 𝑥) ∈ 𝐾) | |
| 23 | 22 | ralrimiva 3133 | . . . . . . . 8 ⊢ (𝜑 → ∀𝑥 ∈ 𝐽 (𝐹 “ 𝑥) ∈ 𝐾) |
| 24 | 23 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽)) → ∀𝑥 ∈ 𝐽 (𝐹 “ 𝑥) ∈ 𝐾) |
| 25 | simprr 772 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽)) → (◡𝐹 “ 𝑦) ∈ 𝐽) | |
| 26 | 21, 24, 25 | rspcdva 3607 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽)) → (𝐹 “ (◡𝐹 “ 𝑦)) ∈ 𝐾) |
| 27 | 19, 26 | eqeltrrd 2836 | . . . . 5 ⊢ ((𝜑 ∧ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽)) → 𝑦 ∈ 𝐾) |
| 28 | 27 | ex 412 | . . . 4 ⊢ (𝜑 → ((𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽) → 𝑦 ∈ 𝐾)) |
| 29 | 16, 28 | sylbid 240 | . . 3 ⊢ (𝜑 → (𝑦 ∈ (𝐽 qTop 𝐹) → 𝑦 ∈ 𝐾)) |
| 30 | 29 | ssrdv 3969 | . 2 ⊢ (𝜑 → (𝐽 qTop 𝐹) ⊆ 𝐾) |
| 31 | 5, 30 | eqssd 3981 | 1 ⊢ (𝜑 → 𝐾 = (𝐽 qTop 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3052 ⊆ wss 3931 ∪ cuni 4888 ◡ccnv 5658 ran crn 5660 “ cima 5662 Fn wfn 6531 ⟶wf 6532 –onto→wfo 6534 ‘cfv 6536 (class class class)co 7410 qTop cqtop 17522 Topctop 22836 TopOnctopon 22853 Cn ccn 23167 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-map 8847 df-qtop 17526 df-top 22837 df-topon 22854 df-cn 23170 |
| This theorem is referenced by: hmeoqtop 23718 |
| Copyright terms: Public domain | W3C validator |