![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > qtopomap | Structured version Visualization version GIF version |
Description: If 𝐹 is a surjective continuous open map, then it is a quotient map. (An open map is a function that maps open sets to open sets.) (Contributed by Mario Carneiro, 24-Mar-2015.) |
Ref | Expression |
---|---|
qtopomap.4 | ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) |
qtopomap.5 | ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) |
qtopomap.6 | ⊢ (𝜑 → ran 𝐹 = 𝑌) |
qtopomap.7 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐽) → (𝐹 “ 𝑥) ∈ 𝐾) |
Ref | Expression |
---|---|
qtopomap | ⊢ (𝜑 → 𝐾 = (𝐽 qTop 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qtopomap.5 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) | |
2 | qtopomap.4 | . . 3 ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) | |
3 | qtopomap.6 | . . 3 ⊢ (𝜑 → ran 𝐹 = 𝑌) | |
4 | qtopss 23744 | . . 3 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 = 𝑌) → 𝐾 ⊆ (𝐽 qTop 𝐹)) | |
5 | 1, 2, 3, 4 | syl3anc 1371 | . 2 ⊢ (𝜑 → 𝐾 ⊆ (𝐽 qTop 𝐹)) |
6 | cntop1 23269 | . . . . . . 7 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top) | |
7 | 1, 6 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐽 ∈ Top) |
8 | toptopon2 22945 | . . . . . 6 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) | |
9 | 7, 8 | sylib 218 | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘∪ 𝐽)) |
10 | cnf2 23278 | . . . . . . . 8 ⊢ ((𝐽 ∈ (TopOn‘∪ 𝐽) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:∪ 𝐽⟶𝑌) | |
11 | 9, 2, 1, 10 | syl3anc 1371 | . . . . . . 7 ⊢ (𝜑 → 𝐹:∪ 𝐽⟶𝑌) |
12 | 11 | ffnd 6748 | . . . . . 6 ⊢ (𝜑 → 𝐹 Fn ∪ 𝐽) |
13 | df-fo 6579 | . . . . . 6 ⊢ (𝐹:∪ 𝐽–onto→𝑌 ↔ (𝐹 Fn ∪ 𝐽 ∧ ran 𝐹 = 𝑌)) | |
14 | 12, 3, 13 | sylanbrc 582 | . . . . 5 ⊢ (𝜑 → 𝐹:∪ 𝐽–onto→𝑌) |
15 | elqtop3 23732 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘∪ 𝐽) ∧ 𝐹:∪ 𝐽–onto→𝑌) → (𝑦 ∈ (𝐽 qTop 𝐹) ↔ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽))) | |
16 | 9, 14, 15 | syl2anc 583 | . . . 4 ⊢ (𝜑 → (𝑦 ∈ (𝐽 qTop 𝐹) ↔ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽))) |
17 | foimacnv 6879 | . . . . . . . 8 ⊢ ((𝐹:∪ 𝐽–onto→𝑌 ∧ 𝑦 ⊆ 𝑌) → (𝐹 “ (◡𝐹 “ 𝑦)) = 𝑦) | |
18 | 14, 17 | sylan 579 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ⊆ 𝑌) → (𝐹 “ (◡𝐹 “ 𝑦)) = 𝑦) |
19 | 18 | adantrr 716 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽)) → (𝐹 “ (◡𝐹 “ 𝑦)) = 𝑦) |
20 | imaeq2 6085 | . . . . . . . 8 ⊢ (𝑥 = (◡𝐹 “ 𝑦) → (𝐹 “ 𝑥) = (𝐹 “ (◡𝐹 “ 𝑦))) | |
21 | 20 | eleq1d 2829 | . . . . . . 7 ⊢ (𝑥 = (◡𝐹 “ 𝑦) → ((𝐹 “ 𝑥) ∈ 𝐾 ↔ (𝐹 “ (◡𝐹 “ 𝑦)) ∈ 𝐾)) |
22 | qtopomap.7 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐽) → (𝐹 “ 𝑥) ∈ 𝐾) | |
23 | 22 | ralrimiva 3152 | . . . . . . . 8 ⊢ (𝜑 → ∀𝑥 ∈ 𝐽 (𝐹 “ 𝑥) ∈ 𝐾) |
24 | 23 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽)) → ∀𝑥 ∈ 𝐽 (𝐹 “ 𝑥) ∈ 𝐾) |
25 | simprr 772 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽)) → (◡𝐹 “ 𝑦) ∈ 𝐽) | |
26 | 21, 24, 25 | rspcdva 3636 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽)) → (𝐹 “ (◡𝐹 “ 𝑦)) ∈ 𝐾) |
27 | 19, 26 | eqeltrrd 2845 | . . . . 5 ⊢ ((𝜑 ∧ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽)) → 𝑦 ∈ 𝐾) |
28 | 27 | ex 412 | . . . 4 ⊢ (𝜑 → ((𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽) → 𝑦 ∈ 𝐾)) |
29 | 16, 28 | sylbid 240 | . . 3 ⊢ (𝜑 → (𝑦 ∈ (𝐽 qTop 𝐹) → 𝑦 ∈ 𝐾)) |
30 | 29 | ssrdv 4014 | . 2 ⊢ (𝜑 → (𝐽 qTop 𝐹) ⊆ 𝐾) |
31 | 5, 30 | eqssd 4026 | 1 ⊢ (𝜑 → 𝐾 = (𝐽 qTop 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ⊆ wss 3976 ∪ cuni 4931 ◡ccnv 5699 ran crn 5701 “ cima 5703 Fn wfn 6568 ⟶wf 6569 –onto→wfo 6571 ‘cfv 6573 (class class class)co 7448 qTop cqtop 17563 Topctop 22920 TopOnctopon 22937 Cn ccn 23253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-map 8886 df-qtop 17567 df-top 22921 df-topon 22938 df-cn 23256 |
This theorem is referenced by: hmeoqtop 23804 |
Copyright terms: Public domain | W3C validator |