Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > qtopomap | Structured version Visualization version GIF version |
Description: If 𝐹 is a surjective continuous open map, then it is a quotient map. (An open map is a function that maps open sets to open sets.) (Contributed by Mario Carneiro, 24-Mar-2015.) |
Ref | Expression |
---|---|
qtopomap.4 | ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) |
qtopomap.5 | ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) |
qtopomap.6 | ⊢ (𝜑 → ran 𝐹 = 𝑌) |
qtopomap.7 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐽) → (𝐹 “ 𝑥) ∈ 𝐾) |
Ref | Expression |
---|---|
qtopomap | ⊢ (𝜑 → 𝐾 = (𝐽 qTop 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qtopomap.5 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) | |
2 | qtopomap.4 | . . 3 ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) | |
3 | qtopomap.6 | . . 3 ⊢ (𝜑 → ran 𝐹 = 𝑌) | |
4 | qtopss 22866 | . . 3 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 = 𝑌) → 𝐾 ⊆ (𝐽 qTop 𝐹)) | |
5 | 1, 2, 3, 4 | syl3anc 1370 | . 2 ⊢ (𝜑 → 𝐾 ⊆ (𝐽 qTop 𝐹)) |
6 | cntop1 22391 | . . . . . . 7 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top) | |
7 | 1, 6 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐽 ∈ Top) |
8 | toptopon2 22067 | . . . . . 6 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) | |
9 | 7, 8 | sylib 217 | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘∪ 𝐽)) |
10 | cnf2 22400 | . . . . . . . 8 ⊢ ((𝐽 ∈ (TopOn‘∪ 𝐽) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:∪ 𝐽⟶𝑌) | |
11 | 9, 2, 1, 10 | syl3anc 1370 | . . . . . . 7 ⊢ (𝜑 → 𝐹:∪ 𝐽⟶𝑌) |
12 | 11 | ffnd 6601 | . . . . . 6 ⊢ (𝜑 → 𝐹 Fn ∪ 𝐽) |
13 | df-fo 6439 | . . . . . 6 ⊢ (𝐹:∪ 𝐽–onto→𝑌 ↔ (𝐹 Fn ∪ 𝐽 ∧ ran 𝐹 = 𝑌)) | |
14 | 12, 3, 13 | sylanbrc 583 | . . . . 5 ⊢ (𝜑 → 𝐹:∪ 𝐽–onto→𝑌) |
15 | elqtop3 22854 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘∪ 𝐽) ∧ 𝐹:∪ 𝐽–onto→𝑌) → (𝑦 ∈ (𝐽 qTop 𝐹) ↔ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽))) | |
16 | 9, 14, 15 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝑦 ∈ (𝐽 qTop 𝐹) ↔ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽))) |
17 | foimacnv 6733 | . . . . . . . 8 ⊢ ((𝐹:∪ 𝐽–onto→𝑌 ∧ 𝑦 ⊆ 𝑌) → (𝐹 “ (◡𝐹 “ 𝑦)) = 𝑦) | |
18 | 14, 17 | sylan 580 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ⊆ 𝑌) → (𝐹 “ (◡𝐹 “ 𝑦)) = 𝑦) |
19 | 18 | adantrr 714 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽)) → (𝐹 “ (◡𝐹 “ 𝑦)) = 𝑦) |
20 | imaeq2 5965 | . . . . . . . 8 ⊢ (𝑥 = (◡𝐹 “ 𝑦) → (𝐹 “ 𝑥) = (𝐹 “ (◡𝐹 “ 𝑦))) | |
21 | 20 | eleq1d 2823 | . . . . . . 7 ⊢ (𝑥 = (◡𝐹 “ 𝑦) → ((𝐹 “ 𝑥) ∈ 𝐾 ↔ (𝐹 “ (◡𝐹 “ 𝑦)) ∈ 𝐾)) |
22 | qtopomap.7 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐽) → (𝐹 “ 𝑥) ∈ 𝐾) | |
23 | 22 | ralrimiva 3103 | . . . . . . . 8 ⊢ (𝜑 → ∀𝑥 ∈ 𝐽 (𝐹 “ 𝑥) ∈ 𝐾) |
24 | 23 | adantr 481 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽)) → ∀𝑥 ∈ 𝐽 (𝐹 “ 𝑥) ∈ 𝐾) |
25 | simprr 770 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽)) → (◡𝐹 “ 𝑦) ∈ 𝐽) | |
26 | 21, 24, 25 | rspcdva 3562 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽)) → (𝐹 “ (◡𝐹 “ 𝑦)) ∈ 𝐾) |
27 | 19, 26 | eqeltrrd 2840 | . . . . 5 ⊢ ((𝜑 ∧ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽)) → 𝑦 ∈ 𝐾) |
28 | 27 | ex 413 | . . . 4 ⊢ (𝜑 → ((𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽) → 𝑦 ∈ 𝐾)) |
29 | 16, 28 | sylbid 239 | . . 3 ⊢ (𝜑 → (𝑦 ∈ (𝐽 qTop 𝐹) → 𝑦 ∈ 𝐾)) |
30 | 29 | ssrdv 3927 | . 2 ⊢ (𝜑 → (𝐽 qTop 𝐹) ⊆ 𝐾) |
31 | 5, 30 | eqssd 3938 | 1 ⊢ (𝜑 → 𝐾 = (𝐽 qTop 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ⊆ wss 3887 ∪ cuni 4839 ◡ccnv 5588 ran crn 5590 “ cima 5592 Fn wfn 6428 ⟶wf 6429 –onto→wfo 6431 ‘cfv 6433 (class class class)co 7275 qTop cqtop 17214 Topctop 22042 TopOnctopon 22059 Cn ccn 22375 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-map 8617 df-qtop 17218 df-top 22043 df-topon 22060 df-cn 22378 |
This theorem is referenced by: hmeoqtop 22926 |
Copyright terms: Public domain | W3C validator |