MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qtopomap Structured version   Visualization version   GIF version

Theorem qtopomap 23661
Description: If 𝐹 is a surjective continuous open map, then it is a quotient map. (An open map is a function that maps open sets to open sets.) (Contributed by Mario Carneiro, 24-Mar-2015.)
Hypotheses
Ref Expression
qtopomap.4 (𝜑𝐾 ∈ (TopOn‘𝑌))
qtopomap.5 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
qtopomap.6 (𝜑 → ran 𝐹 = 𝑌)
qtopomap.7 ((𝜑𝑥𝐽) → (𝐹𝑥) ∈ 𝐾)
Assertion
Ref Expression
qtopomap (𝜑𝐾 = (𝐽 qTop 𝐹))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐽   𝑥,𝐾   𝜑,𝑥   𝑥,𝑌

Proof of Theorem qtopomap
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 qtopomap.5 . . 3 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
2 qtopomap.4 . . 3 (𝜑𝐾 ∈ (TopOn‘𝑌))
3 qtopomap.6 . . 3 (𝜑 → ran 𝐹 = 𝑌)
4 qtopss 23658 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 = 𝑌) → 𝐾 ⊆ (𝐽 qTop 𝐹))
51, 2, 3, 4syl3anc 1373 . 2 (𝜑𝐾 ⊆ (𝐽 qTop 𝐹))
6 cntop1 23183 . . . . . . 7 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)
71, 6syl 17 . . . . . 6 (𝜑𝐽 ∈ Top)
8 toptopon2 22861 . . . . . 6 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
97, 8sylib 218 . . . . 5 (𝜑𝐽 ∈ (TopOn‘ 𝐽))
10 cnf2 23192 . . . . . . . 8 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹: 𝐽𝑌)
119, 2, 1, 10syl3anc 1373 . . . . . . 7 (𝜑𝐹: 𝐽𝑌)
1211ffnd 6712 . . . . . 6 (𝜑𝐹 Fn 𝐽)
13 df-fo 6542 . . . . . 6 (𝐹: 𝐽onto𝑌 ↔ (𝐹 Fn 𝐽 ∧ ran 𝐹 = 𝑌))
1412, 3, 13sylanbrc 583 . . . . 5 (𝜑𝐹: 𝐽onto𝑌)
15 elqtop3 23646 . . . . 5 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝐹: 𝐽onto𝑌) → (𝑦 ∈ (𝐽 qTop 𝐹) ↔ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)))
169, 14, 15syl2anc 584 . . . 4 (𝜑 → (𝑦 ∈ (𝐽 qTop 𝐹) ↔ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)))
17 foimacnv 6840 . . . . . . . 8 ((𝐹: 𝐽onto𝑌𝑦𝑌) → (𝐹 “ (𝐹𝑦)) = 𝑦)
1814, 17sylan 580 . . . . . . 7 ((𝜑𝑦𝑌) → (𝐹 “ (𝐹𝑦)) = 𝑦)
1918adantrr 717 . . . . . 6 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → (𝐹 “ (𝐹𝑦)) = 𝑦)
20 imaeq2 6048 . . . . . . . 8 (𝑥 = (𝐹𝑦) → (𝐹𝑥) = (𝐹 “ (𝐹𝑦)))
2120eleq1d 2820 . . . . . . 7 (𝑥 = (𝐹𝑦) → ((𝐹𝑥) ∈ 𝐾 ↔ (𝐹 “ (𝐹𝑦)) ∈ 𝐾))
22 qtopomap.7 . . . . . . . . 9 ((𝜑𝑥𝐽) → (𝐹𝑥) ∈ 𝐾)
2322ralrimiva 3133 . . . . . . . 8 (𝜑 → ∀𝑥𝐽 (𝐹𝑥) ∈ 𝐾)
2423adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → ∀𝑥𝐽 (𝐹𝑥) ∈ 𝐾)
25 simprr 772 . . . . . . 7 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → (𝐹𝑦) ∈ 𝐽)
2621, 24, 25rspcdva 3607 . . . . . 6 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → (𝐹 “ (𝐹𝑦)) ∈ 𝐾)
2719, 26eqeltrrd 2836 . . . . 5 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → 𝑦𝐾)
2827ex 412 . . . 4 (𝜑 → ((𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽) → 𝑦𝐾))
2916, 28sylbid 240 . . 3 (𝜑 → (𝑦 ∈ (𝐽 qTop 𝐹) → 𝑦𝐾))
3029ssrdv 3969 . 2 (𝜑 → (𝐽 qTop 𝐹) ⊆ 𝐾)
315, 30eqssd 3981 1 (𝜑𝐾 = (𝐽 qTop 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3052  wss 3931   cuni 4888  ccnv 5658  ran crn 5660  cima 5662   Fn wfn 6531  wf 6532  ontowfo 6534  cfv 6536  (class class class)co 7410   qTop cqtop 17522  Topctop 22836  TopOnctopon 22853   Cn ccn 23167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-map 8847  df-qtop 17526  df-top 22837  df-topon 22854  df-cn 23170
This theorem is referenced by:  hmeoqtop  23718
  Copyright terms: Public domain W3C validator