MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qtopomap Structured version   Visualization version   GIF version

Theorem qtopomap 23605
Description: If 𝐹 is a surjective continuous open map, then it is a quotient map. (An open map is a function that maps open sets to open sets.) (Contributed by Mario Carneiro, 24-Mar-2015.)
Hypotheses
Ref Expression
qtopomap.4 (𝜑𝐾 ∈ (TopOn‘𝑌))
qtopomap.5 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
qtopomap.6 (𝜑 → ran 𝐹 = 𝑌)
qtopomap.7 ((𝜑𝑥𝐽) → (𝐹𝑥) ∈ 𝐾)
Assertion
Ref Expression
qtopomap (𝜑𝐾 = (𝐽 qTop 𝐹))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐽   𝑥,𝐾   𝜑,𝑥   𝑥,𝑌

Proof of Theorem qtopomap
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 qtopomap.5 . . 3 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
2 qtopomap.4 . . 3 (𝜑𝐾 ∈ (TopOn‘𝑌))
3 qtopomap.6 . . 3 (𝜑 → ran 𝐹 = 𝑌)
4 qtopss 23602 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 = 𝑌) → 𝐾 ⊆ (𝐽 qTop 𝐹))
51, 2, 3, 4syl3anc 1373 . 2 (𝜑𝐾 ⊆ (𝐽 qTop 𝐹))
6 cntop1 23127 . . . . . . 7 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)
71, 6syl 17 . . . . . 6 (𝜑𝐽 ∈ Top)
8 toptopon2 22805 . . . . . 6 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
97, 8sylib 218 . . . . 5 (𝜑𝐽 ∈ (TopOn‘ 𝐽))
10 cnf2 23136 . . . . . . . 8 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹: 𝐽𝑌)
119, 2, 1, 10syl3anc 1373 . . . . . . 7 (𝜑𝐹: 𝐽𝑌)
1211ffnd 6689 . . . . . 6 (𝜑𝐹 Fn 𝐽)
13 df-fo 6517 . . . . . 6 (𝐹: 𝐽onto𝑌 ↔ (𝐹 Fn 𝐽 ∧ ran 𝐹 = 𝑌))
1412, 3, 13sylanbrc 583 . . . . 5 (𝜑𝐹: 𝐽onto𝑌)
15 elqtop3 23590 . . . . 5 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝐹: 𝐽onto𝑌) → (𝑦 ∈ (𝐽 qTop 𝐹) ↔ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)))
169, 14, 15syl2anc 584 . . . 4 (𝜑 → (𝑦 ∈ (𝐽 qTop 𝐹) ↔ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)))
17 foimacnv 6817 . . . . . . . 8 ((𝐹: 𝐽onto𝑌𝑦𝑌) → (𝐹 “ (𝐹𝑦)) = 𝑦)
1814, 17sylan 580 . . . . . . 7 ((𝜑𝑦𝑌) → (𝐹 “ (𝐹𝑦)) = 𝑦)
1918adantrr 717 . . . . . 6 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → (𝐹 “ (𝐹𝑦)) = 𝑦)
20 imaeq2 6027 . . . . . . . 8 (𝑥 = (𝐹𝑦) → (𝐹𝑥) = (𝐹 “ (𝐹𝑦)))
2120eleq1d 2813 . . . . . . 7 (𝑥 = (𝐹𝑦) → ((𝐹𝑥) ∈ 𝐾 ↔ (𝐹 “ (𝐹𝑦)) ∈ 𝐾))
22 qtopomap.7 . . . . . . . . 9 ((𝜑𝑥𝐽) → (𝐹𝑥) ∈ 𝐾)
2322ralrimiva 3125 . . . . . . . 8 (𝜑 → ∀𝑥𝐽 (𝐹𝑥) ∈ 𝐾)
2423adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → ∀𝑥𝐽 (𝐹𝑥) ∈ 𝐾)
25 simprr 772 . . . . . . 7 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → (𝐹𝑦) ∈ 𝐽)
2621, 24, 25rspcdva 3589 . . . . . 6 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → (𝐹 “ (𝐹𝑦)) ∈ 𝐾)
2719, 26eqeltrrd 2829 . . . . 5 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → 𝑦𝐾)
2827ex 412 . . . 4 (𝜑 → ((𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽) → 𝑦𝐾))
2916, 28sylbid 240 . . 3 (𝜑 → (𝑦 ∈ (𝐽 qTop 𝐹) → 𝑦𝐾))
3029ssrdv 3952 . 2 (𝜑 → (𝐽 qTop 𝐹) ⊆ 𝐾)
315, 30eqssd 3964 1 (𝜑𝐾 = (𝐽 qTop 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wss 3914   cuni 4871  ccnv 5637  ran crn 5639  cima 5641   Fn wfn 6506  wf 6507  ontowfo 6509  cfv 6511  (class class class)co 7387   qTop cqtop 17466  Topctop 22780  TopOnctopon 22797   Cn ccn 23111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-map 8801  df-qtop 17470  df-top 22781  df-topon 22798  df-cn 23114
This theorem is referenced by:  hmeoqtop  23662
  Copyright terms: Public domain W3C validator