| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > qtopomap | Structured version Visualization version GIF version | ||
| Description: If 𝐹 is a surjective continuous open map, then it is a quotient map. (An open map is a function that maps open sets to open sets.) (Contributed by Mario Carneiro, 24-Mar-2015.) |
| Ref | Expression |
|---|---|
| qtopomap.4 | ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) |
| qtopomap.5 | ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) |
| qtopomap.6 | ⊢ (𝜑 → ran 𝐹 = 𝑌) |
| qtopomap.7 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐽) → (𝐹 “ 𝑥) ∈ 𝐾) |
| Ref | Expression |
|---|---|
| qtopomap | ⊢ (𝜑 → 𝐾 = (𝐽 qTop 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qtopomap.5 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) | |
| 2 | qtopomap.4 | . . 3 ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) | |
| 3 | qtopomap.6 | . . 3 ⊢ (𝜑 → ran 𝐹 = 𝑌) | |
| 4 | qtopss 23651 | . . 3 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 = 𝑌) → 𝐾 ⊆ (𝐽 qTop 𝐹)) | |
| 5 | 1, 2, 3, 4 | syl3anc 1373 | . 2 ⊢ (𝜑 → 𝐾 ⊆ (𝐽 qTop 𝐹)) |
| 6 | cntop1 23176 | . . . . . . 7 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top) | |
| 7 | 1, 6 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐽 ∈ Top) |
| 8 | toptopon2 22854 | . . . . . 6 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) | |
| 9 | 7, 8 | sylib 218 | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘∪ 𝐽)) |
| 10 | cnf2 23185 | . . . . . . . 8 ⊢ ((𝐽 ∈ (TopOn‘∪ 𝐽) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:∪ 𝐽⟶𝑌) | |
| 11 | 9, 2, 1, 10 | syl3anc 1373 | . . . . . . 7 ⊢ (𝜑 → 𝐹:∪ 𝐽⟶𝑌) |
| 12 | 11 | ffnd 6706 | . . . . . 6 ⊢ (𝜑 → 𝐹 Fn ∪ 𝐽) |
| 13 | df-fo 6536 | . . . . . 6 ⊢ (𝐹:∪ 𝐽–onto→𝑌 ↔ (𝐹 Fn ∪ 𝐽 ∧ ran 𝐹 = 𝑌)) | |
| 14 | 12, 3, 13 | sylanbrc 583 | . . . . 5 ⊢ (𝜑 → 𝐹:∪ 𝐽–onto→𝑌) |
| 15 | elqtop3 23639 | . . . . 5 ⊢ ((𝐽 ∈ (TopOn‘∪ 𝐽) ∧ 𝐹:∪ 𝐽–onto→𝑌) → (𝑦 ∈ (𝐽 qTop 𝐹) ↔ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽))) | |
| 16 | 9, 14, 15 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝑦 ∈ (𝐽 qTop 𝐹) ↔ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽))) |
| 17 | foimacnv 6834 | . . . . . . . 8 ⊢ ((𝐹:∪ 𝐽–onto→𝑌 ∧ 𝑦 ⊆ 𝑌) → (𝐹 “ (◡𝐹 “ 𝑦)) = 𝑦) | |
| 18 | 14, 17 | sylan 580 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ⊆ 𝑌) → (𝐹 “ (◡𝐹 “ 𝑦)) = 𝑦) |
| 19 | 18 | adantrr 717 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽)) → (𝐹 “ (◡𝐹 “ 𝑦)) = 𝑦) |
| 20 | imaeq2 6043 | . . . . . . . 8 ⊢ (𝑥 = (◡𝐹 “ 𝑦) → (𝐹 “ 𝑥) = (𝐹 “ (◡𝐹 “ 𝑦))) | |
| 21 | 20 | eleq1d 2819 | . . . . . . 7 ⊢ (𝑥 = (◡𝐹 “ 𝑦) → ((𝐹 “ 𝑥) ∈ 𝐾 ↔ (𝐹 “ (◡𝐹 “ 𝑦)) ∈ 𝐾)) |
| 22 | qtopomap.7 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐽) → (𝐹 “ 𝑥) ∈ 𝐾) | |
| 23 | 22 | ralrimiva 3132 | . . . . . . . 8 ⊢ (𝜑 → ∀𝑥 ∈ 𝐽 (𝐹 “ 𝑥) ∈ 𝐾) |
| 24 | 23 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽)) → ∀𝑥 ∈ 𝐽 (𝐹 “ 𝑥) ∈ 𝐾) |
| 25 | simprr 772 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽)) → (◡𝐹 “ 𝑦) ∈ 𝐽) | |
| 26 | 21, 24, 25 | rspcdva 3602 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽)) → (𝐹 “ (◡𝐹 “ 𝑦)) ∈ 𝐾) |
| 27 | 19, 26 | eqeltrrd 2835 | . . . . 5 ⊢ ((𝜑 ∧ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽)) → 𝑦 ∈ 𝐾) |
| 28 | 27 | ex 412 | . . . 4 ⊢ (𝜑 → ((𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽) → 𝑦 ∈ 𝐾)) |
| 29 | 16, 28 | sylbid 240 | . . 3 ⊢ (𝜑 → (𝑦 ∈ (𝐽 qTop 𝐹) → 𝑦 ∈ 𝐾)) |
| 30 | 29 | ssrdv 3964 | . 2 ⊢ (𝜑 → (𝐽 qTop 𝐹) ⊆ 𝐾) |
| 31 | 5, 30 | eqssd 3976 | 1 ⊢ (𝜑 → 𝐾 = (𝐽 qTop 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ⊆ wss 3926 ∪ cuni 4883 ◡ccnv 5653 ran crn 5655 “ cima 5657 Fn wfn 6525 ⟶wf 6526 –onto→wfo 6528 ‘cfv 6530 (class class class)co 7403 qTop cqtop 17515 Topctop 22829 TopOnctopon 22846 Cn ccn 23160 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-ov 7406 df-oprab 7407 df-mpo 7408 df-map 8840 df-qtop 17519 df-top 22830 df-topon 22847 df-cn 23163 |
| This theorem is referenced by: hmeoqtop 23711 |
| Copyright terms: Public domain | W3C validator |